organic compounds
3-Methyl-6-trichloromethyl-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole
aSchool of Perfume and Aroma Technology, Shanghai Istitute of Technology, Shanghai 200235, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn
In the 5H3Cl3N4S, two molecules related by a centre of symmetry demonstrate extremely short intermolecular S⋯N contacts of 2.783 (2) Å. The crystal packing also exhibits π–π interactions indicated by a short distance of 3.340 (1) Å between the centroids of the triazole rings of neighbouring molecules.
of the title compound, CRelated literature
For the antimicrobial and anti-inflammatory activity of 1,2,4-triazole and 1,3,4-thiodiazole derivatives, see: Karabasanagouda et al. (2007); Mathew et al. (2007); For related structures, see: Du et al. (2008); Khan et al. (2009); Haugwitz et al. (1977).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811012748/cv5070sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811012748/cv5070Isup2.hkl
The title compound was synthesized by the reaction of 4-amino-3-methyl-4H-1,2,4-triazole-5-thiol (2.0 mmol) and trichloroacetic acid (2.0 mmol) in phosphoryl trichloride for 24 h. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).
H atoms were positioned geometrically (C—H = 0.98 Å) and refined as riding, with Uiso(H) = 1.5Ueq(parent).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 60% probability level. |
C5H3Cl3N4S | F(000) = 512 |
Mr = 257.52 | Dx = 1.847 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2918 reflections |
a = 5.8732 (12) Å | θ = 3.3–27.9° |
b = 9.4164 (19) Å | µ = 1.17 mm−1 |
c = 16.750 (3) Å | T = 153 K |
β = 91.82 (3)° | Prism, colorless |
V = 925.9 (3) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Rigaku Saturn CCD area-detector diffractometer | 2196 independent reflections |
Radiation source: rotating anode | 1934 reflections with I > 2σ(I) |
Multilayer monochromator | Rint = 0.038 |
Detector resolution: 7.31 pixels mm-1 | θmax = 27.9°, θmin = 2.4° |
ϕ and ω scans | h = −7→7 |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | k = −10→12 |
Tmin = 0.721, Tmax = 0.892 | l = −22→22 |
9841 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0693P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | (Δ/σ)max < 0.001 |
2196 reflections | Δρmax = 0.49 e Å−3 |
120 parameters | Δρmin = −0.44 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.071 (6) |
C5H3Cl3N4S | V = 925.9 (3) Å3 |
Mr = 257.52 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.8732 (12) Å | µ = 1.17 mm−1 |
b = 9.4164 (19) Å | T = 153 K |
c = 16.750 (3) Å | 0.30 × 0.20 × 0.10 mm |
β = 91.82 (3)° |
Rigaku Saturn CCD area-detector diffractometer | 2196 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | 1934 reflections with I > 2σ(I) |
Tmin = 0.721, Tmax = 0.892 | Rint = 0.038 |
9841 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.24 | Δρmax = 0.49 e Å−3 |
2196 reflections | Δρmin = −0.44 e Å−3 |
120 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.13777 (9) | 0.52705 (5) | 0.13657 (3) | 0.01622 (19) | |
Cl1 | 0.55694 (10) | 0.67616 (5) | 0.27560 (3) | 0.0242 (2) | |
Cl2 | 0.15047 (9) | 0.53079 (6) | 0.32341 (3) | 0.02410 (19) | |
Cl3 | 0.58496 (8) | 0.38759 (5) | 0.33267 (3) | 0.01648 (18) | |
N1 | 0.3533 (3) | 0.30847 (19) | −0.04370 (11) | 0.0193 (4) | |
N2 | 0.1853 (3) | 0.40411 (19) | −0.01768 (11) | 0.0191 (4) | |
N3 | 0.4320 (3) | 0.35972 (16) | 0.08095 (10) | 0.0134 (4) | |
N4 | 0.5132 (3) | 0.37661 (17) | 0.15796 (10) | 0.0133 (4) | |
C1 | 0.7018 (4) | 0.1903 (2) | 0.01481 (13) | 0.0223 (5) | |
H1A | 0.7271 | 0.1594 | −0.0401 | 0.033* | |
H1B | 0.6776 | 0.1070 | 0.0486 | 0.033* | |
H1C | 0.8353 | 0.2430 | 0.0352 | 0.033* | |
C2 | 0.4981 (3) | 0.2833 (2) | 0.01591 (12) | 0.0158 (4) | |
C3 | 0.2385 (3) | 0.4306 (2) | 0.05699 (12) | 0.0151 (4) | |
C4 | 0.3744 (3) | 0.46089 (19) | 0.19257 (12) | 0.0135 (4) | |
C5 | 0.4165 (3) | 0.5096 (2) | 0.27709 (11) | 0.0136 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0153 (3) | 0.0166 (3) | 0.0165 (3) | 0.00419 (18) | −0.0027 (2) | −0.00059 (17) |
Cl1 | 0.0359 (4) | 0.0136 (3) | 0.0227 (3) | −0.0086 (2) | −0.0055 (2) | 0.00025 (18) |
Cl2 | 0.0186 (3) | 0.0337 (4) | 0.0202 (3) | 0.0075 (2) | 0.0050 (2) | −0.0021 (2) |
Cl3 | 0.0186 (3) | 0.0164 (3) | 0.0143 (3) | 0.00304 (18) | −0.00199 (19) | 0.00178 (16) |
N1 | 0.0204 (9) | 0.0206 (9) | 0.0169 (9) | −0.0011 (7) | −0.0001 (7) | −0.0020 (7) |
N2 | 0.0201 (9) | 0.0214 (9) | 0.0157 (9) | 0.0021 (7) | −0.0023 (7) | −0.0011 (7) |
N3 | 0.0142 (8) | 0.0127 (8) | 0.0133 (8) | −0.0010 (6) | −0.0022 (6) | 0.0002 (6) |
N4 | 0.0132 (8) | 0.0145 (8) | 0.0122 (8) | −0.0015 (6) | −0.0015 (6) | 0.0002 (6) |
C1 | 0.0240 (12) | 0.0254 (11) | 0.0176 (10) | 0.0059 (9) | 0.0015 (8) | −0.0031 (8) |
C2 | 0.0180 (10) | 0.0155 (9) | 0.0142 (9) | −0.0029 (8) | 0.0017 (7) | −0.0013 (7) |
C3 | 0.0133 (10) | 0.0135 (9) | 0.0184 (10) | 0.0013 (8) | −0.0018 (8) | 0.0022 (7) |
C4 | 0.0145 (10) | 0.0121 (9) | 0.0136 (9) | −0.0009 (7) | −0.0007 (7) | 0.0027 (7) |
C5 | 0.0138 (9) | 0.0110 (8) | 0.0162 (10) | 0.0023 (7) | 0.0008 (7) | 0.0009 (7) |
S1—C3 | 1.732 (2) | N3—N4 | 1.370 (2) |
S1—C4 | 1.765 (2) | N3—C2 | 1.372 (3) |
Cl1—C5 | 1.772 (2) | N4—C4 | 1.289 (3) |
Cl2—C5 | 1.778 (2) | C1—C2 | 1.483 (3) |
Cl3—C5 | 1.763 (2) | C1—H1A | 0.9800 |
N1—C2 | 1.313 (3) | C1—H1B | 0.9800 |
N1—N2 | 1.415 (2) | C1—H1C | 0.9800 |
N2—C3 | 1.304 (3) | C4—C5 | 1.501 (3) |
N3—C3 | 1.367 (3) | ||
Cg1···Cg1i | 3.340 (1) | Cg1···Cg2i | 3.682 (1) |
C3—S1—C4 | 86.65 (9) | N1—C2—C1 | 126.9 (2) |
C2—N1—N2 | 108.78 (17) | N3—C2—C1 | 124.63 (18) |
C3—N2—N1 | 105.63 (17) | N2—C3—N3 | 111.08 (18) |
C3—N3—N4 | 118.75 (16) | N2—C3—S1 | 139.59 (16) |
C3—N3—C2 | 106.06 (17) | N3—C3—S1 | 109.33 (14) |
N4—N3—C2 | 135.19 (17) | N4—C4—C5 | 121.67 (18) |
C4—N4—N3 | 106.78 (16) | N4—C4—S1 | 118.48 (15) |
C2—C1—H1A | 109.5 | C5—C4—S1 | 119.77 (15) |
C2—C1—H1B | 109.5 | C4—C5—Cl3 | 111.82 (14) |
H1A—C1—H1B | 109.5 | C4—C5—Cl1 | 108.66 (13) |
C2—C1—H1C | 109.5 | Cl3—C5—Cl1 | 109.30 (11) |
H1A—C1—H1C | 109.5 | C4—C5—Cl2 | 108.97 (14) |
H1B—C1—H1C | 109.5 | Cl3—C5—Cl2 | 109.20 (10) |
N1—C2—N3 | 108.44 (17) | Cl1—C5—Cl2 | 108.84 (10) |
C2—N1—N2—C3 | −0.4 (2) | C2—N3—C3—S1 | 178.46 (13) |
C3—N3—N4—C4 | 0.9 (2) | C4—S1—C3—N2 | 179.8 (3) |
C2—N3—N4—C4 | −178.6 (2) | C4—S1—C3—N3 | 0.80 (14) |
N2—N1—C2—N3 | −0.2 (2) | N3—N4—C4—C5 | −176.81 (17) |
N2—N1—C2—C1 | −179.41 (19) | N3—N4—C4—S1 | −0.2 (2) |
C3—N3—C2—N1 | 0.6 (2) | C3—S1—C4—N4 | −0.36 (16) |
N4—N3—C2—N1 | −179.8 (2) | C3—S1—C4—C5 | 176.31 (16) |
C3—N3—C2—C1 | 179.86 (19) | N4—C4—C5—Cl3 | −25.8 (2) |
N4—N3—C2—C1 | −0.6 (3) | S1—C4—C5—Cl3 | 157.64 (11) |
N1—N2—C3—N3 | 0.7 (2) | N4—C4—C5—Cl1 | 94.93 (19) |
N1—N2—C3—S1 | −178.24 (19) | S1—C4—C5—Cl1 | −81.63 (16) |
N4—N3—C3—N2 | 179.50 (16) | N4—C4—C5—Cl2 | −146.61 (16) |
C2—N3—C3—N2 | −0.8 (2) | S1—C4—C5—Cl2 | 36.83 (18) |
N4—N3—C3—S1 | −1.2 (2) |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C5H3Cl3N4S |
Mr | 257.52 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 153 |
a, b, c (Å) | 5.8732 (12), 9.4164 (19), 16.750 (3) |
β (°) | 91.82 (3) |
V (Å3) | 925.9 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.17 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Rigaku Saturn CCD area-detector diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku/MSC, 2005) |
Tmin, Tmax | 0.721, 0.892 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9841, 2196, 1934 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.113, 1.24 |
No. of reflections | 2196 |
No. of parameters | 120 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.44 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
We gratefully acknowledge financial support by the Key Laboratory Project of Liaoning Province (grant No. 2008S127) and the Doctor Starting Foundation of Liaoning Province (grant No. 20071103).
References
Du, H., Du, H., An, Y. & Li, S. (2008). Acta Cryst. E64, o1402. Web of Science CSD CrossRef IUCr Journals Google Scholar
Haugwitz, R. D., Toeplitz, B. & Gougoutas, J. Z. (1977). J. Chem. Soc. Chem. Commun. pp. 736–737. CrossRef Google Scholar
Karabasanagouda, T., Adhikari, A. V. & Shetty, S. N. (2007). Eur. J. Med. Chem. 42, 521–529. Web of Science CrossRef PubMed CAS Google Scholar
Khan, M.-H., Hameed, S., Tahir, M. N., Bokhari, T. H. & Khan, I. U. (2009). Acta Cryst. E65, o1437. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823–840. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,2,4-Triazole and 1,3,4-thiodiazole derivatives demonstrate various activities such as antimicrobial (Karabasanagouda et al., 2007) and anti-inflammatory (Mathew et al., 2007) activities. Herewith we report the synthesis and crystal structure of the title compound (I), a new derivative from the aforementioned family.
In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related structures (Du et al., 2008; Khan et al., 2009). The triazolothiadiazole ring system is essentially planar with an r.m.s derivation of 0.0087 (2)Å and maximum deviation of 0.0037 (2)Å for atom C2. In the crystal structure, π-π interactions (Table 1) consolidate the crystal packing, which exhibits short intermolecular S···N contacts of 2.783 (2) Å observed eralier in the related structure (Haugwitz et al., 1977).