metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m588-m589

Di­aqua­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)copper(II) didodeca­noate dihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: nursyamimi@crackberry.com

(Received 31 March 2011; accepted 6 April 2011; online 13 April 2011)

The title compound, [Cu(C10H24N4)(H2O)2][CH3(CH2)10CO2]2·2H2O, consists of one cationic copper(II) complex, two dodeca­noate anions and two water solvent mol­ecules. The CuII atom is located on an inversion center and is chelated by the four aza N atoms of the neutral 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam) ligand and by two water mol­ecules in axial positions, giving an octa­hedral coordination geometry, distorted as a consequence of the Jahn–Teller effect. The uncoordinated water mol­ecules link the complex cations and the dodeca­noate counter-ions through O—H⋯O hydrogen bonding, forming a layer structure parallel to (001). Inter­molecular N—H⋯O inter­actions also occur.

Related literature

For the complexation of cyclam with transition metals, see: Ahmad Tajidi et al. (2010a[Ahmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010a). Acta Cryst. E66, m887.],b[Ahmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010b). Acta Cryst. E66, m888.],c[Ahmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010c). Acta Cryst. E66, m889.],d[Ahmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010d). Acta Cryst. E66, m890.]); Lindoy et al. (2003[Lindoy, L. F., Mahinay, M. S., Skelton, B. W. & White, A. H. (2003). J. Coord. Chem. 56, 1203-1213.]); Holanda et al. (2007[Holanda, A. K. M., da Silva, F. O. N., Carvalho, I. M. M., Batista, A. A., Ellena, J., Castellano, E. E., Moreira, I. S. & Lopes, L. G. F. (2007). Polyhedron, 26, 4653-4658.]); Sreedaran et al. (2008[Sreedaran, S., Bharathi, K. S., Rahiman, A. K., Rajesh, K., Nirmala, G. & Narayanan, V. (2008). J. Coord. Chem. 22, 3594-3609.]); Zgolli et al. (2010[Zaouali Zgolli, D., Boughzala, H. & Driss, A. (2010). Acta Cryst. E66, m265-m266.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H24N4)(H2O)2](C12H23O2)2·2H2O

  • Mr = 734.54

  • Triclinic, [P \overline 1]

  • a = 6.9972 (4) Å

  • b = 8.8164 (5) Å

  • c = 17.1495 (10) Å

  • α = 96.218 (3)°

  • β = 99.137 (3)°

  • γ = 98.329 (3)°

  • V = 1024.13 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 150 K

  • 0.41 × 0.41 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.796, Tmax = 0.955

  • 7085 measured reflections

  • 4623 independent reflections

  • 4138 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 1.07

  • 4623 reflections

  • 215 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2 0.90 1.91 2.774 (2) 160
O1W—H1WA⋯O2i 0.90 1.81 2.694 (2) 168
O2W—H2WB⋯O1W 0.90 1.93 2.8037 (19) 164
O2W—H2WA⋯O1ii 0.90 1.89 2.777 (2) 168
N2—H2⋯O1i 0.93 2.25 3.030 (2) 141
N1—H1⋯O1Wiii 0.93 2.12 2.982 (2) 153
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y-1, z; (iii) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Copper(II) cyclam complexes are potential functional materials in the field of molecular electronic, photonics and spintronics whose properties may be tuned by steric and electronic effects. The present complex represents our attempt to synthesize a functional material that possesses metallomesogenic properties for such applications. Several cyclam complexes with copper(II) (Ahmad Tajidi et al., 2010a,b,c,d) and other transition metals (Lindoy et al., 2003; Holanda et al., 2007; Sreedaran et al., 2008; Zgolli et al., 2010) have been reported.

In the complex, the CuII atom, located on an inversion center, is coordinated to the 1,4,8,11-tetraazacyclotetradecane through the four aza-N atoms forming the basal plane of a distorted octahedra whose apices are occupy by two water molecules. Two solvate water molecules link anion and cations through O-H···O hydrogen bondings (Fig. 1, Table 1). The relatively long Cu-O(water) distance, 2.455 (1)Å, is a consequence of the Jahn-Teller effect resulting in the distorted octahedron coordination geometry.

O-H···O and N-H···O Hydrogen bonds involving the coordinated and non coordinated water molecules, the carboxylate O atoms as well as the N atoms of the cyclam build up a two dimensionnal network forming a layer parallel to the (0 0 1) plane (Table 1, Fig. 2).

Related literature top

For the complexation of cyclam with transition metals, see: Ahmad Tajidi et al. (2010a,b,c,d); Lindoy et al. (2003); Holanda et al. (2007); Sreedaran et al. (2008); Zgolli et al. (2010).

Experimental top

An ethanolic solution of cyclam (2.50 mmol, 50 ml) was added to a warm ethanolic solution of dimeric copper(II) dodecanoate (1.25 mmol, 100 ml), forming a clear purple solution. The solution was then gently heated for 2 h. Purple plates formed upon cooling to room temperature. The yield was 60%.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding on their parent atoms with C—H = 0.98 Å (methyl) or 0.99 Å (methylene) and N—H = 0.93 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(Cmethyl). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.89 (1)Å and H···H= 1.42 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement they were treated as riding on their parent O atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x+2, -y, -z+2]
[Figure 2] Fig. 2. Partial packing view showing the formation of layer through O-H···O and N-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (ii) -x+1, -y+1, -z+2; (iii) x, y-1, z; (iv) x+1, y, z]
Diaqua(1,4,8,11-tetraazacyclotetradecane- κ4N1,N4,N8,N11)copper(II) didodecanoate dihydrate top
Crystal data top
[Cu(C10H24N4)(H2O)2](C12H23O2)2·2H2OZ = 1
Mr = 734.54F(000) = 403
Triclinic, P1Dx = 1.191 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9972 (4) ÅCell parameters from 2586 reflections
b = 8.8164 (5) Åθ = 2.8–27.6°
c = 17.1495 (10) ŵ = 0.58 mm1
α = 96.218 (3)°T = 150 K
β = 99.137 (3)°Plate, violet
γ = 98.329 (3)°0.41 × 0.41 × 0.08 mm
V = 1024.13 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4623 independent reflections
Radiation source: fine-focus sealed tube4138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 98
Tmin = 0.796, Tmax = 0.955k = 1111
7085 measured reflectionsl = 022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.109P]
where P = (Fo2 + 2Fc2)/3
4623 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cu(C10H24N4)(H2O)2](C12H23O2)2·2H2Oγ = 98.329 (3)°
Mr = 734.54V = 1024.13 (10) Å3
Triclinic, P1Z = 1
a = 6.9972 (4) ÅMo Kα radiation
b = 8.8164 (5) ŵ = 0.58 mm1
c = 17.1495 (10) ÅT = 150 K
α = 96.218 (3)°0.41 × 0.41 × 0.08 mm
β = 99.137 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4623 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
4138 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.955Rint = 0.045
7085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.07Δρmax = 0.54 e Å3
4623 reflectionsΔρmin = 0.52 e Å3
215 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.00001.00000.01254 (12)
O2W0.6641 (2)0.00995 (16)0.93529 (9)0.0230 (3)
H2WA0.56310.06370.91100.034*
H2WB0.60860.09540.93190.034*
N11.1080 (2)0.18383 (18)0.95170 (10)0.0151 (3)
H11.24390.19130.96170.018*
N20.9722 (2)0.15474 (18)1.09264 (9)0.0159 (3)
H20.84160.16861.08530.019*
C11.1016 (3)0.0404 (3)0.81813 (12)0.0234 (5)
H1A1.08550.05410.76100.028*
H1B1.24160.03520.83670.028*
C21.0491 (3)0.1814 (2)0.86470 (12)0.0210 (4)
H2A1.11570.27670.84840.025*
H2B0.90570.17990.85180.025*
C31.0621 (3)0.3232 (2)0.99684 (13)0.0203 (4)
H3A0.92480.33560.97780.024*
H3B1.15010.41660.98880.024*
C41.0903 (3)0.3035 (2)1.08367 (13)0.0207 (4)
H4A1.23080.30371.10430.025*
H4B1.04780.39021.11450.025*
C51.0207 (3)0.1110 (3)1.17381 (12)0.0221 (4)
H5A0.99750.19341.21350.027*
H5B1.16150.10191.18510.027*
O10.3901 (2)0.76965 (15)0.84556 (8)0.0201 (3)
O20.3977 (3)0.54859 (17)0.89662 (9)0.0277 (4)
C61.5268 (4)0.8928 (3)0.31756 (16)0.0379 (6)
H6A1.60200.97530.35850.057*
H6B1.53570.92240.26460.057*
H6C1.58040.79700.32290.057*
C71.3129 (3)0.8673 (3)0.32783 (13)0.0302 (5)
H7A1.25900.96360.32040.036*
H7B1.23800.78520.28560.036*
C81.2814 (3)0.8219 (3)0.40846 (12)0.0216 (4)
H8A1.36010.90200.45090.026*
H8B1.33010.72330.41510.026*
C91.0669 (3)0.8029 (3)0.41888 (12)0.0217 (4)
H9A1.01940.90240.41360.026*
H9B0.98790.72500.37550.026*
C101.0328 (3)0.7534 (3)0.49849 (12)0.0227 (4)
H10A1.11540.82930.54200.027*
H10B1.07550.65200.50300.027*
C110.8192 (3)0.7402 (3)0.50970 (12)0.0223 (4)
H11A0.73620.66710.46520.027*
H11B0.77790.84260.50690.027*
C120.7825 (3)0.6855 (3)0.58845 (13)0.0241 (5)
H12A0.82020.58190.59070.029*
H12B0.86760.75720.63300.029*
C130.5699 (3)0.6768 (3)0.59969 (12)0.0225 (4)
H13A0.48460.60990.55340.027*
H13B0.53480.78170.60020.027*
C140.5274 (3)0.6143 (2)0.67581 (12)0.0214 (4)
H14A0.61370.68020.72220.026*
H14B0.55980.50860.67500.026*
C150.3140 (3)0.6090 (2)0.68655 (12)0.0202 (4)
H15A0.22700.55190.63790.024*
H15B0.28530.71600.69280.024*
C160.2673 (3)0.5319 (2)0.75860 (11)0.0192 (4)
H16A0.31170.43020.75550.023*
H16B0.12310.51280.75540.023*
C170.3612 (3)0.6252 (2)0.83941 (11)0.0154 (4)
O1W0.5329 (2)0.29510 (16)0.95510 (9)0.0208 (3)
H1WA0.55540.33371.00700.031*
H1WB0.49650.36790.92550.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01428 (19)0.01012 (17)0.01465 (18)0.00220 (12)0.00653 (13)0.00193 (12)
O2W0.0123 (7)0.0189 (7)0.0358 (9)0.0048 (6)0.0002 (6)0.0017 (6)
N10.0121 (8)0.0136 (8)0.0210 (8)0.0032 (6)0.0051 (6)0.0044 (6)
N20.0122 (8)0.0170 (8)0.0185 (8)0.0028 (6)0.0044 (6)0.0010 (6)
C10.0183 (11)0.0389 (12)0.0173 (10)0.0080 (9)0.0088 (8)0.0097 (9)
C20.0174 (10)0.0254 (10)0.0231 (10)0.0038 (8)0.0059 (8)0.0122 (8)
C30.0161 (10)0.0101 (8)0.0367 (12)0.0022 (7)0.0100 (9)0.0036 (8)
C40.0175 (10)0.0136 (9)0.0298 (11)0.0002 (8)0.0080 (8)0.0042 (8)
C50.0207 (11)0.0306 (11)0.0149 (9)0.0069 (9)0.0037 (8)0.0024 (8)
O10.0231 (8)0.0157 (7)0.0213 (7)0.0048 (6)0.0033 (6)0.0001 (5)
O20.0426 (10)0.0209 (8)0.0188 (7)0.0039 (7)0.0029 (7)0.0052 (6)
C60.0286 (14)0.0546 (17)0.0364 (14)0.0053 (12)0.0196 (11)0.0141 (12)
C70.0229 (12)0.0478 (14)0.0213 (11)0.0013 (10)0.0098 (9)0.0090 (10)
C80.0182 (11)0.0290 (11)0.0185 (10)0.0018 (8)0.0077 (8)0.0037 (8)
C90.0189 (11)0.0281 (11)0.0170 (10)0.0017 (8)0.0059 (8)0.0020 (8)
C100.0204 (11)0.0292 (11)0.0196 (10)0.0018 (9)0.0086 (8)0.0030 (8)
C110.0203 (11)0.0272 (11)0.0191 (10)0.0008 (8)0.0089 (8)0.0000 (8)
C120.0216 (11)0.0313 (12)0.0215 (11)0.0041 (9)0.0100 (9)0.0044 (9)
C130.0225 (11)0.0275 (11)0.0190 (10)0.0017 (9)0.0104 (8)0.0025 (8)
C140.0201 (11)0.0271 (11)0.0182 (10)0.0040 (8)0.0072 (8)0.0028 (8)
C150.0214 (11)0.0253 (10)0.0137 (9)0.0019 (8)0.0065 (8)0.0002 (8)
C160.0220 (11)0.0189 (10)0.0160 (9)0.0008 (8)0.0063 (8)0.0006 (7)
C170.0127 (9)0.0180 (9)0.0178 (9)0.0046 (7)0.0076 (7)0.0019 (7)
O1W0.0201 (8)0.0195 (7)0.0234 (7)0.0054 (6)0.0033 (6)0.0025 (6)
Geometric parameters (Å, º) top
Cu1—N1i2.0048 (16)C7—C81.521 (3)
Cu1—N12.0048 (16)C7—H7A0.9900
Cu1—N2i2.0319 (15)C7—H7B0.9900
Cu1—N22.0319 (15)C8—C91.527 (3)
O2W—H2WA0.8998C8—H8A0.9900
O2W—H2WB0.8994C8—H8B0.9900
N1—C21.481 (2)C9—C101.521 (3)
N1—C31.483 (2)C9—H9A0.9900
N1—H10.9300C9—H9B0.9900
N2—C41.482 (3)C10—C111.527 (3)
N2—C51.485 (2)C10—H10A0.9900
N2—H20.9300C10—H10B0.9900
C1—C5i1.510 (3)C11—C121.529 (3)
C1—C21.526 (3)C11—H11A0.9900
C1—H1A0.9900C11—H11B0.9900
C1—H1B0.9900C12—C131.523 (3)
C2—H2A0.9900C12—H12A0.9900
C2—H2B0.9900C12—H12B0.9900
C3—C41.503 (3)C13—C141.526 (3)
C3—H3A0.9900C13—H13A0.9900
C3—H3B0.9900C13—H13B0.9900
C4—H4A0.9900C14—C151.528 (3)
C4—H4B0.9900C14—H14A0.9900
C5—C1i1.510 (3)C14—H14B0.9900
C5—H5A0.9900C15—C161.530 (3)
C5—H5B0.9900C15—H15A0.9900
O1—C171.250 (2)C15—H15B0.9900
O2—C171.264 (2)C16—C171.529 (3)
C6—C71.522 (3)C16—H16A0.9900
C6—H6A0.9800C16—H16B0.9900
C6—H6B0.9800O1W—H1WA0.8986
C6—H6C0.9800O1W—H1WB0.9006
N1i—Cu1—N1180.0H7A—C7—H7B107.6
N1i—Cu1—N2i86.18 (7)C7—C8—C9113.37 (18)
N1—Cu1—N2i93.82 (7)C7—C8—H8A108.9
N1i—Cu1—N293.82 (7)C9—C8—H8A108.9
N1—Cu1—N286.18 (7)C7—C8—H8B108.9
N2i—Cu1—N2180.000 (1)C9—C8—H8B108.9
H2WA—O2W—H2WB100.8H8A—C8—H8B107.7
C2—N1—C3111.39 (15)C10—C9—C8113.87 (17)
C2—N1—Cu1117.57 (13)C10—C9—H9A108.8
C3—N1—Cu1107.35 (12)C8—C9—H9A108.8
C2—N1—H1106.6C10—C9—H9B108.8
C3—N1—H1106.6C8—C9—H9B108.8
Cu1—N1—H1106.6H9A—C9—H9B107.7
C4—N2—C5112.33 (16)C9—C10—C11113.57 (17)
C4—N2—Cu1106.22 (12)C9—C10—H10A108.9
C5—N2—Cu1116.78 (12)C11—C10—H10A108.9
C4—N2—H2107.0C9—C10—H10B108.9
C5—N2—H2107.0C11—C10—H10B108.9
Cu1—N2—H2107.0H10A—C10—H10B107.7
C5i—C1—C2114.02 (17)C10—C11—C12113.90 (18)
C5i—C1—H1A108.7C10—C11—H11A108.8
C2—C1—H1A108.7C12—C11—H11A108.8
C5i—C1—H1B108.7C10—C11—H11B108.8
C2—C1—H1B108.7C12—C11—H11B108.8
H1A—C1—H1B107.6H11A—C11—H11B107.7
N1—C2—C1111.41 (15)C13—C12—C11113.29 (18)
N1—C2—H2A109.3C13—C12—H12A108.9
C1—C2—H2A109.3C11—C12—H12A108.9
N1—C2—H2B109.3C13—C12—H12B108.9
C1—C2—H2B109.3C11—C12—H12B108.9
H2A—C2—H2B108.0H12A—C12—H12B107.7
N1—C3—C4108.34 (15)C12—C13—C14114.26 (18)
N1—C3—H3A110.0C12—C13—H13A108.7
C4—C3—H3A110.0C14—C13—H13A108.7
N1—C3—H3B110.0C12—C13—H13B108.7
C4—C3—H3B110.0C14—C13—H13B108.7
H3A—C3—H3B108.4H13A—C13—H13B107.6
N2—C4—C3108.71 (16)C13—C14—C15113.37 (17)
N2—C4—H4A109.9C13—C14—H14A108.9
C3—C4—H4A109.9C15—C14—H14A108.9
N2—C4—H4B109.9C13—C14—H14B108.9
C3—C4—H4B109.9C15—C14—H14B108.9
H4A—C4—H4B108.3H14A—C14—H14B107.7
N2—C5—C1i111.54 (17)C14—C15—C16113.17 (17)
N2—C5—H5A109.3C14—C15—H15A108.9
C1i—C5—H5A109.3C16—C15—H15A108.9
N2—C5—H5B109.3C14—C15—H15B108.9
C1i—C5—H5B109.3C16—C15—H15B108.9
H5A—C5—H5B108.0H15A—C15—H15B107.8
C7—C6—H6A109.5C15—C16—C17114.68 (17)
C7—C6—H6B109.5C15—C16—H16A108.6
H6A—C6—H6B109.5C17—C16—H16A108.6
C7—C6—H6C109.5C15—C16—H16B108.6
H6A—C6—H6C109.5C17—C16—H16B108.6
H6B—C6—H6C109.5H16A—C16—H16B107.6
C8—C7—C6114.1 (2)O1—C17—O2124.53 (19)
C8—C7—H7A108.7O1—C17—C16118.96 (17)
C6—C7—H7A108.7O2—C17—C16116.46 (17)
C8—C7—H7B108.7H1WA—O1W—H1WB109.5
C6—C7—H7B108.7
C3—N1—C2—C1178.39 (16)C7—C8—C9—C10178.49 (19)
Cu1—N1—C2—C157.1 (2)C8—C9—C10—C11177.93 (18)
C5i—C1—C2—N170.0 (2)C9—C10—C11—C12178.14 (18)
C2—N1—C3—C4169.59 (16)C10—C11—C12—C13178.57 (17)
Cu1—N1—C3—C439.57 (18)C11—C12—C13—C14176.93 (18)
C5—N2—C4—C3168.83 (15)C12—C13—C14—C15179.07 (18)
Cu1—N2—C4—C340.02 (17)C13—C14—C15—C16174.42 (17)
N1—C3—C4—N253.9 (2)C14—C15—C16—C1770.0 (2)
C4—N2—C5—C1i179.78 (15)C15—C16—C17—O130.9 (3)
Cu1—N2—C5—C1i57.2 (2)C15—C16—C17—O2151.66 (19)
C6—C7—C8—C9177.8 (2)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20.901.912.774 (2)160
O1W—H1WA···O2ii0.901.812.694 (2)168
O2W—H2WB···O1W0.901.932.8037 (19)164
O2W—H2WA···O1iii0.901.892.777 (2)168
N2—H2···O1ii0.932.253.030 (2)141
N1—H1···O1Wiv0.932.122.982 (2)153
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x, y1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C10H24N4)(H2O)2](C12H23O2)2·2H2O
Mr734.54
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.9972 (4), 8.8164 (5), 17.1495 (10)
α, β, γ (°)96.218 (3), 99.137 (3), 98.329 (3)
V3)1024.13 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.41 × 0.41 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.796, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
7085, 4623, 4138
Rint0.045
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.07
No. of reflections4623
No. of parameters215
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.52

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20.901.912.774 (2)160.4
O1W—H1WA···O2i0.901.812.694 (2)167.5
O2W—H2WB···O1W0.901.932.8037 (19)163.5
O2W—H2WA···O1ii0.901.892.777 (2)167.5
N2—H2···O1i0.932.253.030 (2)141.3
N1—H1···O1Wiii0.932.122.982 (2)153.4
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y1, z; (iii) x+1, y, z.
 

Acknowledgements

This project was financed by the University of Malaya (grant No. A-50101-DA000-B21519). The authors thank Mr Harry Adams for his support and cooperation.

References

First citationAhmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010a). Acta Cryst. E66, m887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010b). Acta Cryst. E66, m888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010c). Acta Cryst. E66, m889.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010d). Acta Cryst. E66, m890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHolanda, A. K. M., da Silva, F. O. N., Carvalho, I. M. M., Batista, A. A., Ellena, J., Castellano, E. E., Moreira, I. S. & Lopes, L. G. F. (2007). Polyhedron, 26, 4653–4658.  CrossRef CAS Google Scholar
First citationLindoy, L. F., Mahinay, M. S., Skelton, B. W. & White, A. H. (2003). J. Coord. Chem. 56, 1203–1213.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreedaran, S., Bharathi, K. S., Rahiman, A. K., Rajesh, K., Nirmala, G. & Narayanan, V. (2008). J. Coord. Chem. 22, 3594–3609.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaouali Zgolli, D., Boughzala, H. & Driss, A. (2010). Acta Cryst. E66, m265–m266.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m588-m589
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds