organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1093

3-Methyl-6-tri­chloro­methyl-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole

aSchool of Perfume and Aroma Technology, Shanghai Istitute of Technology, Shanghai 200235, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn

(Received 30 March 2011; accepted 6 April 2011; online 13 April 2011)

In the crystal structure of the title compound, C5H3Cl3N4S, two mol­ecules related by a centre of symmetry demonstrate extremely short inter­molecular S⋯N contacts of 2.783 (2) Å. The crystal packing also exhibits ππ inter­actions indicated by a short distance of 3.340 (1) Å between the centroids of the triazole rings of neighbouring mol­ecules.

Related literature

For the anti­microbial and anti-inflammatory activity of 1,2,4-triazole and 1,3,4-thio­diazole derivatives, see: Karabasanagouda et al. (2007[Karabasanagouda, T., Adhikari, A. V. & Shetty, S. N. (2007). Eur. J. Med. Chem. 42, 521-529.]); Mathew et al. (2007[Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823-840.]); For related structures, see: Du et al. (2008[Du, H., Du, H., An, Y. & Li, S. (2008). Acta Cryst. E64, o1402.]); Khan et al. (2009[Khan, M.-H., Hameed, S., Tahir, M. N., Bokhari, T. H. & Khan, I. U. (2009). Acta Cryst. E65, o1437.]); Haugwitz et al. (1977[Haugwitz, R. D., Toeplitz, B. & Gougoutas, J. Z. (1977). J. Chem. Soc. Chem. Commun. pp. 736-737.]).

[Scheme 1]

Experimental

Crystal data
  • C5H3Cl3N4S

  • Mr = 257.52

  • Monoclinic, P 21 /n

  • a = 5.8732 (12) Å

  • b = 9.4164 (19) Å

  • c = 16.750 (3) Å

  • β = 91.82 (3)°

  • V = 925.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 153 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.721, Tmax = 0.892

  • 9841 measured reflections

  • 2196 independent reflections

  • 1934 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.113

  • S = 1.24

  • 2196 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,4-Triazole and 1,3,4-thiodiazole derivatives demonstrate various activities such as antimicrobial (Karabasanagouda et al., 2007) and anti-inflammatory (Mathew et al., 2007) activities. Herewith we report the synthesis and crystal structure of the title compound (I), a new derivative from the aforementioned family.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related structures (Du et al., 2008; Khan et al., 2009). The triazolothiadiazole ring system is essentially planar with an r.m.s derivation of 0.0087 (2)Å and maximum deviation of 0.0037 (2)Å for atom C2. In the crystal structure, π-π interactions (Table 1) consolidate the crystal packing, which exhibits short intermolecular S···N contacts of 2.783 (2) Å observed eralier in the related structure (Haugwitz et al., 1977).

Related literature top

For the antimicrobial and anti-inflammatory activity of 1,2,4-triazole and 1,3,4-thiodiazole derivatives, see: Karabasanagouda et al. (2007); Mathew et al. (2007); For related structures, see: Du et al. (2008); Khan et al. (2009); Haugwitz et al. (1977).

Experimental top

The title compound was synthesized by the reaction of 4-amino-3-methyl-4H-1,2,4-triazole-5-thiol (2.0 mmol) and trichloroacetic acid (2.0 mmol) in phosphoryl trichloride for 24 h. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement top

H atoms were positioned geometrically (C—H = 0.98 Å) and refined as riding, with Uiso(H) = 1.5Ueq(parent).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 60% probability level.
3-Methyl-6-trichloromethyl-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole top
Crystal data top
C5H3Cl3N4SF(000) = 512
Mr = 257.52Dx = 1.847 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2918 reflections
a = 5.8732 (12) Åθ = 3.3–27.9°
b = 9.4164 (19) ŵ = 1.17 mm1
c = 16.750 (3) ÅT = 153 K
β = 91.82 (3)°Prism, colorless
V = 925.9 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2196 independent reflections
Radiation source: rotating anode1934 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.038
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.4°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1012
Tmin = 0.721, Tmax = 0.892l = 2222
9841 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0693P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
2196 reflectionsΔρmax = 0.49 e Å3
120 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.071 (6)
Crystal data top
C5H3Cl3N4SV = 925.9 (3) Å3
Mr = 257.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8732 (12) ŵ = 1.17 mm1
b = 9.4164 (19) ÅT = 153 K
c = 16.750 (3) Å0.30 × 0.20 × 0.10 mm
β = 91.82 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2196 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1934 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.892Rint = 0.038
9841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.24Δρmax = 0.49 e Å3
2196 reflectionsΔρmin = 0.44 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13777 (9)0.52705 (5)0.13657 (3)0.01622 (19)
Cl10.55694 (10)0.67616 (5)0.27560 (3)0.0242 (2)
Cl20.15047 (9)0.53079 (6)0.32341 (3)0.02410 (19)
Cl30.58496 (8)0.38759 (5)0.33267 (3)0.01648 (18)
N10.3533 (3)0.30847 (19)0.04370 (11)0.0193 (4)
N20.1853 (3)0.40411 (19)0.01768 (11)0.0191 (4)
N30.4320 (3)0.35972 (16)0.08095 (10)0.0134 (4)
N40.5132 (3)0.37661 (17)0.15796 (10)0.0133 (4)
C10.7018 (4)0.1903 (2)0.01481 (13)0.0223 (5)
H1A0.72710.15940.04010.033*
H1B0.67760.10700.04860.033*
H1C0.83530.24300.03520.033*
C20.4981 (3)0.2833 (2)0.01591 (12)0.0158 (4)
C30.2385 (3)0.4306 (2)0.05699 (12)0.0151 (4)
C40.3744 (3)0.46089 (19)0.19257 (12)0.0135 (4)
C50.4165 (3)0.5096 (2)0.27709 (11)0.0136 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0153 (3)0.0166 (3)0.0165 (3)0.00419 (18)0.0027 (2)0.00059 (17)
Cl10.0359 (4)0.0136 (3)0.0227 (3)0.0086 (2)0.0055 (2)0.00025 (18)
Cl20.0186 (3)0.0337 (4)0.0202 (3)0.0075 (2)0.0050 (2)0.0021 (2)
Cl30.0186 (3)0.0164 (3)0.0143 (3)0.00304 (18)0.00199 (19)0.00178 (16)
N10.0204 (9)0.0206 (9)0.0169 (9)0.0011 (7)0.0001 (7)0.0020 (7)
N20.0201 (9)0.0214 (9)0.0157 (9)0.0021 (7)0.0023 (7)0.0011 (7)
N30.0142 (8)0.0127 (8)0.0133 (8)0.0010 (6)0.0022 (6)0.0002 (6)
N40.0132 (8)0.0145 (8)0.0122 (8)0.0015 (6)0.0015 (6)0.0002 (6)
C10.0240 (12)0.0254 (11)0.0176 (10)0.0059 (9)0.0015 (8)0.0031 (8)
C20.0180 (10)0.0155 (9)0.0142 (9)0.0029 (8)0.0017 (7)0.0013 (7)
C30.0133 (10)0.0135 (9)0.0184 (10)0.0013 (8)0.0018 (8)0.0022 (7)
C40.0145 (10)0.0121 (9)0.0136 (9)0.0009 (7)0.0007 (7)0.0027 (7)
C50.0138 (9)0.0110 (8)0.0162 (10)0.0023 (7)0.0008 (7)0.0009 (7)
Geometric parameters (Å, º) top
S1—C31.732 (2)N3—N41.370 (2)
S1—C41.765 (2)N3—C21.372 (3)
Cl1—C51.772 (2)N4—C41.289 (3)
Cl2—C51.778 (2)C1—C21.483 (3)
Cl3—C51.763 (2)C1—H1A0.9800
N1—C21.313 (3)C1—H1B0.9800
N1—N21.415 (2)C1—H1C0.9800
N2—C31.304 (3)C4—C51.501 (3)
N3—C31.367 (3)
Cg1···Cg1i3.340 (1)Cg1···Cg2i3.682 (1)
C3—S1—C486.65 (9)N1—C2—C1126.9 (2)
C2—N1—N2108.78 (17)N3—C2—C1124.63 (18)
C3—N2—N1105.63 (17)N2—C3—N3111.08 (18)
C3—N3—N4118.75 (16)N2—C3—S1139.59 (16)
C3—N3—C2106.06 (17)N3—C3—S1109.33 (14)
N4—N3—C2135.19 (17)N4—C4—C5121.67 (18)
C4—N4—N3106.78 (16)N4—C4—S1118.48 (15)
C2—C1—H1A109.5C5—C4—S1119.77 (15)
C2—C1—H1B109.5C4—C5—Cl3111.82 (14)
H1A—C1—H1B109.5C4—C5—Cl1108.66 (13)
C2—C1—H1C109.5Cl3—C5—Cl1109.30 (11)
H1A—C1—H1C109.5C4—C5—Cl2108.97 (14)
H1B—C1—H1C109.5Cl3—C5—Cl2109.20 (10)
N1—C2—N3108.44 (17)Cl1—C5—Cl2108.84 (10)
C2—N1—N2—C30.4 (2)C2—N3—C3—S1178.46 (13)
C3—N3—N4—C40.9 (2)C4—S1—C3—N2179.8 (3)
C2—N3—N4—C4178.6 (2)C4—S1—C3—N30.80 (14)
N2—N1—C2—N30.2 (2)N3—N4—C4—C5176.81 (17)
N2—N1—C2—C1179.41 (19)N3—N4—C4—S10.2 (2)
C3—N3—C2—N10.6 (2)C3—S1—C4—N40.36 (16)
N4—N3—C2—N1179.8 (2)C3—S1—C4—C5176.31 (16)
C3—N3—C2—C1179.86 (19)N4—C4—C5—Cl325.8 (2)
N4—N3—C2—C10.6 (3)S1—C4—C5—Cl3157.64 (11)
N1—N2—C3—N30.7 (2)N4—C4—C5—Cl194.93 (19)
N1—N2—C3—S1178.24 (19)S1—C4—C5—Cl181.63 (16)
N4—N3—C3—N2179.50 (16)N4—C4—C5—Cl2146.61 (16)
C2—N3—C3—N20.8 (2)S1—C4—C5—Cl236.83 (18)
N4—N3—C3—S11.2 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC5H3Cl3N4S
Mr257.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)5.8732 (12), 9.4164 (19), 16.750 (3)
β (°) 91.82 (3)
V3)925.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.721, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
9841, 2196, 1934
Rint0.038
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.113, 1.24
No. of reflections2196
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.44

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support by the Key Laboratory Project of Liaoning Province (grant No. 2008S127) and the Doctor Starting Foundation of Liaoning Province (grant No. 20071103).

References

First citationDu, H., Du, H., An, Y. & Li, S. (2008). Acta Cryst. E64, o1402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaugwitz, R. D., Toeplitz, B. & Gougoutas, J. Z. (1977). J. Chem. Soc. Chem. Commun. pp. 736–737.  CrossRef Google Scholar
First citationKarabasanagouda, T., Adhikari, A. V. & Shetty, S. N. (2007). Eur. J. Med. Chem. 42, 521–529.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M.-H., Hameed, S., Tahir, M. N., Bokhari, T. H. & Khan, I. U. (2009). Acta Cryst. E65, o1437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823–840.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1093
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds