organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1232

Febuxostat methanol solvate

aInstitute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, bCollege of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China, and cCenter of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China
*Correspondence e-mail: huxiurong@yahoo.com.cn

(Received 12 April 2011; accepted 20 April 2011; online 29 April 2011)

In the title compound {systematic name: [2-(3-cyano-4-isobutyl­oxyphen­yl)-4-methyl-1,3-thia­zole-5-carb­oxy­lic acid (febuxostat) methanol monosolvate}, C16H16N2O3S·CH4O, the benzene and thia­zole rings in the febuxostat mol­ecule are twisted at 5.3 (1)°. In the crystal structure, inter­molecular O—H⋯O and O—H⋯N hydrogen bonds link the febuxostat and methanol mol­ecules into helical chains along the 21 screw axis.

Related literature

For applications of febuxostat in the medicine, see: Schumacher et al. (2009[Schumacher, H. R., Becker, M. A., Lloyd, E., Macdonald, P. A. & Lademacher, C. (2009). Rheumatology, 48, 188-194.]); Becke et al. (2010[Becke, M. A., Schumacher, H. R., Espinoza, L. R., Wells, A. F., Macdonald, P., Lloyd, E. & Lademacher, C. (2010). Arthritis Res. Ther. 12, R63, 1-12.]); Khosravan et al. (2007[Khosravan, R., Grabowski, B., Wu, J. T., Joseph-Ridge, N. & Vernillet, L. (2007). Clin. Pharm. 65, 355-363.]); Takano et al. (2005[Takano, Y., Hase-Aoki, K., Horiuchi, H., Zhao, L., Kasahara, Y., Kondo, S. & Becker, M. A. (2005). Life Sci. 76, 1835-1847.]). For the synthesis, polymorphism, stability and bioavailabitily of febuxostat, see: Hiramatsu et al. (2000[Hiramatsu, T., Matsumoto, K. & Watanabe, K. (2000). China Patent CN 1275126.]); Sorbera et al. (2001[Sorbera, L. A., Revel, L., Rabasseda, X. & Castaner, J. (2001). Drugs Fut. 26, 32-38.]); Zhou et al. (2007[Zhou, X. G., Tang, X. M., Deng, J., Ye, W. R., Luo, J., Zhang, D. L. & Fan, B. (2007). China Patent CN 1970547.]). For the crystal structure of febuxostat pyridine solvate, see: Zhu et al. (2009[Zhu, X., Wang, Y. & Lu, T. (2009). Acta Cryst. E65, o2603.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3S·CH4O

  • Mr = 348.41

  • Monoclinic, P 21

  • a = 4.7089 (3) Å

  • b = 17.9073 (13) Å

  • c = 10.7965 (8) Å

  • β = 98.047 (2)°

  • V = 901.44 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.48 × 0.13 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.905, Tmax = 0.980

  • 8429 measured reflections

  • 4048 independent reflections

  • 3048 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.078

  • S = 1.00

  • 4048 reflections

  • 223 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1941 Friedel pairs

  • Flack parameter: −0.05 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N1i 0.82 2.09 2.899 (3) 169
O1—H1⋯O4 0.82 1.80 2.608 (3) 166
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Gout is a disorder caused by deposition of monosodium urate crystals in joints and other tissues as a result of extracellular urate supersaturation. However, hyperuricemia is the most important risk factor for the development of gout and occurs as a result of increased uric acid production (Takano et al., 2005). Febuxostat is a novel non-purine selective inhibitor of xanthine oxidase which is currently under investigation for the management of hyperuricaemia in patients with gout (Khosravan et al., 2007). Many patents and papers have been reported on the synthesis, polymorphism, stability and bioavailabitily of this drug (Hiramatsu et al., 2000; Sorbera et al., 2001; Zhou et al., 2007). The single-crystal structure of febuxostat pyridine solvate has been reported by Zhu et al. (2009). In the present study, we report the crystal structure of febuxostat methanol solvate (I).

The asymmetric unit of (I) consists of one febuxostat molecule and one methanol molecule (Fig. 1). The benzene and thiazole rings of the febuxostat molecule are almost coplanar, with the dihedral angle between them being 5.3 (1)°. The carboxyl group is coplanar with the thiazole ring as indicated by torsion angles O2—C4—C3—C2 and O1—C4—C3—S1 of -0.8 (4)° and -2.5 (3)°, respectively. Conformations of the febuxostat molecule in (I) and in febuxostat pyridine solvate (Zhu et al., 2009) are close.

In the crystal structure, febuxostat molecules and methanol molecule are linked by intermolecular hydrogen bonds O—H···N and O—H···O. In this way, the molecules are linked into infinite zigzag chains stretching along the b axis.

Related literature top

For applications of febuxostat in the medicine, see: Schumacher et al. (2009); Becke et al. (2010); Khosravan et al. (2007); Takano et al. (2005). For synthesis, polymorphism, stability and bioavailabitily of febuxostat, see: Hiramatsu et al. (2000); Sorbera et al. (2001); Zhou et al. (2007). For the crystal structure of febuxostat pyridine solvate, see: Zhu et al. (2009).

Experimental top

The crude product supplied by Zhejiang Huadong Pharmaceutical Co., Ltd, was recrystallized from methanol solution giving colourless crystals suitable for X-ray diffraction.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and O—H = 0.82 Å and included in the refinement in riding model, with Uiso(H) = 1.2Ueq or 1.5Ueq(carrier atom).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids drawn at 40% probability level. H atoms are shown as small circles of arbitary radii.
[Figure 2] Fig. 2. A view down the c axis of a portion of the crystal structure showing hydrogen bonds by dashed lines [symmetry codes: (i) 1 - x, -1/2 + y, 2 - z; (ii) 1 - x, 1/2 + y, 2 - z].
[2-(3-cyano-4-isobutyloxyphenyl)-4-methyl-1,3-thiazole-5-carboxylic acid methanol monosolvate top
Crystal data top
C16H16N2O3S·CH4OF(000) = 368
Mr = 348.41Dx = 1.284 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6196 reflections
a = 4.7089 (3) Åθ = 3.8–27.4°
b = 17.9073 (13) ŵ = 0.20 mm1
c = 10.7965 (8) ÅT = 296 K
β = 98.047 (2)°Needle, colourless
V = 901.44 (11) Å30.48 × 0.13 × 0.10 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
4048 independent reflections
Radiation source: rolling anode3048 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.8°
ω scansh = 56
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2323
Tmin = 0.905, Tmax = 0.980l = 1313
8429 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0221P)2 + 0.134P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
4048 reflectionsΔρmax = 0.13 e Å3
223 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983), with 1941 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (7)
Crystal data top
C16H16N2O3S·CH4OV = 901.44 (11) Å3
Mr = 348.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.7089 (3) ŵ = 0.20 mm1
b = 17.9073 (13) ÅT = 296 K
c = 10.7965 (8) Å0.48 × 0.13 × 0.10 mm
β = 98.047 (2)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
4048 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3048 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.980Rint = 0.034
8429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.13 e Å3
S = 1.00Δρmin = 0.15 e Å3
4048 reflectionsAbsolute structure: Flack (1983), with 1941 Friedel pairs
223 parametersAbsolute structure parameter: 0.05 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.2078 (5)0.19681 (11)0.8788 (2)0.0794 (6)
H40.22980.15750.91810.119*
C170.0129 (8)0.1856 (2)0.7690 (3)0.0918 (10)
H17A0.15280.15950.78900.138*
H17B0.10310.15670.71060.138*
H17C0.04450.23310.73240.138*
S10.81600 (13)0.45188 (3)0.82299 (5)0.04563 (15)
N10.7895 (4)0.56137 (10)0.97388 (17)0.0410 (4)
O31.6085 (4)0.72442 (8)0.62269 (15)0.0491 (4)
C61.0840 (5)0.59027 (12)0.8089 (2)0.0377 (5)
C81.3569 (5)0.61374 (13)0.6395 (2)0.0411 (6)
C10.8996 (5)0.54145 (12)0.8730 (2)0.0403 (5)
C131.6920 (5)0.79823 (12)0.6671 (2)0.0465 (6)
H13A1.81090.79520.74790.056*
H13B1.52320.82760.67640.056*
O10.5033 (5)0.31992 (10)0.87756 (19)0.0708 (6)
H10.41490.28200.89070.106*
C30.6208 (5)0.44077 (13)0.9457 (2)0.0420 (6)
C141.8573 (6)0.83447 (13)0.5728 (2)0.0504 (6)
H142.02170.80260.56250.060*
C20.6304 (5)0.50420 (13)1.0150 (2)0.0416 (5)
C111.1728 (5)0.65996 (13)0.8577 (2)0.0463 (6)
H111.11230.67570.93180.056*
O20.3404 (4)0.35831 (10)1.05077 (18)0.0692 (5)
C91.4399 (5)0.68379 (13)0.6888 (2)0.0406 (5)
C71.1807 (5)0.56763 (12)0.6989 (2)0.0443 (6)
H71.12690.52120.66480.053*
C101.3472 (5)0.70618 (13)0.7997 (2)0.0453 (6)
H101.40290.75230.83460.054*
C40.4753 (5)0.36987 (14)0.9650 (2)0.0480 (6)
C121.4636 (6)0.58932 (14)0.5282 (3)0.0572 (7)
C50.4890 (6)0.51762 (15)1.1292 (2)0.0568 (7)
H5A0.63070.51601.20230.085*
H5B0.34750.47971.13520.085*
H5C0.39820.56571.12330.085*
C161.9705 (7)0.90956 (14)0.6279 (3)0.0750 (9)
H16A2.07980.90150.70870.113*
H16B1.81190.94200.63590.113*
H16C2.09060.93210.57340.113*
N21.5505 (7)0.56898 (16)0.4403 (3)0.0918 (9)
C151.6760 (7)0.8435 (2)0.4470 (3)0.0838 (10)
H15A1.52220.87770.45430.126*
H15B1.59820.79590.41890.126*
H15C1.79220.86260.38790.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.1106 (17)0.0497 (12)0.0779 (14)0.0241 (12)0.0131 (14)0.0098 (11)
C170.102 (3)0.086 (2)0.088 (2)0.013 (2)0.017 (2)0.012 (2)
S10.0576 (3)0.0349 (3)0.0467 (3)0.0026 (3)0.0151 (3)0.0007 (3)
N10.0452 (10)0.0372 (10)0.0415 (10)0.0046 (9)0.0089 (9)0.0009 (8)
O30.0636 (11)0.0400 (9)0.0473 (9)0.0117 (8)0.0204 (9)0.0047 (7)
C60.0410 (12)0.0334 (11)0.0389 (12)0.0016 (10)0.0058 (10)0.0038 (10)
C80.0465 (14)0.0380 (12)0.0399 (13)0.0025 (11)0.0101 (11)0.0030 (10)
C10.0435 (13)0.0358 (12)0.0407 (12)0.0018 (10)0.0029 (11)0.0024 (10)
C130.0519 (14)0.0375 (12)0.0509 (14)0.0060 (12)0.0101 (12)0.0024 (11)
O10.1015 (16)0.0449 (11)0.0727 (13)0.0199 (10)0.0356 (12)0.0043 (10)
C30.0475 (13)0.0388 (14)0.0408 (12)0.0016 (11)0.0097 (10)0.0076 (11)
C140.0499 (14)0.0417 (14)0.0627 (16)0.0004 (11)0.0194 (13)0.0036 (12)
C20.0424 (14)0.0426 (13)0.0402 (13)0.0074 (11)0.0069 (11)0.0075 (10)
C110.0565 (15)0.0422 (14)0.0407 (13)0.0020 (12)0.0089 (12)0.0045 (11)
O20.0964 (15)0.0531 (11)0.0647 (12)0.0073 (10)0.0341 (12)0.0151 (9)
C90.0456 (13)0.0357 (12)0.0408 (13)0.0004 (10)0.0072 (11)0.0025 (10)
C70.0503 (13)0.0351 (12)0.0473 (13)0.0029 (11)0.0062 (11)0.0024 (11)
C100.0595 (16)0.0345 (12)0.0427 (13)0.0059 (11)0.0105 (12)0.0027 (10)
C40.0562 (15)0.0423 (13)0.0452 (14)0.0044 (12)0.0057 (13)0.0100 (12)
C120.0730 (18)0.0450 (14)0.0577 (16)0.0140 (13)0.0229 (14)0.0090 (13)
C50.0666 (17)0.0557 (16)0.0531 (16)0.0009 (13)0.0252 (14)0.0004 (12)
C160.074 (2)0.0436 (16)0.113 (3)0.0099 (14)0.0326 (19)0.0034 (16)
N20.126 (2)0.085 (2)0.0752 (18)0.0245 (18)0.0498 (18)0.0323 (16)
C150.100 (3)0.087 (2)0.067 (2)0.004 (2)0.0197 (19)0.0235 (17)
Geometric parameters (Å, º) top
O4—C171.409 (4)C3—C21.357 (3)
O4—H40.8200C3—C41.471 (3)
C17—H17A0.9600C14—C151.508 (4)
C17—H17B0.9600C14—C161.535 (4)
C17—H17C0.9600C14—H140.9800
S1—C11.720 (2)C2—C51.501 (3)
S1—C31.727 (2)C11—C101.377 (3)
N1—C11.319 (3)C11—H110.9300
N1—C21.378 (3)O2—C41.211 (3)
O3—C91.352 (3)C9—C101.389 (3)
O3—C131.442 (3)C7—H70.9300
C6—C71.390 (3)C10—H100.9300
C6—C111.396 (3)C12—N21.144 (3)
C6—C11.472 (3)C5—H5A0.9600
C8—C71.389 (3)C5—H5B0.9600
C8—C91.397 (3)C5—H5C0.9600
C8—C121.435 (4)C16—H16A0.9600
C13—C141.512 (3)C16—H16B0.9600
C13—H13A0.9700C16—H16C0.9600
C13—H13B0.9700C15—H15A0.9600
O1—C41.321 (3)C15—H15B0.9600
O1—H10.8200C15—H15C0.9600
C17—O4—H4109.5C3—C2—C5127.0 (2)
O4—C17—H17A109.5N1—C2—C5118.0 (2)
O4—C17—H17B109.5C10—C11—C6122.1 (2)
H17A—C17—H17B109.5C10—C11—H11118.9
O4—C17—H17C109.5C6—C11—H11118.9
H17A—C17—H17C109.5O3—C9—C10125.3 (2)
H17B—C17—H17C109.5O3—C9—C8115.8 (2)
C1—S1—C389.40 (12)C10—C9—C8118.8 (2)
C1—N1—C2111.03 (19)C6—C7—C8120.6 (2)
C9—O3—C13118.06 (17)C6—C7—H7119.7
C7—C6—C11117.8 (2)C8—C7—H7119.7
C7—C6—C1120.9 (2)C11—C10—C9119.9 (2)
C11—C6—C1121.3 (2)C11—C10—H10120.1
C7—C8—C9120.8 (2)C9—C10—H10120.1
C7—C8—C12120.5 (2)O2—C4—O1123.1 (2)
C9—C8—C12118.7 (2)O2—C4—C3124.1 (2)
N1—C1—C6123.6 (2)O1—C4—C3112.8 (2)
N1—C1—S1114.35 (17)N2—C12—C8179.0 (3)
C6—C1—S1122.03 (18)C2—C5—H5A109.5
O3—C13—C14108.14 (19)C2—C5—H5B109.5
O3—C13—H13A110.1H5A—C5—H5B109.5
C14—C13—H13A110.1C2—C5—H5C109.5
O3—C13—H13B110.1H5A—C5—H5C109.5
C14—C13—H13B110.1H5B—C5—H5C109.5
H13A—C13—H13B108.4C14—C16—H16A109.5
C4—O1—H1109.5C14—C16—H16B109.5
C2—C3—C4128.6 (2)H16A—C16—H16B109.5
C2—C3—S1110.26 (18)C14—C16—H16C109.5
C4—C3—S1121.10 (18)H16A—C16—H16C109.5
C15—C14—C13111.9 (2)H16B—C16—H16C109.5
C15—C14—C16112.2 (2)C14—C15—H15A109.5
C13—C14—C16107.4 (2)C14—C15—H15B109.5
C15—C14—H14108.4H15A—C15—H15B109.5
C13—C14—H14108.4C14—C15—H15C109.5
C16—C14—H14108.4H15A—C15—H15C109.5
C3—C2—N1115.0 (2)H15B—C15—H15C109.5
C2—N1—C1—C6178.87 (19)C7—C6—C11—C100.9 (3)
C2—N1—C1—S10.2 (2)C1—C6—C11—C10179.5 (2)
C7—C6—C1—N1176.4 (2)C13—O3—C9—C102.4 (3)
C11—C6—C1—N15.0 (3)C13—O3—C9—C8177.84 (19)
C7—C6—C1—S15.0 (3)C7—C8—C9—O3179.2 (2)
C11—C6—C1—S1173.57 (17)C12—C8—C9—O32.6 (3)
C3—S1—C1—N10.00 (18)C7—C8—C9—C101.1 (3)
C3—S1—C1—C6178.72 (18)C12—C8—C9—C10177.2 (2)
C9—O3—C13—C14175.41 (19)C11—C6—C7—C80.8 (3)
C1—S1—C3—C20.17 (18)C1—C6—C7—C8179.4 (2)
C1—S1—C3—C4179.20 (18)C9—C8—C7—C60.2 (3)
O3—C13—C14—C1562.2 (3)C12—C8—C7—C6178.1 (2)
O3—C13—C14—C16174.3 (2)C6—C11—C10—C90.1 (4)
C4—C3—C2—N1179.0 (2)O3—C9—C10—C11179.3 (2)
S1—C3—C2—N10.3 (2)C8—C9—C10—C111.0 (3)
C4—C3—C2—C50.8 (4)C2—C3—C4—O20.8 (4)
S1—C3—C2—C5179.91 (19)S1—C3—C4—O2178.45 (19)
C1—N1—C2—C30.3 (3)C2—C3—C4—O1178.3 (2)
C1—N1—C2—C5179.9 (2)S1—C3—C4—O12.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N1i0.822.092.899 (3)169
O1—H1···O40.821.802.608 (3)166
Symmetry code: (i) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC16H16N2O3S·CH4O
Mr348.41
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)4.7089 (3), 17.9073 (13), 10.7965 (8)
β (°) 98.047 (2)
V3)901.44 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.48 × 0.13 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.905, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
8429, 4048, 3048
Rint0.034
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.078, 1.00
No. of reflections4048
No. of parameters223
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15
Absolute structureFlack (1983), with 1941 Friedel pairs
Absolute structure parameter0.05 (7)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N1i0.822.092.899 (3)169
O1—H1···O40.821.802.608 (3)166
Symmetry code: (i) x+1, y1/2, z+2.
 

Acknowledgements

The project was supported by Zhejiang Provincial Natural Science Foundation of China (grant No. J200801).

References

First citationBecke, M. A., Schumacher, H. R., Espinoza, L. R., Wells, A. F., Macdonald, P., Lloyd, E. & Lademacher, C. (2010). Arthritis Res. Ther. 12, R63, 1–12.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHiramatsu, T., Matsumoto, K. & Watanabe, K. (2000). China Patent CN 1275126.  Google Scholar
First citationKhosravan, R., Grabowski, B., Wu, J. T., Joseph-Ridge, N. & Vernillet, L. (2007). Clin. Pharm. 65, 355–363.  CrossRef Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchumacher, H. R., Becker, M. A., Lloyd, E., Macdonald, P. A. & Lademacher, C. (2009). Rheumatology, 48, 188–194.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSorbera, L. A., Revel, L., Rabasseda, X. & Castaner, J. (2001). Drugs Fut. 26, 32–38.  CAS Google Scholar
First citationTakano, Y., Hase-Aoki, K., Horiuchi, H., Zhao, L., Kasahara, Y., Kondo, S. & Becker, M. A. (2005). Life Sci. 76, 1835–1847.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, X. G., Tang, X. M., Deng, J., Ye, W. R., Luo, J., Zhang, D. L. & Fan, B. (2007). China Patent CN 1970547.  Google Scholar
First citationZhu, X., Wang, Y. & Lu, T. (2009). Acta Cryst. E65, o2603.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1232
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds