metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m540-m541

Tri­chlorido(tetra­hydro­furan){(1,2,3,3a,7a-η)-1-[2-(1-tri­methyl­silyl-1H-imidazol-2-yl-κN3)-1-methyl­prop­yl]inden­yl}zirconium(IV)

aKey Laboratory of Synthetic and Natural Chemistry of the Ministry of Education, College of Chemistry and Material Science, the North-West University of Xi'an, Taibai Bei Avenue 229, Xi'an 710069, Shaanxi Province, People's Republic of China
*Correspondence e-mail: niewl126@126.com

(Received 21 March 2011; accepted 31 March 2011; online 7 April 2011)

The title compound, [ZrCl3(C19H25N2Si)(C4H8O)], was prepared from bis­(N,N-dimethyl­amido-κN)(2-{2-[(1,2,3,3a,7a-η)-inden­yl]-2-methyl­prop­yl}-1H-imidazolido-κN1)zirconium(IV) [(C16H16N2)Zr(NMe2)] by reaction with excess Me3SiCl in tetra­hydro­furan (THF) at elevated temperature. The crystal studied contained a minor non-merohedral twin contaminant [6.3 (4)%] which was taken into account during the refinement. The coordination polyhedron of the ZrIV atom is a distorted octa­hedron [assuming that the five-membered ring of the indenyl group (Cp) occupies one coordination site], with the Cp group and a THF O atom at the apical positions and the three Cl and ligating N atoms at the equatorial positions. The Zr, Si and the methyl­ene C atoms deviate noticeably from the imidazole ring plane [by −0.197 (5), −0.207 (5) and 0.119 (6) Å, respectively]. The THF ligand adopts an envelope conformation.

Related literature

For general practical utility of geometry-constrained complexes, including those derived from group 4 transition metals, see: Erker (2006[Erker, G. (2006). Coord. Chem. Rev. 250, 1056-1070.]); Braunschweig & Breitling (2006[Braunschweig, H. & Breitling, F. M. (2006). Coord. Chem. Rev. 250, 2691-2720.]). For the geometric parameters of similar ZrIV complexes, see: Nifant'ev et al. (1998[Nifant'ev, I. E., Ivchenko, P. V., Bagrov, V. V. & Kuz'mina, L. G. (1998). Organometallics, 17, 4734-4738.]); Paolucci et al. (2003[Paolucci, G., Vignola, M., Coletto, L., Pitteri, B. & Benetollo, F. (2003). J. Organomet. Chem. 687, 161-170.]); Krut'ko et al. (2004[Krut'ko, D. P., Borzov, M. V., Kirsanov, R. S., Antipin, M. Y. & Churakov, A. V. (2004). J. Organomet. Chem. 689, 595-604.], 2007[Krut'ko, D. P., Kirsanov, R. S., Belov, S. A., Borzov, M. V. & Churakov, A. V. (2007). J. Organomet. Chem. 692, 1465-1471.]); Enders et al. (1996[Enders, M., Rudolph, R. & Pritzkow, H. (1996). Chem. Ber. 129, 459-463.]); Nie et al. (2008[Nie, W., Liao, L., Xu, W., Borzov, M. V., Krut'ko, D. P., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2008). J. Organomet. Chem. 693, 2355-2368.]). For TiIV analogues of the title compound, see: Ge et al. (2010[Ge, F., Nie, W., Borzov, M. V. & Churakov, A. V. (2010). Acta Cryst. E66, m546-m547.]) and references cited therein. For procedures used in the preparation, see: Curtis & Brown (1980[Curtis, N. J. & Brown, R. S. (1980). J. Org. Chem. 45, 4038-4040.]); Chisholm et al. (1988[Chisholm, M. H., Hammond, C. E. & Huffman, J. C. (1988). Polyhedron, 7, 2515-2520.]); Diamond et al. (1996[Diamond, G. M., Jordan, R. F. & Petersen, J. L. (1996). J. Am. Chem. Soc. 118, 8024-8033.]); Weizmann et al. (1950[Weizmann, C., Bergmann, E. & Sulzbacher, M. (1950). J. Org. Chem. 15, 918-929.]); Armarego & Perrin (1997[Armarego, W. L. F. & Perrin, D. D. (1997). Purification of Laboratory Chemicals, 4th ed. Oxford: Pergamon.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [ZrCl3(C19H25N2Si)(C4H8O)]

  • Mr = 579.17

  • Triclinic, [P \overline 1]

  • a = 10.6274 (8) Å

  • b = 10.9496 (7) Å

  • c = 13.1397 (9) Å

  • α = 102.720 (1)°

  • β = 101.416 (1)°

  • γ = 110.456 (1)°

  • V = 1332.73 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 K

  • 0.35 × 0.24 × 0.14 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2006[Sheldrick, G. M. (2006). TWINABS. University of Göttingen, Germany.]) Tmin = 0.773, Tmax = 0.899

  • 4871 measured reflections

  • 4871 independent reflections

  • 3757 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.00

  • 4871 reflections

  • 286 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL and OLEX2.

Supporting information


Comment top

The title compound, C23H33Cl3N2OSiZr, I, relates to the family of so-called geometry constrained complexes what find their application for the catalytic ethylene and α-olefin polymerization (including the stereospecific one; for general information, see reviews: Erker, 2006; Braunschweig & Breitling, 2006). It has been prepared from bis(N,N-dimethylamido-κN)(2-{2-[(1,2,3,3a,7a-η)-indenyl]-2-methylpropyl}-1H-imidazolido-κN1)zirconium(IV), (C16H16N2)Zr(NMe2)2, II, by a reaction with excess of Me3SiCl in THF at elevated temperature (see the Experimental section for further details). The sample crystal of I contained a minor non-mehrohedral twin contaminant [6.3 (4)%] what was taken into account during the refinement (see the Refinement details section).

The coordination polyhedron of the Zr-atom in I is a distorted octahedron [assuming that the five-member ring of the indenyl group (Cp) occupies one coordination site], with the Cp-group and O-atom of the tetrahydrofuran (THF) molecule at the apical positions and the three Cl- and ligating N-atoms at the equatorial ones (Fig. 1). The Zr-, Si- and the methylene group C-atoms noticeably deviate from the imidazole ring plane [by -0.197 (5), -0.207 (5) and 0.119 (6) Å, respectively]. Indenyl group is planar within 0.06 Å. The THF ligand adopts an envelop conformation.

Analysis of the Cambridge Structural database (CSD; Version 5.27, release May 2009; Allen, 2002) reveals only 7 structurally characterized ZrIV complexes of the similar to I (η5-Cp-link-NRn-κN)ZrCl3 type (8 independent fragments). Among them, there are two dinuclear structures where two Zr-atoms are linked with two bridging µ-Cl-atoms (Enders et al., 1996 and Nie et al., 2008; in both cases Zr-atoms exhibit CN 6), two monomeric complexes with a pentacoordinated Zr centre (Nifant'ev et al., 1998 and Krut'ko et al., 2004), and, finally, three monomeric complexes with a hexacoordinated Zr centre (Paolucci et al., 2003; Krut'ko et al., 2004; Krut'ko et al., 2007). Of interest and despite of the different nature of the "sixth" n-donor ligand opposing the Cp-group [a tetrahydrothiophene molecule (Krut'ko et al., 2004), a pyridine molecule (Krut'ko et al., 2007), or a pendant OH-group (Paolucci et al., 2003)], the structural motif of the latter three complexes is very similar to that of I. As for the nature of the Cp-type ligand, only one case among all the mentioned above corresponds to an indenyl group (Nifant'ev et al., 1998).

As it was observed earlier for Ti-analog of I (Ge et al., 2010), in a THF solution I co-exists with a mixture of Me3SiCl and drichloro(2-{2-[(1,2,3,3a,7a-η)-indenyl]-2-methylpropyl}-1H-imidazolido-κN1)zirconium(IV), (C16H16N2)ZrCl2, III, (for spectral proof, see Experimental).

Related literature top

For general practical utility of geometry-constrained complexes, including those derived from group 4 transition metals, see: Erker (2006); Braunschweig & Breitling (2006). For the geometric parameters of similar ZrIV complexes, see: Nifant'ev et al. (1998); Paolucci et al. (2003); Krut'ko et al. (2004, 2007); Enders et al. (1996); Nie et al. (2008). For TiIV analogues of the title compound, see: Ge et al. (2010) and references cited therein. For procedures used in the preparation, see: Curtis & Brown (1980); Chisholm et al. (1988); Diamond et al. (1996); Weizmann et al. (1950); Armarego & Perrin (1997). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

All operations were performed under argon atmosphere in conventional glassware or in all-sealed evacuated glass vessels with application of the high-vacuum line (the residual pressure of non-condensable gases within 1.5–1.0.10 -3Torr; 1 Torr = 133 Pa). 1-(1-Methylethylidene)-1H-indene was prepared as described by Weizmann et al., 1950. 1-Diethoxymethyl-2-methyl-1H-imidazole and its lithiated derivative were prepared by a close analogy to what described by Curtis & Brown, 1980. Bis[µ-(N-methylmethanamido-κ2N)]hexakis(N-methylmethanamido-κN)dizirconium, [Zr(NMe2)3]2(µ-NMe2)2, was prepared as described by Chisholm et al., 1988 and Diamond et al., 1996. A l l other chemicals were commercially available and purified by conventional methods (Armarego & Perrin, 1997). Solvents were purified by distillation over sodium benzophenoneketyl (diethyl ether, THF), Na—K alloy (toluene), and CaH2 (chloroform and dichloromethane). Deuterated solvents were dried similarly. — NMR spectra were recorded on a Varian INOVA-400 instrument. For 1H and 13C spectra, the solvent [δH = 1.73 and δC = 25.3 (THF-d8)] or TMS (δH = 0.00 and δC = 0.0) (CDCl3) resonances were used as internal reference standards. — Chromato-mass spectra were measured on Agilent 6890 Series GC system equipped with HP 5973 mass-selective detector. — The elemental analyses were performed on the Vario ELIII CHNOS automated analyzer.

1-Diethoxymethyl-2-methyl-1H-imidazole, IV: 2-Methyl-1H-imidazole (24.6 g, 0.3 mol), triethyl orthoformate (178.2 g, 1.2 mol), and p-toluenesulfonic acid (0.9 g) were heated under Ar at 403 K in a distillation flask equipped with a short (10 cm) Vigreux column until no more ethanol was distillable from the reaction mixture. The excess of triethyl orthoformate was removed by distillation under reduced pressure, 1 g of solid Na2CO3 was added, and the residue was fractionally distilled to give 41.7 g of IV (75%) as a colorless flexible oil. B. p. 333–336 K (82–85 – Pa). Yield 75%. – 1H NMR (300.5 K, CDCl3): δ = 1.24 (t, X3 part of ABX3 spin system, 3JAX = 3JBX = 7.2 Hz, 6H, CH3 in Et-group), 2.45 (s, 3H, 2-CH3), 3.55, 3.59 (m, AB part of ABX3 spin system, 3JAX = 3JBX = 7.2 Hz, 2JAB = 9.28 Hz, 4H, CH2), 5.98 (s, 1H, CH(OEt)2), 6.90, 7.10 (both s, 1H + 1H, CH=CH). – 13C{1H} NMR (300.5 K, CDCl3): δ = 13.49 (2-CH3–Cimid), 14.40 (H3C–CH2O), 61.06 (H3C–CH2O), 100.80 (CH(OEt)2), 116.29, 126.48 (CH=CH), 143.54 (N=C—N). EI MS (70 eV) m/z (%): 184 (5.2) [M]+., 139 (32.9) [M – OEt.]+, 111 (28.0) [M – OEt. –C2H4]+, 103 (100.0) [HC(OEt)2]+, 83 (32.9) [2-CH3–C3N2H4]+, 82 (23.2) [2-CH3–C3N2H3]+, 81 (47.9) [2-CH3–C3N2H2]+, 75 (58.1) [HC(OEt)2 – C2H4]+, 54(19.5) [C3H4N]+. — Elemental analysis for III failed due to its extreme sensitivity to air moisture.

(1-Diethoxymethyl-1H-imidazol-2-yl)methyllithium, V: To a solution of protected imidazole IV (10.20 g, 50.0 mmol) in THF (150 ml), n-BuLi (32 ml of 1.87 M solution in hexane, 60.0 mmol) was added via a syringe at -40°C under vigorous stirring. After the addition complete, the red–brown solution was kept at -40°C for additional 15 min prior to use.

2-[2-(1H-inden-3-yl)-2-methylpropyl]-1H-imidazole, VI: A solution of 1-(1-methylethylidene)-1H-indene (9.20 g, 60.0 mmol) in THF (60 ml) was added to the solution of V in THF (see above) during 30 min at -40°C. After 5 min at -40°C the cooling bath was removed, the mixture was allowed to warm gradually up to room temperature and left to stay overnight. The mixture was diluted with diethyl ether (100 ml), cooled in an ice bath, and extracted with 0.5 N HC1 (4 portions each 50 ml). The combined acid extracts (pH 2) were neutralized with solid NaHCO3, extracted with CH2C12 (3 ×100 mL) and dried with MgSO4. Removal of solvent under reduced pressure yielded VI (9.67 g, 68.9%) as light-yellow crystalline powder. — 1H NMR (298 K,CDCl3): δ = 1.41 [s, 6 H, C(CH3)2], 3.26 (s, 2 H, CH2 in the bridge), 3.32 (d, 2 H, 3J = 1.8 Hz, CH2 in indene), 6.20 (t, 1 H, 3J = 1.8 Hz, H2 in indene), 6.81 (broadened s, 2 H, CH in imidazole), 7.24, 7.32 (both m, both 1 H, H5 and H6 in indene), 7.52, 7.70 (both m, both 1 H, H4 and H7 in indene). — 13C{1H} NMR (298 K, CDCl3) δ = 27.40 [C(CH3)2], 37.10, 37.32 (CH2), 39.41 [C(CH3)2], 121.39 (broad, CH in imidazole), 121.79 (broadened, C2 in indene), 124.38, 124.48, 126.01, 128.80 (C4–7 in indene), 143.04, 145.66, 145.97 (quaternary C in indene), 151.01 (quaternary C in imidazole). — EI MS (70 eV) m/z (%): 238 (23) [M]+., 223 (30) [M–CH3.]+, 157 (15) [C12H13]+, 156 (13) [C12H12]+., 142 (42) [C11H10]+., 141 (31) [C11H9]+, 115 (25) [C9H7]+, 82 (100) [C4H6N2]+..

Bis(N,N-dimethylamido-κN)(2-{2-[(1,2,3,3a,7a-η)-indenyl]-2-methylpropyl}-1H-imidazolido-κN1)zirconium(IV), (C16H16N2)Zr(NMe2)2, II: [Zr(NMe2)3]2(µ-NMe2)2 (0.73 g, 1.39 mmol) and V (0.66 g, 2.77 mmol) in toluene (10 ml) were mixed and heated in an oil bath (353 K) for 18 h. On cooling, the reaction mixture was concentrated, the light-brown precipitate was filtered off from dark-red mother liquor, washed on a filter with small portions of cold toluene till colorless washings and dried on the high-vacuum line what gave II as light-brown crystalline material (1.09 g, 94.8%). — 1H NMR (THF-d8, 20°C): δ = 1.37 [s, 12 H, N(CH3)2], 2.30, 2.31 [both s, both 3 H, C(CH3)2], 3.06, 3.26 (both broadened s, both 1 H, CH2), 6.25 (m, 2 H, H2 and H3 in indene), 6.79, 6.81 (both m, both 1 H, CH in imidazole), 7.12, 7.23 (both m, both 1 H, H5 and H6 in indene), 7.42, 7.70 (both m, both 1 H, H4 and H7 in indene). Measurement of 13C{1H} for II was problematic due to its poor solubility even in THF.

Trichloro(tetrahydrofuran){1-[2-(1-trimethylsilyl-1H-imidazol-2-yl-κN3)-1-methylpropyl]-(1,2,3,3a,7a-η)-indenyl}zirconium(IV), C23H33Cl3N2OSiZr, I: To a solution of II (1.00 g, 2.41 mmol) in THF (20 ml), excess of Me3SiCl (1.0 ml, 7.86 mmol) was added and the reaction mixture was then heated at 353 K during 8 h. Concentration of the mixture at ambient temperature gave yellow crystalline material. The product I was collected, washed with cold toluene till colourless washings and then dried on the high-vacuum line. Yield 0.63 g (45%). — 1H NMR (THF-d8, 298 K): δ = 0.41 [s, 9 H, Si(CH3)3 in chlorotrimethylsilane], 0.62 [s, 9 H, Si(CH3)3 in I], 0.94, 1.61 [both s, both 3 H, C(CH3)2 in III], 0.96, 1.65 [both s, both 3 H, C(CH3)2 in I], 3.02, 3.65 (both d, both 1 H, CH2 in III), 3.18, 3.76 (both d, both 1 H, CH2 in I), 6.52, 6.57, 6.99 (all m, H2 and H3 in indenyl in I and III), 7.05, 7.22 (both m, H5 and H6 in indenyl in I and III), 7.38, 7.47 (both m, CH in imidazole in I and III), 7.62, 7.79 (both m, H4 and H7 in indenyl in I and III).

Sample crystal of I suitable for X-ray diffraction analysis was grown up from hot THF and mounted inside a Lindemann glass capillary (diameter 0.5 mm; N2-filled glove-box).

Refinement top

The sample crystal of I contained a minor non-merohedral twin contaminant [dominant to minor component transform twin law (matrix row by row): 0.94452 - 0.10595 - 0.05098 0.07590 1.01441 - 0.03026 0.08528 0.09700 1.02798]. The absorption correction was processed with TWINABS (Sheldrick, 1996). The contribution of the minor component was estimated to be 5.55%. The structure was then solved with the detwinned HKLF 4 data file and finally refined with the HKLF 5 format data file with only single and composite reflections relating to the main component included and merged according to the point group -1 [the BASF parameter converges to 0.063 (4)]. Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), 0.97 (CH2), and 0.93 Å (CArH) and Uiso(H) = 1.5 Ueq(C), 1.2 Ueq(C), and 1.2 Ueq(C), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Unsymmetrical unit of I with labeling. Thermal ellipsoids are shown at the 50% level of probability. All H-atoms are omitted for clarity. The Zr1 to Cp-centroid bond is depicted as a dashed line.
Trichlorido(tetrahydrofuran){(1,2,3,3a,7a-η)-1-[2-(1-trimethylsilyl- 1H-imidazol-2-yl-κN3)-1-methylpropyl]indenyl}zirconium(IV) top
Crystal data top
[ZrCl3(C19H25N2Si)(C4H8O)]Z = 2
Mr = 579.17F(000) = 596
Triclinic, P1Dx = 1.443 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6274 (8) ÅCell parameters from 7558 reflections
b = 10.9496 (7) Åθ = 2.2–30.5°
c = 13.1397 (9) ŵ = 0.78 mm1
α = 102.720 (1)°T = 296 K
β = 101.416 (1)°Block, yellow
γ = 110.456 (1)°0.35 × 0.24 × 0.14 mm
V = 1332.73 (16) Å3
Data collection top
Bruker SMART APEXII
diffractometer
4871 independent reflections
Radiation source: fine-focus sealed tube3757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 8.333 pixels mm-1θmax = 25.5°, θmin = 1.7°
phi and ω scansh = 1212
Absorption correction: multi-scan
(TWINABS; Sheldrick, 1996)
k = 1312
Tmin = 0.773, Tmax = 0.899l = 015
4871 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0479P)2]
where P = (Fo2 + 2Fc2)/3
4871 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[ZrCl3(C19H25N2Si)(C4H8O)]γ = 110.456 (1)°
Mr = 579.17V = 1332.73 (16) Å3
Triclinic, P1Z = 2
a = 10.6274 (8) ÅMo Kα radiation
b = 10.9496 (7) ŵ = 0.78 mm1
c = 13.1397 (9) ÅT = 296 K
α = 102.720 (1)°0.35 × 0.24 × 0.14 mm
β = 101.416 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
4871 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 1996)
3757 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.899Rint = 0.000
4871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.00Δρmax = 0.42 e Å3
4871 reflectionsΔρmin = 0.52 e Å3
286 parameters
Special details top

Experimental. 28 0.09700 1.02798].

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.61824 (3)0.79166 (3)0.25770 (2)0.03334 (11)
Cl10.58498 (10)0.81107 (9)0.07182 (6)0.0502 (2)
Cl20.41444 (10)0.56691 (9)0.19730 (8)0.0583 (3)
Cl30.72883 (11)0.73742 (10)0.41743 (7)0.0576 (3)
Si11.16456 (10)1.26377 (10)0.27386 (8)0.0435 (2)
O10.7140 (2)0.6414 (2)0.17924 (17)0.0433 (6)
N11.0468 (3)1.1115 (2)0.2942 (2)0.0372 (6)
N20.8520 (3)0.9395 (2)0.2879 (2)0.0374 (6)
C10.9063 (3)1.0650 (3)0.2797 (2)0.0359 (7)
C21.0824 (4)1.0052 (3)0.3115 (3)0.0446 (8)
H21.17151.00490.32270.054*
C30.9655 (4)0.9038 (3)0.3092 (3)0.0441 (8)
H30.96080.82150.32020.053*
C40.8250 (3)1.1502 (3)0.2676 (3)0.0394 (8)
H4A0.75141.10650.19790.047*
H4B0.88721.23940.26750.047*
C50.7574 (3)1.1697 (3)0.3619 (3)0.0396 (8)
C60.7087 (4)1.2867 (3)0.3612 (3)0.0550 (10)
H6A0.78951.37230.38200.083*
H6B0.65581.29150.41220.083*
H6C0.65061.26920.28920.083*
C70.8677 (4)1.2122 (4)0.4726 (3)0.0531 (9)
H7A0.90001.14090.47510.080*
H7B0.82641.22660.53040.080*
H7C0.94591.29570.48170.080*
C80.6332 (3)1.0379 (3)0.3445 (3)0.0386 (8)
C90.6119 (4)0.9614 (3)0.4176 (3)0.0443 (8)
H90.67690.98180.48450.053*
C100.4812 (4)0.8516 (4)0.3765 (3)0.0474 (9)
H100.44710.78350.40800.057*
C110.4082 (4)0.8617 (3)0.2776 (3)0.0454 (8)
C120.5011 (4)0.9761 (3)0.2561 (3)0.0398 (8)
C130.4532 (4)1.0101 (3)0.1619 (3)0.0476 (9)
H130.51301.08350.14580.057*
C140.3188 (4)0.9340 (4)0.0952 (3)0.0600 (10)
H140.28640.95710.03430.072*
C150.2277 (4)0.8205 (4)0.1171 (3)0.0663 (11)
H150.13640.77030.07010.080*
C160.2693 (4)0.7831 (4)0.2038 (3)0.0576 (10)
H160.20830.70660.21580.069*
C171.1715 (4)1.4208 (4)0.3664 (3)0.0639 (11)
H17A1.08501.43020.34210.096*
H17B1.24881.49920.36600.096*
H17C1.18441.41490.43930.096*
C181.3399 (4)1.2627 (4)0.3076 (4)0.0705 (12)
H18A1.36471.25760.38040.106*
H18B1.40751.34530.30340.106*
H18C1.33921.18450.25660.106*
C191.0933 (5)1.2434 (5)0.1285 (3)0.0937 (17)
H19A1.10331.16740.08370.141*
H19B1.14401.32580.11360.141*
H19C0.99541.22650.11240.141*
C200.6892 (6)0.5070 (4)0.1915 (4)0.0815 (15)
H20A0.70630.51300.26820.098*
H20B0.59250.44310.15220.098*
C210.7848 (6)0.4608 (5)0.1475 (5)0.0927 (17)
H21A0.73460.36660.09950.111*
H21B0.85870.46450.20640.111*
C220.8460 (5)0.5506 (4)0.0862 (4)0.0704 (12)
H22A0.83090.49730.01200.085*
H22B0.94640.60300.12130.085*
C230.7710 (4)0.6442 (4)0.0868 (3)0.0541 (10)
H23A0.83590.73680.09610.065*
H23B0.69580.61170.01880.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.03764 (19)0.03099 (18)0.03008 (17)0.01108 (14)0.01052 (13)0.01184 (13)
Cl10.0690 (6)0.0556 (5)0.0356 (4)0.0332 (5)0.0162 (4)0.0191 (4)
Cl20.0513 (6)0.0393 (5)0.0695 (6)0.0047 (4)0.0176 (5)0.0127 (5)
Cl30.0765 (7)0.0664 (6)0.0411 (5)0.0357 (5)0.0168 (5)0.0286 (5)
Si10.0380 (5)0.0431 (5)0.0452 (5)0.0107 (4)0.0134 (4)0.0151 (4)
O10.0578 (15)0.0310 (12)0.0447 (13)0.0179 (11)0.0201 (11)0.0155 (10)
N10.0359 (15)0.0346 (14)0.0433 (15)0.0148 (12)0.0134 (12)0.0144 (12)
N20.0402 (16)0.0342 (15)0.0379 (15)0.0158 (13)0.0088 (12)0.0130 (12)
C10.0377 (19)0.0373 (18)0.0351 (17)0.0167 (15)0.0120 (15)0.0133 (14)
C20.0365 (19)0.042 (2)0.056 (2)0.0199 (17)0.0105 (16)0.0130 (17)
C30.046 (2)0.0373 (19)0.049 (2)0.0212 (17)0.0092 (17)0.0112 (16)
C40.0344 (18)0.0351 (18)0.0488 (19)0.0127 (15)0.0122 (15)0.0164 (15)
C50.0403 (19)0.0336 (17)0.0412 (18)0.0164 (15)0.0087 (15)0.0061 (15)
C60.053 (2)0.043 (2)0.072 (3)0.0251 (18)0.020 (2)0.0125 (19)
C70.048 (2)0.048 (2)0.045 (2)0.0122 (18)0.0049 (17)0.0010 (17)
C80.0371 (19)0.0379 (18)0.0396 (18)0.0159 (15)0.0128 (15)0.0080 (15)
C90.051 (2)0.047 (2)0.0324 (17)0.0199 (18)0.0137 (16)0.0091 (15)
C100.051 (2)0.048 (2)0.049 (2)0.0180 (18)0.0258 (18)0.0198 (17)
C110.041 (2)0.045 (2)0.053 (2)0.0183 (17)0.0202 (17)0.0128 (17)
C120.0380 (19)0.0416 (19)0.0428 (18)0.0204 (16)0.0141 (15)0.0107 (15)
C130.048 (2)0.043 (2)0.052 (2)0.0216 (18)0.0114 (18)0.0143 (17)
C140.056 (3)0.063 (3)0.057 (2)0.031 (2)0.001 (2)0.016 (2)
C150.043 (2)0.067 (3)0.072 (3)0.019 (2)0.001 (2)0.013 (2)
C160.039 (2)0.055 (2)0.072 (3)0.0133 (19)0.015 (2)0.017 (2)
C170.061 (3)0.040 (2)0.086 (3)0.0140 (19)0.024 (2)0.019 (2)
C180.049 (2)0.066 (3)0.099 (3)0.020 (2)0.035 (2)0.028 (3)
C190.084 (4)0.101 (4)0.060 (3)0.005 (3)0.013 (2)0.039 (3)
C200.118 (4)0.047 (2)0.117 (4)0.047 (3)0.069 (3)0.045 (3)
C210.116 (4)0.080 (3)0.138 (5)0.069 (3)0.076 (4)0.057 (3)
C220.080 (3)0.081 (3)0.078 (3)0.052 (3)0.035 (3)0.035 (3)
C230.073 (3)0.053 (2)0.043 (2)0.029 (2)0.0262 (19)0.0146 (17)
Geometric parameters (Å, º) top
Zr1—N22.338 (3)C8—C91.408 (4)
Zr1—O12.375 (2)C8—C121.457 (4)
Zr1—Cl12.4647 (8)C9—C101.384 (5)
Zr1—C102.472 (3)C9—H90.9300
Zr1—Cl22.4720 (9)C10—C111.424 (5)
Zr1—Cl32.4898 (9)C10—H100.9300
Zr1—C92.509 (3)C11—C121.424 (5)
Zr1—C82.622 (3)C11—C161.427 (5)
Zr1—C112.642 (3)C12—C131.420 (5)
Zr1—C122.720 (3)C13—C141.361 (5)
Si1—N11.814 (3)C13—H130.9300
Si1—C181.833 (4)C14—C151.411 (6)
Si1—C191.842 (4)C14—H140.9300
Si1—C171.843 (4)C15—C161.339 (5)
O1—C201.453 (4)C15—H150.9300
O1—C231.462 (4)C16—H160.9300
N1—C11.356 (4)C17—H17A0.9600
N1—C21.392 (4)C17—H17B0.9600
N2—C11.329 (4)C17—H17C0.9600
N2—C31.390 (4)C18—H18A0.9600
C1—C41.488 (4)C18—H18B0.9600
C2—C31.335 (5)C18—H18C0.9600
C2—H20.9300C19—H19A0.9600
C3—H30.9300C19—H19B0.9600
C4—C51.563 (4)C19—H19C0.9600
C4—H4A0.9700C20—C211.445 (6)
C4—H4B0.9700C20—H20A0.9700
C5—C81.511 (4)C20—H20B0.9700
C5—C71.534 (5)C21—C221.465 (6)
C5—C61.541 (4)C21—H21A0.9700
C6—H6A0.9600C21—H21B0.9700
C6—H6B0.9600C22—C231.503 (5)
C6—H6C0.9600C22—H22A0.9700
C7—H7A0.9600C22—H22B0.9700
C7—H7B0.9600C23—H23A0.9700
C7—H7C0.9600C23—H23B0.9700
N2—Zr1—O177.04 (8)H7A—C7—H7B109.5
N2—Zr1—Cl184.08 (6)C5—C7—H7C109.5
O1—Zr1—Cl179.04 (6)H7A—C7—H7C109.5
N2—Zr1—C10120.70 (10)H7B—C7—H7C109.5
O1—Zr1—C10151.10 (10)C9—C8—C12105.6 (3)
Cl1—Zr1—C10122.63 (9)C9—C8—C5127.4 (3)
N2—Zr1—Cl2155.51 (7)C12—C8—C5126.4 (3)
O1—Zr1—Cl278.56 (6)C9—C8—Zr169.73 (17)
Cl1—Zr1—Cl293.30 (3)C12—C8—Zr177.94 (18)
C10—Zr1—Cl281.10 (8)C5—C8—Zr1124.3 (2)
N2—Zr1—Cl381.90 (7)C10—C9—C8110.9 (3)
O1—Zr1—Cl376.92 (6)C10—C9—Zr172.37 (18)
Cl1—Zr1—Cl3154.33 (3)C8—C9—Zr178.51 (18)
C10—Zr1—Cl383.04 (9)C10—C9—H9124.5
Cl2—Zr1—Cl390.66 (3)C8—C9—H9124.5
N2—Zr1—C988.44 (10)Zr1—C9—H9116.3
O1—Zr1—C9151.65 (10)C9—C10—C11107.8 (3)
Cl1—Zr1—C9124.05 (8)C9—C10—Zr175.37 (19)
C10—Zr1—C932.26 (11)C11—C10—Zr180.5 (2)
Cl2—Zr1—C9112.69 (8)C9—C10—H10126.1
Cl3—Zr1—C977.01 (8)C11—C10—H10126.1
N2—Zr1—C875.20 (9)Zr1—C10—H10110.7
O1—Zr1—C8151.85 (9)C10—C11—C12107.7 (3)
Cl1—Zr1—C893.50 (7)C10—C11—C16132.9 (3)
C10—Zr1—C853.60 (11)C12—C11—C16119.4 (3)
Cl2—Zr1—C8129.29 (8)C10—C11—Zr167.36 (19)
Cl3—Zr1—C8103.50 (7)C12—C11—Zr177.67 (19)
C9—Zr1—C831.77 (10)C16—C11—Zr1121.4 (2)
N2—Zr1—C11127.00 (10)C13—C12—C11119.2 (3)
O1—Zr1—C11153.12 (10)C13—C12—C8133.1 (3)
Cl1—Zr1—C1190.77 (8)C11—C12—C8107.7 (3)
C10—Zr1—C1132.11 (11)C13—C12—Zr1124.3 (2)
Cl2—Zr1—C1177.27 (8)C11—C12—Zr171.58 (19)
Cl3—Zr1—C11114.83 (8)C8—C12—Zr170.47 (18)
C9—Zr1—C1152.20 (11)C14—C13—C12119.3 (3)
C8—Zr1—C1152.45 (10)C14—C13—H13120.4
N2—Zr1—C1298.51 (9)C12—C13—H13120.4
O1—Zr1—C12153.90 (9)C13—C14—C15121.1 (4)
Cl1—Zr1—C1274.91 (7)C13—C14—H14119.5
C10—Zr1—C1252.31 (11)C15—C14—H14119.5
Cl2—Zr1—C12104.31 (8)C16—C15—C14121.7 (4)
Cl3—Zr1—C12128.42 (7)C16—C15—H15119.2
C9—Zr1—C1251.57 (10)C14—C15—H15119.2
C8—Zr1—C1231.59 (9)C15—C16—C11119.4 (4)
C11—Zr1—C1230.75 (10)C15—C16—H16120.3
N1—Si1—C18106.39 (16)C11—C16—H16120.3
N1—Si1—C19104.76 (17)Si1—C17—H17A109.5
C18—Si1—C19113.1 (2)Si1—C17—H17B109.5
N1—Si1—C17111.00 (15)H17A—C17—H17B109.5
C18—Si1—C17108.7 (2)Si1—C17—H17C109.5
C19—Si1—C17112.6 (2)H17A—C17—H17C109.5
C20—O1—C23105.4 (3)H17B—C17—H17C109.5
C20—O1—Zr1125.3 (2)Si1—C18—H18A109.5
C23—O1—Zr1126.99 (18)Si1—C18—H18B109.5
C1—N1—C2105.3 (3)H18A—C18—H18B109.5
C1—N1—Si1129.6 (2)Si1—C18—H18C109.5
C2—N1—Si1124.4 (2)H18A—C18—H18C109.5
C1—N2—C3104.8 (3)H18B—C18—H18C109.5
C1—N2—Zr1130.6 (2)Si1—C19—H19A109.5
C3—N2—Zr1124.4 (2)Si1—C19—H19B109.5
N2—C1—N1112.3 (3)H19A—C19—H19B109.5
N2—C1—C4123.7 (3)Si1—C19—H19C109.5
N1—C1—C4123.7 (3)H19A—C19—H19C109.5
C3—C2—N1107.6 (3)H19B—C19—H19C109.5
C3—C2—H2126.2C21—C20—O1107.4 (3)
N1—C2—H2126.2C21—C20—H20A110.2
C2—C3—N2109.9 (3)O1—C20—H20A110.2
C2—C3—H3125.0C21—C20—H20B110.2
N2—C3—H3125.0O1—C20—H20B110.2
C1—C4—C5111.8 (3)H20A—C20—H20B108.5
C1—C4—H4A109.3C20—C21—C22108.4 (4)
C5—C4—H4A109.3C20—C21—H21A110.0
C1—C4—H4B109.3C22—C21—H21A110.0
C5—C4—H4B109.3C20—C21—H21B110.0
H4A—C4—H4B107.9C22—C21—H21B110.0
C8—C5—C7110.9 (3)H21A—C21—H21B108.4
C8—C5—C6110.0 (3)C21—C22—C23105.2 (3)
C7—C5—C6107.8 (3)C21—C22—H22A110.7
C8—C5—C4109.5 (2)C23—C22—H22A110.7
C7—C5—C4109.8 (3)C21—C22—H22B110.7
C6—C5—C4108.7 (3)C23—C22—H22B110.7
C5—C6—H6A109.5H22A—C22—H22B108.8
C5—C6—H6B109.5O1—C23—C22105.5 (3)
H6A—C6—H6B109.5O1—C23—H23A110.6
C5—C6—H6C109.5C22—C23—H23A110.6
H6A—C6—H6C109.5O1—C23—H23B110.6
H6B—C6—H6C109.5C22—C23—H23B110.6
C5—C7—H7A109.5H23A—C23—H23B108.8
C5—C7—H7B109.5
N2—Zr1—O1—C20137.0 (3)Cl2—Zr1—C9—C8128.95 (18)
Cl1—Zr1—O1—C20136.6 (3)Cl3—Zr1—C9—C8145.9 (2)
C10—Zr1—O1—C205.1 (4)C11—Zr1—C9—C877.7 (2)
Cl2—Zr1—O1—C2041.0 (3)C12—Zr1—C9—C838.36 (19)
Cl3—Zr1—O1—C2052.4 (3)C8—C9—C10—C115.0 (4)
C9—Zr1—O1—C2076.0 (4)Zr1—C9—C10—C1174.8 (2)
C8—Zr1—O1—C20146.7 (3)C8—C9—C10—Zr169.8 (2)
C11—Zr1—O1—C2067.2 (4)N2—Zr1—C10—C90.4 (2)
C12—Zr1—O1—C20140.2 (3)O1—Zr1—C10—C9122.8 (2)
N2—Zr1—O1—C2362.6 (3)Cl1—Zr1—C10—C9103.4 (2)
Cl1—Zr1—O1—C2323.7 (3)Cl2—Zr1—C10—C9168.4 (2)
C10—Zr1—O1—C23165.5 (3)Cl3—Zr1—C10—C976.6 (2)
Cl2—Zr1—O1—C23119.4 (3)C8—Zr1—C10—C935.82 (19)
Cl3—Zr1—O1—C23147.2 (3)C11—Zr1—C10—C9111.4 (3)
C9—Zr1—O1—C23123.6 (3)C12—Zr1—C10—C975.7 (2)
C8—Zr1—O1—C2353.0 (4)N2—Zr1—C10—C11111.8 (2)
C11—Zr1—O1—C2393.1 (3)O1—Zr1—C10—C11125.8 (2)
C12—Zr1—O1—C2320.2 (4)Cl1—Zr1—C10—C118.0 (2)
C18—Si1—N1—C1179.5 (3)Cl2—Zr1—C10—C1180.22 (19)
C19—Si1—N1—C159.5 (3)Cl3—Zr1—C10—C11172.0 (2)
C17—Si1—N1—C162.4 (3)C9—Zr1—C10—C11111.4 (3)
C18—Si1—N1—C210.9 (3)C8—Zr1—C10—C1175.5 (2)
C19—Si1—N1—C2109.2 (3)C12—Zr1—C10—C1135.71 (19)
C17—Si1—N1—C2129.0 (3)C9—C10—C11—C123.3 (4)
O1—Zr1—N2—C1139.2 (3)Zr1—C10—C11—C1267.9 (2)
Cl1—Zr1—N2—C159.1 (3)C9—C10—C11—C16176.3 (4)
C10—Zr1—N2—C165.6 (3)Zr1—C10—C11—C16112.6 (4)
Cl2—Zr1—N2—C1144.0 (2)C9—C10—C11—Zr171.2 (2)
Cl3—Zr1—N2—C1142.5 (3)N2—Zr1—C11—C1090.1 (2)
C9—Zr1—N2—C165.4 (3)O1—Zr1—C11—C10119.9 (2)
C8—Zr1—N2—C136.1 (3)Cl1—Zr1—C11—C10173.27 (19)
C11—Zr1—N2—C127.4 (3)Cl2—Zr1—C11—C1093.5 (2)
C12—Zr1—N2—C114.6 (3)Cl3—Zr1—C11—C108.8 (2)
O1—Zr1—N2—C334.1 (2)C9—Zr1—C11—C1038.98 (19)
Cl1—Zr1—N2—C3114.2 (2)C8—Zr1—C11—C1079.4 (2)
C10—Zr1—N2—C3121.2 (2)C12—Zr1—C11—C10115.4 (3)
Cl2—Zr1—N2—C329.2 (3)N2—Zr1—C11—C1225.3 (2)
Cl3—Zr1—N2—C344.3 (2)O1—Zr1—C11—C12124.7 (2)
C9—Zr1—N2—C3121.4 (2)Cl1—Zr1—C11—C1257.87 (19)
C8—Zr1—N2—C3150.6 (3)C10—Zr1—C11—C12115.4 (3)
C11—Zr1—N2—C3159.3 (2)Cl2—Zr1—C11—C12151.1 (2)
C12—Zr1—N2—C3172.1 (2)Cl3—Zr1—C11—C12124.17 (18)
C3—N2—C1—N10.1 (3)C9—Zr1—C11—C1276.4 (2)
Zr1—N2—C1—N1174.11 (19)C8—Zr1—C11—C1235.96 (18)
C3—N2—C1—C4174.0 (3)N2—Zr1—C11—C16142.3 (3)
Zr1—N2—C1—C411.8 (4)O1—Zr1—C11—C167.6 (4)
C2—N1—C1—N20.7 (3)Cl1—Zr1—C11—C1659.2 (3)
Si1—N1—C1—N2171.1 (2)C10—Zr1—C11—C16127.5 (4)
C2—N1—C1—C4174.8 (3)Cl2—Zr1—C11—C1634.0 (3)
Si1—N1—C1—C414.8 (4)Cl3—Zr1—C11—C16118.8 (3)
C1—N1—C2—C31.3 (4)C9—Zr1—C11—C16166.5 (4)
Si1—N1—C2—C3172.3 (2)C8—Zr1—C11—C16153.0 (3)
N1—C2—C3—N21.5 (4)C12—Zr1—C11—C16117.1 (4)
C1—N2—C3—C21.0 (4)C10—C11—C12—C13179.3 (3)
Zr1—N2—C3—C2173.7 (2)C16—C11—C12—C130.3 (5)
N2—C1—C4—C555.6 (4)Zr1—C11—C12—C13119.6 (3)
N1—C1—C4—C5117.8 (3)C10—C11—C12—C80.5 (4)
C1—C4—C5—C874.1 (3)C16—C11—C12—C8179.1 (3)
C1—C4—C5—C747.9 (4)Zr1—C11—C12—C861.6 (2)
C1—C4—C5—C6165.6 (3)C10—C11—C12—Zr161.1 (2)
C7—C5—C8—C92.0 (4)C16—C11—C12—Zr1119.3 (3)
C6—C5—C8—C9117.1 (4)C9—C8—C12—C13176.2 (3)
C4—C5—C8—C9123.5 (3)C5—C8—C12—C134.8 (6)
C7—C5—C8—C12171.5 (3)Zr1—C8—C12—C13119.1 (4)
C6—C5—C8—C1252.4 (4)C9—C8—C12—C112.4 (4)
C4—C5—C8—C1267.1 (4)C5—C8—C12—C11173.7 (3)
C7—C5—C8—Zr187.6 (3)Zr1—C8—C12—C1162.3 (2)
C6—C5—C8—Zr1153.3 (2)C9—C8—C12—Zr164.7 (2)
C4—C5—C8—Zr133.8 (3)C5—C8—C12—Zr1124.0 (3)
N2—Zr1—C8—C9111.9 (2)N2—Zr1—C12—C1386.9 (3)
O1—Zr1—C8—C9121.7 (2)O1—Zr1—C12—C139.0 (4)
Cl1—Zr1—C8—C9165.2 (2)Cl1—Zr1—C12—C135.4 (3)
C10—Zr1—C8—C936.4 (2)C10—Zr1—C12—C13150.7 (3)
Cl2—Zr1—C8—C968.0 (2)Cl2—Zr1—C12—C1384.2 (3)
Cl3—Zr1—C8—C934.2 (2)Cl3—Zr1—C12—C13173.3 (2)
C11—Zr1—C8—C976.9 (2)C9—Zr1—C12—C13168.0 (3)
C12—Zr1—C8—C9111.9 (3)C8—Zr1—C12—C13129.4 (4)
N2—Zr1—C8—C12136.2 (2)C11—Zr1—C12—C13113.3 (4)
O1—Zr1—C8—C12126.5 (2)N2—Zr1—C12—C11159.8 (2)
Cl1—Zr1—C8—C1253.30 (18)O1—Zr1—C12—C11122.3 (2)
C10—Zr1—C8—C1275.5 (2)Cl1—Zr1—C12—C11118.7 (2)
Cl2—Zr1—C8—C1243.9 (2)C10—Zr1—C12—C1137.4 (2)
Cl3—Zr1—C8—C12146.08 (17)Cl2—Zr1—C12—C1129.1 (2)
C9—Zr1—C8—C12111.9 (3)Cl3—Zr1—C12—C1173.4 (2)
C11—Zr1—C8—C1234.97 (18)C9—Zr1—C12—C1178.7 (2)
N2—Zr1—C8—C510.2 (2)C8—Zr1—C12—C11117.3 (3)
O1—Zr1—C8—C50.4 (4)N2—Zr1—C12—C842.55 (19)
Cl1—Zr1—C8—C572.7 (2)O1—Zr1—C12—C8120.4 (2)
C10—Zr1—C8—C5158.5 (3)Cl1—Zr1—C12—C8124.02 (19)
Cl2—Zr1—C8—C5169.9 (2)C10—Zr1—C12—C879.9 (2)
Cl3—Zr1—C8—C587.9 (2)Cl2—Zr1—C12—C8146.39 (17)
C9—Zr1—C8—C5122.1 (4)Cl3—Zr1—C12—C843.8 (2)
C11—Zr1—C8—C5161.0 (3)C9—Zr1—C12—C838.59 (18)
C12—Zr1—C8—C5126.0 (3)C11—Zr1—C12—C8117.3 (3)
C12—C8—C9—C104.6 (4)C11—C12—C13—C141.2 (5)
C5—C8—C9—C10175.8 (3)C8—C12—C13—C14177.3 (4)
Zr1—C8—C9—C1065.9 (2)Zr1—C12—C13—C1487.9 (4)
C12—C8—C9—Zr170.5 (2)C12—C13—C14—C151.4 (6)
C5—C8—C9—Zr1118.3 (3)C13—C14—C15—C160.0 (6)
N2—Zr1—C9—C10179.7 (2)C14—C15—C16—C111.5 (6)
O1—Zr1—C9—C10121.2 (2)C10—C11—C16—C15177.9 (4)
Cl1—Zr1—C9—C1098.5 (2)C12—C11—C16—C151.6 (6)
Cl2—Zr1—C9—C1012.4 (2)Zr1—C11—C16—C1594.9 (4)
Cl3—Zr1—C9—C1097.6 (2)C23—O1—C20—C2125.8 (5)
C8—Zr1—C9—C10116.5 (3)Zr1—O1—C20—C21170.3 (3)
C11—Zr1—C9—C1038.8 (2)O1—C20—C21—C2212.5 (6)
C12—Zr1—C9—C1078.2 (2)C20—C21—C22—C235.4 (6)
N2—Zr1—C9—C863.8 (2)C20—O1—C23—C2228.9 (4)
O1—Zr1—C9—C8122.3 (2)Zr1—O1—C23—C22167.7 (2)
Cl1—Zr1—C9—C818.0 (2)C21—C22—C23—O121.1 (5)
C10—Zr1—C9—C8116.5 (3)

Experimental details

Crystal data
Chemical formula[ZrCl3(C19H25N2Si)(C4H8O)]
Mr579.17
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.6274 (8), 10.9496 (7), 13.1397 (9)
α, β, γ (°)102.720 (1), 101.416 (1), 110.456 (1)
V3)1332.73 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.35 × 0.24 × 0.14
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 1996)
Tmin, Tmax0.773, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
4871, 4871, 3757
Rint0.000
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.00
No. of reflections4871
No. of parameters286
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.52

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

 

Footnotes

Part of the masters degree thesis, the North-West University, Xi'an, 2011.

Acknowledgements

Financial support from the National Natural Science Foundation of China (project Nos. 20702041 and 21072157) and Shaanxi Province Administration of Foreign Experts Bureau Foundation (grant No. 20106100079) is gratefully acknowledged. The authors are thankful to Mr Wang Minchang and Mr Su Pengfei (Xi'an Modern Chemistry Research Institute) for their help in carrying out the NMR spectroscopicl and X-ray diffraction experiments.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArmarego, W. L. F. & Perrin, D. D. (1997). Purification of Laboratory Chemicals, 4th ed. Oxford: Pergamon.  Google Scholar
First citationBraunschweig, H. & Breitling, F. M. (2006). Coord. Chem. Rev. 250, 2691–2720.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChisholm, M. H., Hammond, C. E. & Huffman, J. C. (1988). Polyhedron, 7, 2515–2520.  CrossRef CAS Google Scholar
First citationCurtis, N. J. & Brown, R. S. (1980). J. Org. Chem. 45, 4038–4040.  CrossRef CAS Google Scholar
First citationDiamond, G. M., Jordan, R. F. & Petersen, J. L. (1996). J. Am. Chem. Soc. 118, 8024–8033.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnders, M., Rudolph, R. & Pritzkow, H. (1996). Chem. Ber. 129, 459–463.  CrossRef CAS Web of Science Google Scholar
First citationErker, G. (2006). Coord. Chem. Rev. 250, 1056–1070.  CrossRef CAS Google Scholar
First citationGe, F., Nie, W., Borzov, M. V. & Churakov, A. V. (2010). Acta Cryst. E66, m546–m547.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrut'ko, D. P., Borzov, M. V., Kirsanov, R. S., Antipin, M. Y. & Churakov, A. V. (2004). J. Organomet. Chem. 689, 595–604.  CAS Google Scholar
First citationKrut'ko, D. P., Kirsanov, R. S., Belov, S. A., Borzov, M. V. & Churakov, A. V. (2007). J. Organomet. Chem. 692, 1465–1471.  CAS Google Scholar
First citationNie, W., Liao, L., Xu, W., Borzov, M. V., Krut'ko, D. P., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2008). J. Organomet. Chem. 693, 2355–2368.  Web of Science CrossRef CAS Google Scholar
First citationNifant'ev, I. E., Ivchenko, P. V., Bagrov, V. V. & Kuz'mina, L. G. (1998). Organometallics, 17, 4734–4738.  CAS Google Scholar
First citationPaolucci, G., Vignola, M., Coletto, L., Pitteri, B. & Benetollo, F. (2003). J. Organomet. Chem. 687, 161–170.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2006). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeizmann, C., Bergmann, E. & Sulzbacher, M. (1950). J. Org. Chem. 15, 918–929.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m540-m541
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds