organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1090

(2E)-3-(3-Bromo-4-meth­­oxy­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 28 March 2011; accepted 4 April 2011; online 13 April 2011)

In the title compound, C16H12BrFO2, the dihedral angle between the aromatic rings is 23.75 (12)° and the dihedral angle between the prop-2-en-1-one fragment and the fluorobenzene ring is 20.9 (2)°. In the crystal, only van der Waals interactions occur.

Related literature

For the normal probability plot test, see: Abrahams & Keve (1971[Abrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157-165.]); Cromer (1974[Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1, pp. 149-150. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)]). For the influence of the substituents on the geometry of the phenyl ring, see: Domenicano & Murray-Rust (1979[Domenicano, A. & Murray-Rust, P. (1979). Tetrahedron Lett. 24, 2283-2286.]); Domenicano (1988[Domenicano, A. (1988). Stereochemical Applications of Gas-Phase Electron Diffraction, edited by I. Hargittai & M. Hargittai, pp. 281-324. New York: VCH.]). For a closely related structure, see: Dutkiewicz et al. (2011[Dutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2011). Acta Cryst. E67, o1024.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12BrFO2

  • Mr = 335.17

  • Monoclinic, P 21 /c

  • a = 11.056 (2) Å

  • b = 4.1110 (15) Å

  • c = 30.825 (5) Å

  • β = 96.76 (2)°

  • V = 1391.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.96 mm−1

  • T = 295 K

  • 0.5 × 0.4 × 0.15 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.507, Tmax = 1.000

  • 6983 measured reflections

  • 2887 independent reflections

  • 1918 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.092

  • S = 1.02

  • 2887 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing studies on chalcone derivatives (e.g. Dutkiewicz et al., 2011) we have synthesized (2E)-3-(3-Bromo-4-methoxyphenyl)-1-(4-fluorophenyl)prop-2-en-1-one (I, Scheme 1).

The geometry of the molecule of I is very similar to that of previously reported (2E)-3-(3-Bromo-4-methoxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (Dutkiewicz et al., 2011). The bond lengths and angles in both compounds are very similar; a majority of them differ by less than 3σ, and even the results of the normal probability plot test (Abrahams & Keve, 1971; International Tables for X-ray Crystallography, vol. IV (Cromer, 1974) confirm that the differences between the molecules are mainly of statistic nature. The correlation coefficient R2 between the set of experimental differences between the geometrical parameters and the theoretical values for pure statistical distribution is 0.97 for the bond lengths (excluding C14—C141 and C14—F14 bonds, of course) and 0.94 - for angles. From the normal probability plot for bond angles it is obvious that the largest, and certainly not random, differences are observed within the phenyl ring with different substituents. This is consistent with the old observation of Domenicano and Murray-Rust (1979) that substituents to the phenyl ring influence much more intraannular bond angles than the bond lengths. The nature of substituents causes completely different bond angles pattern within the phenyl ring, in agreement with the values given by Domenicano (1988) which highlight quite opposite natures of methyl and fluorine groups.

More significant differences are observed at the level of torsion angles, that means that the overall conformations of both compounds differ. The shape of these molecules can be described by the dihedral angles between three planar fragments (cf. Fig. 1) 1-bromo-2-methoxyphenyl ring (A), the central prop-2-en-1-one chain (B), and the fluoro-phenyl ring (C). In both cases the dihedral angles between A and B planes are comparable, and in both cases the bridging chain is not significantly tilted out of the plane of the A ring, the orientations of rings C are really different: it is almost coplanar with the B - bridge for methyl derivative while it makes with the plane of prop-2-en-1-one group the significant dihedral angle of 20.9 (2)° in I. The comparison of both molecules, fitted onto the central C1O1C2C3 plane, is shown in Fig. 2.

In the structure of I, contrary to 1-(4-methoxyphenyl) derivative, where we observed quite a rich structure of weak interactions, there are virtually no specific interactions which might play a role in the designing of the crystal structure. Therefore only close packing requirements and van der Waals forces are involved in the crystal structure.

Related literature top

For the normal probability plot test, see: Abrahams & Keve (1971); Cromer (1974). For the influence of the substituents on the geometry of the phenyl ring, see: Domenicano & Murray-Rust (1979); Domenicano (1988). For a closely related structure, see: Dutkiewicz et al. (2011).

Experimental top

3-Bromo-4-methoxybenzaldehyde (2.15 g, 0.01 mol) was mixed with 1-(4-fluorophenyl)ethanone (1.38 g, 0.01 mol) and dissolved in ethanol (40 ml). To the solution, 4 ml of KOH (50%) was added. The reaction mixture was stirred for 6–10 h. The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from ethanol (95%) to give the pure chalcones. Crystals suitable for x-ray diffraction studies were grown by the slow evaporation from acetone solution (mp.: 140°C). Composition: Found (Calculated): C16H12BrFO2:C: 57.26 (57.34); H: 3.57 (3.61)

Refinement top

The hydrogen were placed geometrically, in idealized positions, and refined as rigid groups with their Uiso(H) = 1.2Ueq(C) with distances C—H = 0.93Å of the appropriate carrier atom (Uiso(H) = 1.5Ueq(C) with distances C—H = 0.96Å for methyl H).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the compound I together with atom labeling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. The comparison of the molecules of I (solid) and its 4-methoxy analogue (Dutkiewicz et al., 2011; solid); the central prop-1-ene-3-one fragments were fitted onto one another (SHELXTL (Sheldrick, 2008)).
(2E)-3-(3-Bromo-4-methoxyphenyl)-1-(4-fluorophenyl)prop-2-en-1-one top
Crystal data top
C16H12BrFO2F(000) = 672
Mr = 335.17Dx = 1.600 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2417 reflections
a = 11.056 (2) Åθ = 3.1–28.0°
b = 4.1110 (15) ŵ = 2.96 mm1
c = 30.825 (5) ÅT = 295 K
β = 96.76 (2)°Prism, colourless
V = 1391.3 (6) Å30.5 × 0.4 × 0.15 mm
Z = 4
Data collection top
Agilent Xcalibur Eos
diffractometer
2887 independent reflections
Radiation source: Enhance (Mo) X-ray Source1918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1544 pixels mm-1θmax = 28.0°, θmin = 3.1°
ω scansh = 1314
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 55
Tmin = 0.507, Tmax = 1.000l = 3839
6983 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
2887 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C16H12BrFO2V = 1391.3 (6) Å3
Mr = 335.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.056 (2) ŵ = 2.96 mm1
b = 4.1110 (15) ÅT = 295 K
c = 30.825 (5) Å0.5 × 0.4 × 0.15 mm
β = 96.76 (2)°
Data collection top
Agilent Xcalibur Eos
diffractometer
2887 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1918 reflections with I > 2σ(I)
Tmin = 0.507, Tmax = 1.000Rint = 0.031
6983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
2887 reflectionsΔρmin = 0.52 e Å3
182 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1287 (3)0.1073 (8)0.61784 (11)0.0453 (9)
O10.0290 (2)0.2293 (7)0.60968 (8)0.0649 (7)
C20.1926 (3)0.1062 (8)0.66297 (11)0.0427 (8)
H20.26390.01390.66890.051*
C30.1509 (3)0.2716 (8)0.69512 (11)0.0397 (8)
H30.08140.39560.68730.048*
C40.1999 (3)0.2836 (7)0.74082 (10)0.0328 (7)
C50.3100 (3)0.1388 (7)0.75684 (10)0.0340 (7)
H50.35570.02940.73790.041*
C60.3511 (3)0.1577 (7)0.80038 (11)0.0342 (7)
Br60.50370 (3)0.02669 (8)0.820926 (12)0.05081 (15)
C70.2842 (3)0.3147 (7)0.83016 (10)0.0370 (8)
O70.3326 (2)0.3123 (6)0.87212 (7)0.0539 (7)
C710.2665 (4)0.4821 (10)0.90272 (13)0.0834 (15)
H71A0.18820.38210.90330.125*
H71B0.25580.70530.89390.125*
H71C0.31140.47220.93130.125*
C80.1740 (3)0.4534 (7)0.81422 (12)0.0434 (8)
H80.12630.55340.83330.052*
C90.1346 (3)0.4439 (7)0.77032 (12)0.0414 (8)
H90.06220.54770.76000.050*
C110.1903 (3)0.0519 (8)0.58326 (10)0.0414 (8)
C120.3150 (3)0.1039 (9)0.58687 (12)0.0549 (10)
H120.36340.03970.61210.066*
C130.3682 (4)0.2492 (10)0.55362 (13)0.0653 (11)
H130.45190.28400.55620.078*
C140.2958 (4)0.3405 (10)0.51699 (13)0.0647 (11)
F140.3475 (3)0.4875 (6)0.48435 (9)0.1010 (9)
C150.1731 (4)0.2938 (10)0.51172 (13)0.0664 (11)
H150.12570.35900.48630.080*
C160.1211 (3)0.1476 (10)0.54502 (12)0.0579 (10)
H160.03750.11210.54180.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.044 (2)0.050 (2)0.040 (2)0.0048 (18)0.0020 (16)0.0113 (17)
O10.0470 (15)0.096 (2)0.0495 (17)0.0107 (15)0.0012 (12)0.0108 (15)
C20.040 (2)0.0474 (19)0.040 (2)0.0022 (16)0.0025 (16)0.0054 (17)
C30.0342 (18)0.0413 (19)0.043 (2)0.0046 (15)0.0030 (15)0.0054 (17)
C40.0280 (16)0.0331 (17)0.0376 (19)0.0056 (14)0.0059 (14)0.0018 (15)
C50.0352 (18)0.0330 (16)0.0360 (19)0.0028 (15)0.0135 (14)0.0030 (15)
C60.0311 (17)0.0309 (16)0.041 (2)0.0039 (14)0.0074 (14)0.0027 (15)
Br60.0406 (2)0.0546 (2)0.0557 (2)0.01012 (18)0.00083 (15)0.00365 (19)
C70.0423 (19)0.0339 (17)0.036 (2)0.0000 (16)0.0111 (15)0.0006 (15)
O70.0669 (17)0.0631 (16)0.0318 (15)0.0137 (13)0.0064 (12)0.0071 (12)
C710.125 (4)0.090 (3)0.037 (2)0.046 (3)0.014 (2)0.013 (2)
C80.0422 (19)0.041 (2)0.050 (2)0.0063 (17)0.0174 (16)0.0053 (17)
C90.0318 (17)0.0398 (18)0.052 (2)0.0035 (15)0.0049 (15)0.0017 (17)
C110.048 (2)0.0445 (19)0.0297 (18)0.0072 (17)0.0026 (15)0.0058 (16)
C120.060 (2)0.069 (2)0.034 (2)0.004 (2)0.0011 (17)0.0014 (19)
C130.062 (3)0.084 (3)0.049 (3)0.009 (2)0.006 (2)0.003 (2)
C140.097 (4)0.059 (2)0.037 (2)0.002 (3)0.009 (2)0.003 (2)
F140.141 (2)0.112 (2)0.0519 (16)0.0258 (17)0.0209 (15)0.0175 (15)
C150.086 (3)0.074 (3)0.036 (2)0.015 (3)0.007 (2)0.004 (2)
C160.053 (2)0.075 (3)0.043 (2)0.011 (2)0.0043 (18)0.006 (2)
Geometric parameters (Å, º) top
C1—O11.210 (4)C71—H71B0.9600
C1—C111.483 (5)C71—H71C0.9600
C1—C21.484 (5)C8—C91.372 (5)
C2—C31.328 (4)C8—H80.9300
C2—H20.9300C9—H90.9300
C3—C41.449 (4)C11—C161.385 (5)
C3—H30.9300C11—C121.387 (4)
C4—C91.391 (4)C12—C131.377 (5)
C4—C51.393 (4)C12—H120.9300
C5—C61.367 (4)C13—C141.358 (5)
C5—H50.9300C13—H130.9300
C6—C71.402 (4)C14—F141.357 (4)
C6—Br61.890 (3)C14—C151.361 (5)
C7—O71.340 (4)C15—C161.372 (5)
C7—C81.383 (4)C15—H150.9300
O7—C711.440 (4)C16—H160.9300
C71—H71A0.9600
O1—C1—C11121.2 (3)H71A—C71—H71C109.5
O1—C1—C2121.1 (3)H71B—C71—H71C109.5
C11—C1—C2117.7 (3)C9—C8—C7120.1 (3)
C3—C2—C1122.0 (3)C9—C8—H8119.9
C3—C2—H2119.0C7—C8—H8119.9
C1—C2—H2119.0C8—C9—C4122.0 (3)
C2—C3—C4128.3 (3)C8—C9—H9119.0
C2—C3—H3115.8C4—C9—H9119.0
C4—C3—H3115.8C16—C11—C12118.0 (3)
C9—C4—C5118.0 (3)C16—C11—C1118.9 (3)
C9—C4—C3119.2 (3)C12—C11—C1123.1 (3)
C5—C4—C3122.8 (3)C13—C12—C11121.0 (3)
C6—C5—C4119.9 (3)C13—C12—H12119.5
C6—C5—H5120.0C11—C12—H12119.5
C4—C5—H5120.0C14—C13—C12118.5 (4)
C5—C6—C7122.0 (3)C14—C13—H13120.8
C5—C6—Br6119.1 (2)C12—C13—H13120.8
C7—C6—Br6118.9 (2)F14—C14—C13118.8 (4)
O7—C7—C8125.5 (3)F14—C14—C15118.4 (4)
O7—C7—C6116.6 (3)C13—C14—C15122.8 (4)
C8—C7—C6117.9 (3)C14—C15—C16118.1 (4)
C7—O7—C71117.0 (3)C14—C15—H15120.9
O7—C71—H71A109.5C16—C15—H15120.9
O7—C71—H71B109.5C15—C16—C11121.6 (4)
H71A—C71—H71B109.5C15—C16—H16119.2
O7—C71—H71C109.5C11—C16—H16119.2
O1—C1—C2—C38.4 (5)C7—C8—C9—C43.2 (5)
C11—C1—C2—C3172.8 (3)C5—C4—C9—C82.0 (4)
C1—C2—C3—C4177.2 (3)C3—C4—C9—C8177.6 (3)
C2—C3—C4—C9172.8 (3)O1—C1—C11—C1619.2 (5)
C2—C3—C4—C56.7 (5)C2—C1—C11—C16159.6 (3)
C9—C4—C5—C60.2 (4)O1—C1—C11—C12159.3 (3)
C3—C4—C5—C6179.7 (3)C2—C1—C11—C1221.8 (5)
C4—C5—C6—C71.2 (4)C16—C11—C12—C130.6 (5)
C4—C5—C6—Br6177.6 (2)C1—C11—C12—C13179.2 (3)
C5—C6—C7—O7178.8 (3)C11—C12—C13—C140.1 (6)
Br6—C6—C7—O72.3 (4)C12—C13—C14—F14179.2 (3)
C5—C6—C7—C80.2 (5)C12—C13—C14—C150.2 (6)
Br6—C6—C7—C8178.7 (2)F14—C14—C15—C16179.4 (4)
C8—C7—O7—C713.1 (5)C13—C14—C15—C160.1 (6)
C6—C7—O7—C71178.0 (3)C14—C15—C16—C110.6 (6)
O7—C7—C8—C9179.2 (3)C12—C11—C16—C150.9 (6)
C6—C7—C8—C92.0 (5)C1—C11—C16—C15179.5 (3)

Experimental details

Crystal data
Chemical formulaC16H12BrFO2
Mr335.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.056 (2), 4.1110 (15), 30.825 (5)
β (°) 96.76 (2)
V3)1391.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.96
Crystal size (mm)0.5 × 0.4 × 0.15
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.507, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6983, 2887, 1918
Rint0.031
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.092, 1.02
No. of reflections2887
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.52

Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

BPS thanks the UOM for the research facilities.

References

First citationAbrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157–165.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1, pp. 149–150. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)  Google Scholar
First citationDomenicano, A. (1988). Stereochemical Applications of Gas-Phase Electron Diffraction, edited by I. Hargittai & M. Hargittai, pp. 281–324. New York: VCH.  Google Scholar
First citationDomenicano, A. & Murray-Rust, P. (1979). Tetrahedron Lett. 24, 2283–2286.  CrossRef Google Scholar
First citationDutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2011). Acta Cryst. E67, o1024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1090
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds