organic compounds
Febuxostat methanol solvate
aInstitute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, bCollege of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China, and cCenter of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China
*Correspondence e-mail: huxiurong@yahoo.com.cn
In the title compound {systematic name: [2-(3-cyano-4-isobutyloxyphenyl)-4-methyl-1,3-thiazole-5-carboxylic acid (febuxostat) methanol monosolvate}, C16H16N2O3S·CH4O, the benzene and thiazole rings in the febuxostat molecule are twisted at 5.3 (1)°. In the intermolecular O—H⋯O and O—H⋯N hydrogen bonds link the febuxostat and methanol molecules into helical chains along the 21 screw axis.
Related literature
For applications of febuxostat in the medicine, see: Schumacher et al. (2009); Becke et al. (2010); Khosravan et al. (2007); Takano et al. (2005). For the synthesis, stability and bioavailabitily of febuxostat, see: Hiramatsu et al. (2000); Sorbera et al. (2001); Zhou et al. (2007). For the of febuxostat pyridine solvate, see: Zhu et al. (2009).
Experimental
Crystal data
|
Data collection: PROCESS-AUTO (Rigaku, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811014905/cv5075sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811014905/cv5075Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811014905/cv5075Isup3.cml
The crude product supplied by Zhejiang Huadong Pharmaceutical Co., Ltd, was recrystallized from methanol solution giving colourless crystals suitable for X-ray diffraction.
All H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and O—H = 0.82 Å and included in the
in riding model, with Uiso(H) = 1.2Ueq or 1.5Ueq(carrier atom).Data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C16H16N2O3S·CH4O | F(000) = 368 |
Mr = 348.41 | Dx = 1.284 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 6196 reflections |
a = 4.7089 (3) Å | θ = 3.8–27.4° |
b = 17.9073 (13) Å | µ = 0.20 mm−1 |
c = 10.7965 (8) Å | T = 296 K |
β = 98.047 (2)° | Needle, colourless |
V = 901.44 (11) Å3 | 0.48 × 0.13 × 0.10 mm |
Z = 2 |
Rigaku R-AXIS RAPID/ZJUG diffractometer | 4048 independent reflections |
Radiation source: rolling anode | 3048 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.4°, θmin = 3.8° |
ω scans | h = −5→6 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −23→23 |
Tmin = 0.905, Tmax = 0.980 | l = −13→13 |
8429 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.0221P)2 + 0.134P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.002 |
4048 reflections | Δρmax = 0.13 e Å−3 |
223 parameters | Δρmin = −0.15 e Å−3 |
1 restraint | Absolute structure: Flack (1983), with 1941 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.05 (7) |
C16H16N2O3S·CH4O | V = 901.44 (11) Å3 |
Mr = 348.41 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 4.7089 (3) Å | µ = 0.20 mm−1 |
b = 17.9073 (13) Å | T = 296 K |
c = 10.7965 (8) Å | 0.48 × 0.13 × 0.10 mm |
β = 98.047 (2)° |
Rigaku R-AXIS RAPID/ZJUG diffractometer | 4048 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3048 reflections with I > 2σ(I) |
Tmin = 0.905, Tmax = 0.980 | Rint = 0.034 |
8429 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.078 | Δρmax = 0.13 e Å−3 |
S = 1.00 | Δρmin = −0.15 e Å−3 |
4048 reflections | Absolute structure: Flack (1983), with 1941 Friedel pairs |
223 parameters | Absolute structure parameter: −0.05 (7) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O4 | 0.2078 (5) | 0.19681 (11) | 0.8788 (2) | 0.0794 (6) | |
H4 | 0.2298 | 0.1575 | 0.9181 | 0.119* | |
C17 | 0.0129 (8) | 0.1856 (2) | 0.7690 (3) | 0.0918 (10) | |
H17A | −0.1528 | 0.1595 | 0.7890 | 0.138* | |
H17B | 0.1031 | 0.1567 | 0.7106 | 0.138* | |
H17C | −0.0445 | 0.2331 | 0.7324 | 0.138* | |
S1 | 0.81600 (13) | 0.45188 (3) | 0.82299 (5) | 0.04563 (15) | |
N1 | 0.7895 (4) | 0.56137 (10) | 0.97388 (17) | 0.0410 (4) | |
O3 | 1.6085 (4) | 0.72442 (8) | 0.62269 (15) | 0.0491 (4) | |
C6 | 1.0840 (5) | 0.59027 (12) | 0.8089 (2) | 0.0377 (5) | |
C8 | 1.3569 (5) | 0.61374 (13) | 0.6395 (2) | 0.0411 (6) | |
C1 | 0.8996 (5) | 0.54145 (12) | 0.8730 (2) | 0.0403 (5) | |
C13 | 1.6920 (5) | 0.79823 (12) | 0.6671 (2) | 0.0465 (6) | |
H13A | 1.8109 | 0.7952 | 0.7479 | 0.056* | |
H13B | 1.5232 | 0.8276 | 0.6764 | 0.056* | |
O1 | 0.5033 (5) | 0.31992 (10) | 0.87756 (19) | 0.0708 (6) | |
H1 | 0.4149 | 0.2820 | 0.8907 | 0.106* | |
C3 | 0.6208 (5) | 0.44077 (13) | 0.9457 (2) | 0.0420 (6) | |
C14 | 1.8573 (6) | 0.83447 (13) | 0.5728 (2) | 0.0504 (6) | |
H14 | 2.0217 | 0.8026 | 0.5625 | 0.060* | |
C2 | 0.6304 (5) | 0.50420 (13) | 1.0150 (2) | 0.0416 (5) | |
C11 | 1.1728 (5) | 0.65996 (13) | 0.8577 (2) | 0.0463 (6) | |
H11 | 1.1123 | 0.6757 | 0.9318 | 0.056* | |
O2 | 0.3404 (4) | 0.35831 (10) | 1.05077 (18) | 0.0692 (5) | |
C9 | 1.4399 (5) | 0.68379 (13) | 0.6888 (2) | 0.0406 (5) | |
C7 | 1.1807 (5) | 0.56763 (12) | 0.6989 (2) | 0.0443 (6) | |
H7 | 1.1269 | 0.5212 | 0.6648 | 0.053* | |
C10 | 1.3472 (5) | 0.70618 (13) | 0.7997 (2) | 0.0453 (6) | |
H10 | 1.4029 | 0.7523 | 0.8346 | 0.054* | |
C4 | 0.4753 (5) | 0.36987 (14) | 0.9650 (2) | 0.0480 (6) | |
C12 | 1.4636 (6) | 0.58932 (14) | 0.5282 (3) | 0.0572 (7) | |
C5 | 0.4890 (6) | 0.51762 (15) | 1.1292 (2) | 0.0568 (7) | |
H5A | 0.6307 | 0.5160 | 1.2023 | 0.085* | |
H5B | 0.3475 | 0.4797 | 1.1352 | 0.085* | |
H5C | 0.3982 | 0.5657 | 1.1233 | 0.085* | |
C16 | 1.9705 (7) | 0.90956 (14) | 0.6279 (3) | 0.0750 (9) | |
H16A | 2.0798 | 0.9015 | 0.7087 | 0.113* | |
H16B | 1.8119 | 0.9420 | 0.6359 | 0.113* | |
H16C | 2.0906 | 0.9321 | 0.5734 | 0.113* | |
N2 | 1.5505 (7) | 0.56898 (16) | 0.4403 (3) | 0.0918 (9) | |
C15 | 1.6760 (7) | 0.8435 (2) | 0.4470 (3) | 0.0838 (10) | |
H15A | 1.5222 | 0.8777 | 0.4543 | 0.126* | |
H15B | 1.5982 | 0.7959 | 0.4189 | 0.126* | |
H15C | 1.7922 | 0.8626 | 0.3879 | 0.126* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O4 | 0.1106 (17) | 0.0497 (12) | 0.0779 (14) | −0.0241 (12) | 0.0131 (14) | 0.0098 (11) |
C17 | 0.102 (3) | 0.086 (2) | 0.088 (2) | −0.013 (2) | 0.017 (2) | 0.012 (2) |
S1 | 0.0576 (3) | 0.0349 (3) | 0.0467 (3) | −0.0026 (3) | 0.0151 (3) | −0.0007 (3) |
N1 | 0.0452 (10) | 0.0372 (10) | 0.0415 (10) | 0.0046 (9) | 0.0089 (9) | 0.0009 (8) |
O3 | 0.0636 (11) | 0.0400 (9) | 0.0473 (9) | −0.0117 (8) | 0.0204 (9) | −0.0047 (7) |
C6 | 0.0410 (12) | 0.0334 (11) | 0.0389 (12) | 0.0016 (10) | 0.0058 (10) | 0.0038 (10) |
C8 | 0.0465 (14) | 0.0380 (12) | 0.0399 (13) | −0.0025 (11) | 0.0101 (11) | −0.0030 (10) |
C1 | 0.0435 (13) | 0.0358 (12) | 0.0407 (12) | 0.0018 (10) | 0.0029 (11) | 0.0024 (10) |
C13 | 0.0519 (14) | 0.0375 (12) | 0.0509 (14) | −0.0060 (12) | 0.0101 (12) | −0.0024 (11) |
O1 | 0.1015 (16) | 0.0449 (11) | 0.0727 (13) | −0.0199 (10) | 0.0356 (12) | −0.0043 (10) |
C3 | 0.0475 (13) | 0.0388 (14) | 0.0408 (12) | 0.0016 (11) | 0.0097 (10) | 0.0076 (11) |
C14 | 0.0499 (14) | 0.0417 (14) | 0.0627 (16) | −0.0004 (11) | 0.0194 (13) | 0.0036 (12) |
C2 | 0.0424 (14) | 0.0426 (13) | 0.0402 (13) | 0.0074 (11) | 0.0069 (11) | 0.0075 (10) |
C11 | 0.0565 (15) | 0.0422 (14) | 0.0407 (13) | −0.0020 (12) | 0.0089 (12) | −0.0045 (11) |
O2 | 0.0964 (15) | 0.0531 (11) | 0.0647 (12) | −0.0073 (10) | 0.0341 (12) | 0.0151 (9) |
C9 | 0.0456 (13) | 0.0357 (12) | 0.0408 (13) | −0.0004 (10) | 0.0072 (11) | 0.0025 (10) |
C7 | 0.0503 (13) | 0.0351 (12) | 0.0473 (13) | −0.0029 (11) | 0.0062 (11) | −0.0024 (11) |
C10 | 0.0595 (16) | 0.0345 (12) | 0.0427 (13) | −0.0059 (11) | 0.0105 (12) | −0.0027 (10) |
C4 | 0.0562 (15) | 0.0423 (13) | 0.0452 (14) | 0.0044 (12) | 0.0057 (13) | 0.0100 (12) |
C12 | 0.0730 (18) | 0.0450 (14) | 0.0577 (16) | −0.0140 (13) | 0.0229 (14) | −0.0090 (13) |
C5 | 0.0666 (17) | 0.0557 (16) | 0.0531 (16) | 0.0009 (13) | 0.0252 (14) | 0.0004 (12) |
C16 | 0.074 (2) | 0.0436 (16) | 0.113 (3) | −0.0099 (14) | 0.0326 (19) | −0.0034 (16) |
N2 | 0.126 (2) | 0.085 (2) | 0.0752 (18) | −0.0245 (18) | 0.0498 (18) | −0.0323 (16) |
C15 | 0.100 (3) | 0.087 (2) | 0.067 (2) | −0.004 (2) | 0.0197 (19) | 0.0235 (17) |
O4—C17 | 1.409 (4) | C3—C2 | 1.357 (3) |
O4—H4 | 0.8200 | C3—C4 | 1.471 (3) |
C17—H17A | 0.9600 | C14—C15 | 1.508 (4) |
C17—H17B | 0.9600 | C14—C16 | 1.535 (4) |
C17—H17C | 0.9600 | C14—H14 | 0.9800 |
S1—C1 | 1.720 (2) | C2—C5 | 1.501 (3) |
S1—C3 | 1.727 (2) | C11—C10 | 1.377 (3) |
N1—C1 | 1.319 (3) | C11—H11 | 0.9300 |
N1—C2 | 1.378 (3) | O2—C4 | 1.211 (3) |
O3—C9 | 1.352 (3) | C9—C10 | 1.389 (3) |
O3—C13 | 1.442 (3) | C7—H7 | 0.9300 |
C6—C7 | 1.390 (3) | C10—H10 | 0.9300 |
C6—C11 | 1.396 (3) | C12—N2 | 1.144 (3) |
C6—C1 | 1.472 (3) | C5—H5A | 0.9600 |
C8—C7 | 1.389 (3) | C5—H5B | 0.9600 |
C8—C9 | 1.397 (3) | C5—H5C | 0.9600 |
C8—C12 | 1.435 (4) | C16—H16A | 0.9600 |
C13—C14 | 1.512 (3) | C16—H16B | 0.9600 |
C13—H13A | 0.9700 | C16—H16C | 0.9600 |
C13—H13B | 0.9700 | C15—H15A | 0.9600 |
O1—C4 | 1.321 (3) | C15—H15B | 0.9600 |
O1—H1 | 0.8200 | C15—H15C | 0.9600 |
C17—O4—H4 | 109.5 | C3—C2—C5 | 127.0 (2) |
O4—C17—H17A | 109.5 | N1—C2—C5 | 118.0 (2) |
O4—C17—H17B | 109.5 | C10—C11—C6 | 122.1 (2) |
H17A—C17—H17B | 109.5 | C10—C11—H11 | 118.9 |
O4—C17—H17C | 109.5 | C6—C11—H11 | 118.9 |
H17A—C17—H17C | 109.5 | O3—C9—C10 | 125.3 (2) |
H17B—C17—H17C | 109.5 | O3—C9—C8 | 115.8 (2) |
C1—S1—C3 | 89.40 (12) | C10—C9—C8 | 118.8 (2) |
C1—N1—C2 | 111.03 (19) | C6—C7—C8 | 120.6 (2) |
C9—O3—C13 | 118.06 (17) | C6—C7—H7 | 119.7 |
C7—C6—C11 | 117.8 (2) | C8—C7—H7 | 119.7 |
C7—C6—C1 | 120.9 (2) | C11—C10—C9 | 119.9 (2) |
C11—C6—C1 | 121.3 (2) | C11—C10—H10 | 120.1 |
C7—C8—C9 | 120.8 (2) | C9—C10—H10 | 120.1 |
C7—C8—C12 | 120.5 (2) | O2—C4—O1 | 123.1 (2) |
C9—C8—C12 | 118.7 (2) | O2—C4—C3 | 124.1 (2) |
N1—C1—C6 | 123.6 (2) | O1—C4—C3 | 112.8 (2) |
N1—C1—S1 | 114.35 (17) | N2—C12—C8 | 179.0 (3) |
C6—C1—S1 | 122.03 (18) | C2—C5—H5A | 109.5 |
O3—C13—C14 | 108.14 (19) | C2—C5—H5B | 109.5 |
O3—C13—H13A | 110.1 | H5A—C5—H5B | 109.5 |
C14—C13—H13A | 110.1 | C2—C5—H5C | 109.5 |
O3—C13—H13B | 110.1 | H5A—C5—H5C | 109.5 |
C14—C13—H13B | 110.1 | H5B—C5—H5C | 109.5 |
H13A—C13—H13B | 108.4 | C14—C16—H16A | 109.5 |
C4—O1—H1 | 109.5 | C14—C16—H16B | 109.5 |
C2—C3—C4 | 128.6 (2) | H16A—C16—H16B | 109.5 |
C2—C3—S1 | 110.26 (18) | C14—C16—H16C | 109.5 |
C4—C3—S1 | 121.10 (18) | H16A—C16—H16C | 109.5 |
C15—C14—C13 | 111.9 (2) | H16B—C16—H16C | 109.5 |
C15—C14—C16 | 112.2 (2) | C14—C15—H15A | 109.5 |
C13—C14—C16 | 107.4 (2) | C14—C15—H15B | 109.5 |
C15—C14—H14 | 108.4 | H15A—C15—H15B | 109.5 |
C13—C14—H14 | 108.4 | C14—C15—H15C | 109.5 |
C16—C14—H14 | 108.4 | H15A—C15—H15C | 109.5 |
C3—C2—N1 | 115.0 (2) | H15B—C15—H15C | 109.5 |
C2—N1—C1—C6 | −178.87 (19) | C7—C6—C11—C10 | 0.9 (3) |
C2—N1—C1—S1 | −0.2 (2) | C1—C6—C11—C10 | 179.5 (2) |
C7—C6—C1—N1 | −176.4 (2) | C13—O3—C9—C10 | −2.4 (3) |
C11—C6—C1—N1 | 5.0 (3) | C13—O3—C9—C8 | 177.84 (19) |
C7—C6—C1—S1 | 5.0 (3) | C7—C8—C9—O3 | −179.2 (2) |
C11—C6—C1—S1 | −173.57 (17) | C12—C8—C9—O3 | 2.6 (3) |
C3—S1—C1—N1 | 0.00 (18) | C7—C8—C9—C10 | 1.1 (3) |
C3—S1—C1—C6 | 178.72 (18) | C12—C8—C9—C10 | −177.2 (2) |
C9—O3—C13—C14 | −175.41 (19) | C11—C6—C7—C8 | −0.8 (3) |
C1—S1—C3—C2 | 0.17 (18) | C1—C6—C7—C8 | −179.4 (2) |
C1—S1—C3—C4 | −179.20 (18) | C9—C8—C7—C6 | −0.2 (3) |
O3—C13—C14—C15 | 62.2 (3) | C12—C8—C7—C6 | 178.1 (2) |
O3—C13—C14—C16 | −174.3 (2) | C6—C11—C10—C9 | 0.1 (4) |
C4—C3—C2—N1 | 179.0 (2) | O3—C9—C10—C11 | 179.3 (2) |
S1—C3—C2—N1 | −0.3 (2) | C8—C9—C10—C11 | −1.0 (3) |
C4—C3—C2—C5 | −0.8 (4) | C2—C3—C4—O2 | −0.8 (4) |
S1—C3—C2—C5 | 179.91 (19) | S1—C3—C4—O2 | 178.45 (19) |
C1—N1—C2—C3 | 0.3 (3) | C2—C3—C4—O1 | 178.3 (2) |
C1—N1—C2—C5 | −179.9 (2) | S1—C3—C4—O1 | −2.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···N1i | 0.82 | 2.09 | 2.899 (3) | 169 |
O1—H1···O4 | 0.82 | 1.80 | 2.608 (3) | 166 |
Symmetry code: (i) −x+1, y−1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C16H16N2O3S·CH4O |
Mr | 348.41 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 296 |
a, b, c (Å) | 4.7089 (3), 17.9073 (13), 10.7965 (8) |
β (°) | 98.047 (2) |
V (Å3) | 901.44 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.20 |
Crystal size (mm) | 0.48 × 0.13 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID/ZJUG diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.905, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8429, 4048, 3048 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.078, 1.00 |
No. of reflections | 4048 |
No. of parameters | 223 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.15 |
Absolute structure | Flack (1983), with 1941 Friedel pairs |
Absolute structure parameter | −0.05 (7) |
Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···N1i | 0.82 | 2.09 | 2.899 (3) | 169 |
O1—H1···O4 | 0.82 | 1.80 | 2.608 (3) | 166 |
Symmetry code: (i) −x+1, y−1/2, −z+2. |
Acknowledgements
The project was supported by Zhejiang Provincial Natural Science Foundation of China (grant No. J200801).
References
Becke, M. A., Schumacher, H. R., Espinoza, L. R., Wells, A. F., Macdonald, P., Lloyd, E. & Lademacher, C. (2010). Arthritis Res. Ther. 12, R63, 1–12. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hiramatsu, T., Matsumoto, K. & Watanabe, K. (2000). China Patent CN 1275126. Google Scholar
Khosravan, R., Grabowski, B., Wu, J. T., Joseph-Ridge, N. & Vernillet, L. (2007). Clin. Pharm. 65, 355–363. CrossRef Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Schumacher, H. R., Becker, M. A., Lloyd, E., Macdonald, P. A. & Lademacher, C. (2009). Rheumatology, 48, 188–194. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sorbera, L. A., Revel, L., Rabasseda, X. & Castaner, J. (2001). Drugs Fut. 26, 32–38. CAS Google Scholar
Takano, Y., Hase-Aoki, K., Horiuchi, H., Zhao, L., Kasahara, Y., Kondo, S. & Becker, M. A. (2005). Life Sci. 76, 1835–1847. Web of Science CrossRef PubMed CAS Google Scholar
Zhou, X. G., Tang, X. M., Deng, J., Ye, W. R., Luo, J., Zhang, D. L. & Fan, B. (2007). China Patent CN 1970547. Google Scholar
Zhu, X., Wang, Y. & Lu, T. (2009). Acta Cryst. E65, o2603. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Gout is a disorder caused by deposition of monosodium urate crystals in joints and other tissues as a result of extracellular urate supersaturation. However, hyperuricemia is the most important risk factor for the development of gout and occurs as a result of increased uric acid production (Takano et al., 2005). Febuxostat is a novel non-purine selective inhibitor of xanthine oxidase which is currently under investigation for the management of hyperuricaemia in patients with gout (Khosravan et al., 2007). Many patents and papers have been reported on the synthesis, polymorphism, stability and bioavailabitily of this drug (Hiramatsu et al., 2000; Sorbera et al., 2001; Zhou et al., 2007). The single-crystal structure of febuxostat pyridine solvate has been reported by Zhu et al. (2009). In the present study, we report the crystal structure of febuxostat methanol solvate (I).
The asymmetric unit of (I) consists of one febuxostat molecule and one methanol molecule (Fig. 1). The benzene and thiazole rings of the febuxostat molecule are almost coplanar, with the dihedral angle between them being 5.3 (1)°. The carboxyl group is coplanar with the thiazole ring as indicated by torsion angles O2—C4—C3—C2 and O1—C4—C3—S1 of -0.8 (4)° and -2.5 (3)°, respectively. Conformations of the febuxostat molecule in (I) and in febuxostat pyridine solvate (Zhu et al., 2009) are close.
In the crystal structure, febuxostat molecules and methanol molecule are linked by intermolecular hydrogen bonds O—H···N and O—H···O. In this way, the molecules are linked into infinite zigzag chains stretching along the b axis.