metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m590-m591

rac-(OC-6-33)-bis­­[2-(N-Benzyl­methyl­imino­meth­yl-κN)-1H-imidazol-1-ido-κN1]bis­(ethyl­amido)­titanium(IV)

aKey Laboratory of Synthetic and Natural Chemistry of the Ministry of Education, College of Chemistry and Material Science, the North-West University of Xi'an, Taibai Bei Avenue 229, Xi'an 710069, Shaanxi Province, People's Republic of China
*Correspondence e-mail: maxborzov@mail.ru

(Received 4 April 2011; accepted 8 April 2011; online 13 April 2011)

The title compound, [[Ti(C2H10N)2(C11H10N3)2] or Ti(C11H10N3)2(NEt2)2], was prepared by direct reaction of 2-(N-phenyl­methyl­imino­meth­yl)-1H-imidazole and [Ti(NEt2)4]. The TiIV atom is in a pseudo-octa­hedral coordination environ­ment with the imidazolido-group N-atoms occupying apical positions and amido- and imino-N-atoms cis-located in the equatorial plane. The presence of two bidentate chelating ligands determines the chirality of the TiIV atom. The crystallographically independent unit, except for its phenyl rings, adopts nearly pseudo-C2 symmetry (rotation around a twofold axis passing through the Ti atom and the centre of the imino-N⋯imino-N segment). The Ti—Namido, Ti—Nimidazolido, and Ti—Nimino bond lengths essentially differ, increasing by approximately 0.2 Å in the series. All ligating N atoms are in a nearly planar environment, which is indicative of additional pπdπ donations towards the metal atom. The two diaza­metallacyclic units are planar within 0.03 and 0.05 Å.

Related literature

For mononuclear neutral TiIV complexes bearing two chelating amido-imino and two amido ligands see: Xiang et al. (2008[Xiang, L., Song, H. & Zi, G. (2008). Eur. J. Inorg. Chem. pp. 1135-1140.]); Zi et al. (2008[Zi, G., Wang, Q., Xiang, L. & Song, H. (2008). Dalton Trans. pp. 5930-5944.]). For closely related mononuclear neutral TiIV complexes bearing two chelating amido-amino and two amido ligands see: Fandos et al. (2005[Fandos, R., Hernandez, C., Otero, A., Rodriguez, A. & Ruiz, M. J. (2005). J. Organomet. Chem. 690, 4828-4834.]); Kempe (1997[Kempe, R. (1997). Z. Kristallogr. 212, 477-478.]); Marsh (2004[Marsh, R. E. (2004). Acta Cryst. B60, 252-253.]); Oberthur et al. (1997[Oberthur, M., Hillebrand, G., Arndt, P. & Kempe, R. (1997). Chem. Ber. 130, 789-794.]); Smolensky et al. (2005[Smolensky, E., Kapon, M., Woollins, J. D. & Eisen, M. S. (2005). Organometallics, 24, 3255-3265.]); Xiang et al. (2008[Xiang, L., Song, H. & Zi, G. (2008). Eur. J. Inorg. Chem. pp. 1135-1140.]); Zaher et al. (2008[Zaher, D., Tomov, A. K., Gibson, V. C. & White, A. J. P. (2008). J. Organomet. Chem. 693, 3889-3896.]). For the practical applications of the complexes of the type, see: McKnight & Waymouth (1998[McKnight, A. L. & Waymouth, R. M. (1998). Chem. Rev. 98, 2587-2598.]); Fix et al. (1990[Fix, R. M., Gordon, R. G. & Hoffman, D. M. (1990). Chem. Mater. 2, 235-241.]). For procedures used in the complex preparation, see: Bürger & Dämmen (1974[Bürger, H. & Dämmen, U. (1974). Z. Anorg. Allg. Chem. 407, 201-210.]); Bradley & Thomas (1960[Bradley, D. C. & Thomas, I. M. (1960). J. Chem. Soc. pp. 3857-3861.]); Armarego & Perrin (1997[Armarego, W. L. F. & Perrin, D. D. (1997). Purification of Laboratory Chemicals, Fourth Edition. Oxford: Pergamon.]). For a description of the configuration of the coordination entities, see: Connely et al. (2005[Connely, N. G., Hartsborn, R. M., Damhus, T. & Hutton, A. T. (2005). Editor. Nomenclature of Inorganic Chemistry - IUPAC Recommendations, Cambridge, UK: Royal Society of Chemistry.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C4H10N)2(C11H10N3)2]

  • Mr = 560.60

  • Triclinic, [P \overline 1]

  • a = 9.6465 (9) Å

  • b = 10.3796 (10) Å

  • c = 16.3341 (16) Å

  • α = 102.931 (2)°

  • β = 102.082 (2)°

  • γ = 93.184 (2)°

  • V = 1549.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.35 × 0.24 × 0.14 mm

Data collection
  • BRUKER SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.900, Tmax = 0.958

  • 7867 measured reflections

  • 5478 independent reflections

  • 3387 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.100

  • S = 0.94

  • 5478 reflections

  • 356 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL and OLEX2.

Supporting information


Comment top

Mononuclear neutral Ti(IV) complexes bearing two chelating amido-imino and two amido ligands (Xiang et al., 2008; Zi et al.., 2008) and closely related ones bearing two chelating amido-amino and two amido ligands (Fandos et al.., 2005; Kempe, 1997; Marsh, 2004; Oberthur et al., 1997; Smolensky et al., 2005; Xiang et al., 2008; Zaher et al., 2008) are known as non-metallocene components of the catalytic systems for olefin polymerization (McKnight & Waymouth, 1998) and as precursors of the compounds for metal nitride films depositions from the gas phase (Fix et al., 1990). The title compound, (C11H10N3)2Ti(NEt2)2, (I), also belongs to the former family and was prepared by a direct reaction of 2-(N-phenylmethyliminomethyl)-1H-imidazole and Ti(NEt2)4 (see Experimental).

The Ti atom in I is in a pseudo-octahedral coordination environment, with imidazolido-group N-atoms occupying apical positions and amido- and imino-N-atoms cis-located in the equatorial plane [coordination environment OC-6–33 (Connely et al., 2005)]. Presence of two bidentate chelating ligands determines chirality of the Ti-centre. Crystallographically independent unit of I, except of its Ph-rings, nearly adopts pseudo-C2 symmetry (rotation around a 2-fold axis passing through Ti-atom and the centre of the imino-N···imino-N segment). Ti—Namido [1.892 (2) and 1.897 (2) Å], Ti—Nimidazolido [2.115 (2) and 2.1170 (19) Å], and Ti—Nimino [2.302 (2) and 2.302 (2) Å] bond lengths essentially differ (increase by approximately 0.2 Å in the series). All ligating N-atoms N1, N4, N3, N6, N7, N8 are in nearly planar environment [valent angles sums: 359.2 (5), 359.5 (5), 359.9 (5), 359.3 (5), 359.2 (5), and 358.7 (5)°, respectively] what is indicative of additional pπdπ donations towards the metal centre. Ti-atom lays in the imidazole rings r. m. s. planes N1/C1/N2/C3/C2 (PL1) and N4/C12/N5/C14/C13 (PL2) [deviations -0.274 (4) and 0.202 (4) Å, respectively]. Both diazametallacyclyc moieties in the molecule of I are planar within 0.03 and 0.05 Å.

Analysis of the Cambridge Structural Database [CSD; release May 2009 (Allen, 2002)] for mononuclear neutral Ti(IV) complexes bearing two chelating amido-imino and two amido ligands retrieves only 3 entries (8 fragments). These are three bis[2-(N-aryliminomethyl)-1H-pyroll-1-idyl-κN1,N1']bis(dimethylamido)titanium(IV) complexes (Xiang et al., 2008 and Zi et al.., 2008). Of interest, only one of these cited complexes, [N,N'-(1,1'-binaphthalin-2,2'-diyl)bi(2-iminomethyl-1H- pyrrol-1-idyl)-κN1,N1,N1',N1']bis(dimethylamido)titanium(IV) (Xiang et al., 2008), adopts the same (OC-6–33) configuration as the complex I, while the other two complexes, bis(dimethylamido)bis(2-{N-[1-(2-methoxynaphthalin-1-yl)naphthalin-2-yl] iminomethyl}-1H-pyrrol-1-idyl-κN1,N1')- and bis(dimethylamido)bis(2-{N-[2-(2-methoxy-6-methylphenyl)-3- methylphenyl]iminomethyl}-1H-pyrrol-1-idyl-κN1,N1')titaniums(IV) (Zi et al.., 2008) exhibit (OC-6–1'3) configuration (pyrollyidyl moieties in cis- and imino-moieties in trans-positions). For all these three latter complexes, the observed tendencies for the Ti—N bond lengths are the same as in the case of I, with their values in I well matching the earlier reported ranges.

Related literature top

For mononuclear neutral TiIV complexes bearing two chelating amido-imino and two amido ligands see: Xiang et al. (2008); Zi et al. (2008). For closely related mononuclear neutral TiIV complexes bearing two chelating amido-amino and two amido ligands see: Fandos et al. (2005); Kempe (1997); Marsh (2004); Oberthur et al. (1997); Smolensky et al. (2005); Xiang et al. (2008); Zaher et al. (2008). For the practical applications of the complexes of the type, see: McKnight & Waymouth (1998); Fix et al. (1990). For procedures used in the complex preparation, see: Bürger & Dämmen (1974); Bradley & Thomas (1960); Armarego & Perrin (1997). For a description of the configuration of the coordination entities, see: Connely et al. (2005). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

All operations were performed under argon atmosphere in conventional glassware or in all-sealed evacuated glass vessels with application of the high-vacuum line (the residual pressure of non-condensable gases within 1.5–1.0×10 -3 Torr; 1 Torr = 133 Pa). Ti(NEt2)4 was prepared as described earlier (Bürger & Dämmen, 1974; Bradley & Thomas, 1960). All other chemicals were commercially available and purified by conventional methods (Armarego & Perrin, 1997). Solvents were purified by distillation over sodium benzophenoneketyl (diethyl ether, THF), Na—K alloy (toluene, benzene), and CaH2 (chloroform). Deuterated solvents were dried similarly. — NMR spectra were recorded on a Varian INOVA-400 instrument. For 1H and 13C spectra, the solvent [δH = 7.16 and δC = 128.00 (C6D6)] or TMS (δH = 0.00 and δC = 0.0) (CDCl3) resonances were used as internal reference standards. — Chromato-mass spectra were measured on Agilent 6890 Series GC system equipped with HP 5973 mass-selective detector.

2-(N-Phenylmethyliminomethyl)-1H-imidazole, II: To a solution of 1H-imidazole-2-carbaldehyde (1.92 g, 20.0 mmol) in methanol (20 ml), a solution of benzylamine (2.14 g, 20 mmol) in methanol (10 ml) was added dropwise under reflux and stirring during 30 min. The reaction mixture was refluxed for additional 6 h, cooled dow to ambient temperature and concentrated under reduced pressure. The formed crystalline material was collected by filtration and re-crystallized from the minimal amount of refluxing methanol what gave 3.33 g of II (90%). — 1H NMR (298 K, CDCl3): δ = 4.72 (s, 2 H, CH2), 7.08 (broad s, 2 H, CH in imidazole), 7.24–7.39 (m, 5 H, CH in Ph), 8.34 (s, 1 H, NCH). — 13C{1H} NMR (298 K, CDCl3): δ = 64.11 (CH2Ph), 127.79 (p-CH in Ph), 127.79, 128.35 (o-, m-CH in Ph), 137.74 (C in Ph), 144.33 (CHN), 152.79 (C in imidazole). Imidazole ring CH-carbon signals are not observed (too broad due to exchange). EI MS (70 eV) m/z (%): 185 (31) [M]+., 184 (20) [M – H.]+, 169 (87) [M – H. – NH.].+, 157 (16) [M – HCN].+, 117 (55) [[M – C3H4N2].+, 91 (100) [C7H7]+, 81 (16) C4H5N2]+, 69 (42) [C3H5N2]+, 65 (29) [C3H2N2]+.

Complex I: To a solution of II (0.74 g, 2 mmol) in toluene (10 ml), a solution of Ti(NEt2)4 (0.67 g, 2 mmol) in toluene (10 ml) was added under stirring and cooling. The reaction mixture was heated at 353 K for 8 h. The resultant mixture was cooled down to room temperature and then left to stay at 255 K for several days. The mother liquor was decanted from the orange crystals, the crystals were washed with minimal amount of cold toluene and dried on the high-vacuum line what gave 0.73 g of I (65%). — 1H NMR (298 K, C6D6): δ = 0.56 (virt. t, an X-part of an ABX3 spin system, 12 H, 3JAX = 3JBX = 7.0 Hz, NCH2CH3), 3.60, 3.96 (both virt.dq, an AB-part of an ABX3 spin system, 4 H + 4H, 3JAX = 3JBX = 7.0 Hz, 2JAB = 14.1 Hz, NCH2CH3), 3.86, 4.01 (AB spin system, 2 H + 2 H, 14.6 Hz, NCH2), 6.56, 6.99 (both m, 4 H + 6 H, CH in Ph), 7.56 (broadened s, 2 H, NCH), 7.75, 7.81 (both broadened s, 2 H + 2 H, CH in imidazole). — 13C{1H} NMR (298 K, C6D6): δ =12.39 (CH3), 45.57 (CH2 in Et), 59.88 (CH2Ph), 128.79, 128.69 (o-, m-CH in Ph), 130.21 (p-CH in Ph), 134.06 (CH in imidazole), 142.34 (C in Ph), 152.37, 159.44 (CHN and C in imidazole).

A crystal of (I) suitable for X-ray diffraction analysis was picked up from the isolated material and mounted inside a Lindemann glass capillary (diameter 0.5 mm; N2-filled glove-box).

Refinement top

H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), 0.97 (CH2), 0.93 Å (CArH), and Uiso(H) = 1.5 Ueq(C), 1.2 Ueq(C), and 1.2 Ueq(C), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular view of I with the atom labeling scheme [A- (or Λ-) enantiomer is depicted; for C/A and Δ/Λ notation see: Connely et al. (2005)]. Thermal ellipsoids are shown at the 30% probability level. All H-atoms are omitted for clarity.
rac-(OC-6-33)-Bis[2-(N-benzyliminomethyl-κN)- 1H-imidazol-1-ido-κN1]bis(ethylamido)titanium(IV) top
Crystal data top
[Ti(C4H10N)2(C11H10N3)2]Z = 2
Mr = 560.60F(000) = 596
Triclinic, P1Dx = 1.201 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6465 (9) ÅCell parameters from 4167 reflections
b = 10.3796 (10) Åθ = 2.3–27.8°
c = 16.3341 (16) ŵ = 0.31 mm1
α = 102.931 (2)°T = 296 K
β = 102.082 (2)°Block, orange
γ = 93.184 (2)°0.35 × 0.24 × 0.14 mm
V = 1549.7 (3) Å3
Data collection top
BRUKER SMART APEXII
diffractometer
5478 independent reflections
Radiation source: fine-focus sealed tube3387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.333 pixels mm-1θmax = 25.1°, θmin = 2.0°
phi and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 812
Tmin = 0.900, Tmax = 0.958l = 1919
7867 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
5478 reflections(Δ/σ)max = 0.001
356 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ti(C4H10N)2(C11H10N3)2]γ = 93.184 (2)°
Mr = 560.60V = 1549.7 (3) Å3
Triclinic, P1Z = 2
a = 9.6465 (9) ÅMo Kα radiation
b = 10.3796 (10) ŵ = 0.31 mm1
c = 16.3341 (16) ÅT = 296 K
α = 102.931 (2)°0.35 × 0.24 × 0.14 mm
β = 102.082 (2)°
Data collection top
BRUKER SMART APEXII
diffractometer
5478 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3387 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.958Rint = 0.029
7867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.94Δρmax = 0.27 e Å3
5478 reflectionsΔρmin = 0.25 e Å3
356 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.67106 (5)0.95033 (5)0.77116 (3)0.03941 (15)
N10.8932 (2)0.9452 (2)0.81198 (12)0.0408 (5)
N21.0873 (2)0.8371 (2)0.79390 (15)0.0529 (6)
N30.7318 (2)0.79631 (19)0.66290 (12)0.0416 (5)
N40.4688 (2)0.9508 (2)0.69011 (12)0.0413 (5)
N50.3353 (3)1.0264 (2)0.58256 (15)0.0617 (7)
N60.7129 (2)1.0613 (2)0.67001 (13)0.0425 (5)
N70.6114 (2)0.8134 (2)0.81961 (13)0.0439 (5)
N80.6623 (2)1.1057 (2)0.85617 (12)0.0439 (5)
C10.9513 (3)0.8501 (2)0.76137 (16)0.0409 (6)
C21.0016 (3)0.9955 (3)0.88178 (16)0.0492 (7)
H20.99751.06290.92920.059*
C31.1177 (3)0.9302 (3)0.87046 (19)0.0576 (8)
H31.20550.94690.90970.069*
C40.8635 (3)0.7761 (2)0.68127 (16)0.0457 (7)
H40.90080.71450.64320.055*
C50.6388 (3)0.7312 (3)0.57744 (17)0.0595 (8)
H5A0.60900.79980.54790.071*
H5B0.55370.68760.58660.071*
C60.7024 (3)0.6313 (3)0.51933 (15)0.0424 (6)
C70.6961 (3)0.5009 (3)0.52388 (18)0.0561 (7)
H70.65020.47480.56320.067*
C80.7553 (4)0.4085 (3)0.4723 (2)0.0782 (10)
H80.74990.32070.47700.094*
C90.8212 (4)0.4434 (5)0.4150 (2)0.0871 (12)
H90.86120.37960.38000.105*
C100.8305 (4)0.5713 (5)0.4071 (2)0.0901 (12)
H100.87630.59490.36710.108*
C110.7702 (4)0.6667 (3)0.4600 (2)0.0723 (9)
H110.77590.75430.45510.087*
C120.4652 (3)1.0178 (3)0.62701 (16)0.0447 (6)
C130.3286 (3)0.9160 (3)0.68532 (17)0.0506 (7)
H130.29280.86920.72010.061*
C140.2500 (3)0.9621 (3)0.6202 (2)0.0618 (8)
H140.15090.95090.60390.074*
C150.5979 (3)1.0702 (3)0.61621 (16)0.0482 (7)
H150.60131.11010.57100.058*
C160.8495 (3)1.1028 (3)0.65087 (17)0.0505 (7)
H16A0.83291.10560.59070.061*
H16B0.91501.03690.65970.061*
C170.9174 (3)1.2367 (3)0.70619 (16)0.0420 (6)
C180.8462 (3)1.3481 (3)0.70256 (18)0.0562 (7)
H180.75631.33970.66630.067*
C190.9076 (4)1.4714 (3)0.7523 (2)0.0653 (8)
H190.85891.54560.74910.078*
C201.0391 (4)1.4856 (3)0.8062 (2)0.0716 (9)
H201.08031.56910.83930.086*
C211.1098 (3)1.3760 (3)0.8111 (2)0.0703 (9)
H211.19881.38470.84840.084*
C221.0488 (3)1.2524 (3)0.76066 (19)0.0565 (8)
H221.09831.17860.76390.068*
C230.5296 (3)0.6855 (3)0.77301 (19)0.0622 (8)
H23A0.59530.61820.76810.075*
H23B0.48580.69150.71500.075*
C240.4141 (3)0.6393 (4)0.8133 (2)0.0974 (13)
H24A0.35810.56170.77450.146*
H24B0.35380.70870.82430.146*
H24C0.45700.61820.86660.146*
C250.6712 (3)0.8214 (3)0.91142 (17)0.0575 (8)
H25A0.59340.80790.93890.069*
H25B0.71850.91030.93850.069*
C260.7767 (3)0.7214 (3)0.9281 (2)0.0741 (9)
H26A0.73040.63280.90290.111*
H26B0.81060.73270.98920.111*
H26C0.85580.73550.90270.111*
C270.7500 (3)1.2329 (3)0.87333 (17)0.0583 (8)
H27A0.69451.29170.84450.070*
H27B0.83141.21740.84760.070*
C280.8044 (3)1.3036 (3)0.96745 (19)0.0813 (10)
H28A0.87291.37720.97240.122*
H28B0.84851.24280.99860.122*
H28C0.72611.33560.99100.122*
C290.5402 (3)1.1148 (3)0.89731 (18)0.0582 (8)
H29A0.57571.14420.95930.070*
H29B0.48951.02680.88500.070*
C300.4360 (3)1.2086 (3)0.8683 (2)0.0849 (11)
H30A0.40791.18640.80640.127*
H30B0.48071.29840.88840.127*
H30C0.35331.20050.89160.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0373 (3)0.0441 (3)0.0362 (3)0.0076 (2)0.0114 (2)0.0048 (2)
N10.0366 (11)0.0433 (13)0.0401 (12)0.0043 (10)0.0085 (10)0.0058 (10)
N20.0379 (13)0.0595 (16)0.0599 (15)0.0086 (11)0.0096 (11)0.0125 (12)
N30.0420 (13)0.0385 (13)0.0404 (12)0.0061 (10)0.0092 (10)0.0012 (9)
N40.0366 (12)0.0443 (13)0.0416 (12)0.0087 (10)0.0103 (10)0.0051 (10)
N50.0516 (15)0.0729 (18)0.0581 (16)0.0194 (13)0.0036 (13)0.0159 (13)
N60.0431 (13)0.0416 (13)0.0435 (13)0.0068 (10)0.0166 (11)0.0049 (10)
N70.0416 (12)0.0482 (14)0.0434 (13)0.0079 (10)0.0128 (10)0.0102 (10)
N80.0448 (13)0.0472 (14)0.0386 (12)0.0076 (11)0.0141 (10)0.0032 (10)
C10.0391 (15)0.0396 (16)0.0455 (15)0.0054 (12)0.0145 (12)0.0086 (12)
C20.0430 (16)0.0553 (18)0.0435 (15)0.0028 (14)0.0054 (13)0.0047 (13)
C30.0396 (16)0.067 (2)0.0599 (19)0.0002 (15)0.0002 (14)0.0154 (16)
C40.0463 (16)0.0411 (16)0.0513 (16)0.0121 (13)0.0190 (13)0.0052 (13)
C50.0564 (18)0.059 (2)0.0504 (17)0.0120 (15)0.0041 (14)0.0076 (14)
C60.0495 (16)0.0390 (17)0.0353 (14)0.0104 (13)0.0079 (12)0.0022 (12)
C70.068 (2)0.0449 (19)0.0528 (17)0.0056 (15)0.0137 (15)0.0063 (14)
C80.085 (3)0.053 (2)0.083 (3)0.0220 (19)0.003 (2)0.0005 (19)
C90.072 (2)0.100 (3)0.073 (3)0.029 (2)0.019 (2)0.018 (2)
C100.093 (3)0.118 (4)0.064 (2)0.001 (3)0.042 (2)0.009 (2)
C110.098 (3)0.061 (2)0.062 (2)0.0069 (19)0.0242 (19)0.0191 (17)
C120.0457 (16)0.0457 (17)0.0404 (15)0.0101 (13)0.0075 (13)0.0063 (13)
C130.0393 (16)0.0533 (18)0.0575 (18)0.0065 (14)0.0144 (14)0.0063 (14)
C140.0370 (16)0.070 (2)0.071 (2)0.0150 (15)0.0053 (15)0.0059 (17)
C150.0602 (18)0.0472 (17)0.0401 (15)0.0106 (14)0.0136 (14)0.0133 (13)
C160.0518 (17)0.0512 (18)0.0540 (17)0.0053 (14)0.0225 (14)0.0140 (14)
C170.0475 (16)0.0415 (17)0.0442 (15)0.0051 (13)0.0197 (13)0.0167 (12)
C180.0552 (18)0.054 (2)0.0625 (19)0.0080 (15)0.0092 (15)0.0237 (15)
C190.076 (2)0.047 (2)0.081 (2)0.0136 (17)0.0242 (19)0.0242 (17)
C200.083 (2)0.051 (2)0.077 (2)0.0070 (19)0.027 (2)0.0038 (17)
C210.057 (2)0.067 (2)0.076 (2)0.0044 (17)0.0002 (16)0.0124 (18)
C220.0504 (17)0.0522 (19)0.072 (2)0.0127 (15)0.0154 (15)0.0210 (16)
C230.0602 (19)0.059 (2)0.066 (2)0.0031 (16)0.0068 (16)0.0202 (16)
C240.071 (2)0.107 (3)0.117 (3)0.022 (2)0.011 (2)0.052 (3)
C250.0617 (19)0.063 (2)0.0530 (18)0.0099 (15)0.0175 (15)0.0194 (15)
C260.071 (2)0.082 (2)0.071 (2)0.0200 (19)0.0022 (17)0.0321 (18)
C270.069 (2)0.0525 (19)0.0522 (17)0.0082 (16)0.0216 (15)0.0034 (14)
C280.086 (2)0.076 (2)0.067 (2)0.0043 (19)0.0150 (18)0.0107 (17)
C290.0580 (18)0.060 (2)0.0598 (18)0.0188 (15)0.0255 (15)0.0065 (15)
C300.068 (2)0.092 (3)0.096 (3)0.039 (2)0.0227 (19)0.012 (2)
Geometric parameters (Å, º) top
Ti1—N71.892 (2)C13—C141.366 (4)
Ti1—N81.897 (2)C13—H130.9300
Ti1—N12.115 (2)C14—H140.9300
Ti1—N42.117 (2)C15—H150.9300
Ti1—N32.302 (2)C16—C171.505 (3)
Ti1—N62.302 (2)C16—H16A0.9700
N1—C21.356 (3)C16—H16B0.9700
N1—C11.365 (3)C17—C221.366 (3)
N2—C11.335 (3)C17—C181.384 (3)
N2—C31.363 (3)C18—C191.377 (4)
N3—C41.283 (3)C18—H180.9300
N3—C51.482 (3)C19—C201.363 (4)
N4—C121.362 (3)C19—H190.9300
N4—C131.362 (3)C20—C211.367 (4)
N5—C121.329 (3)C20—H200.9300
N5—C141.354 (3)C21—C221.382 (4)
N6—C151.284 (3)C21—H210.9300
N6—C161.480 (3)C22—H220.9300
N7—C231.465 (3)C23—C241.514 (4)
N7—C251.471 (3)C23—H23A0.9700
N8—C271.466 (3)C23—H23B0.9700
N8—C291.471 (3)C24—H24A0.9600
C1—C41.426 (3)C24—H24B0.9600
C2—C31.365 (4)C24—H24C0.9600
C2—H20.9300C25—C261.523 (4)
C3—H30.9300C25—H25A0.9700
C4—H40.9300C25—H25B0.9700
C5—C61.492 (3)C26—H26A0.9600
C5—H5A0.9700C26—H26B0.9600
C5—H5B0.9700C26—H26C0.9600
C6—C71.370 (3)C27—C281.514 (4)
C6—C111.379 (4)C27—H27A0.9700
C7—C81.363 (4)C27—H27B0.9700
C7—H70.9300C28—H28A0.9600
C8—C91.337 (5)C28—H28B0.9600
C8—H80.9300C28—H28C0.9600
C9—C101.362 (5)C29—C301.516 (4)
C9—H90.9300C29—H29A0.9700
C10—C111.398 (5)C29—H29B0.9700
C10—H100.9300C30—H30A0.9600
C11—H110.9300C30—H30B0.9600
C12—C151.423 (4)C30—H30C0.9600
N7—Ti1—N8102.26 (9)N5—C14—H14124.4
N7—Ti1—N197.40 (8)C13—C14—H14124.4
N8—Ti1—N195.28 (8)N6—C15—C12118.9 (2)
N7—Ti1—N494.93 (8)N6—C15—H15120.6
N8—Ti1—N496.73 (8)C12—C15—H15120.6
N1—Ti1—N4160.55 (8)N6—C16—C17112.8 (2)
N7—Ti1—N390.78 (8)N6—C16—H16A109.0
N8—Ti1—N3164.61 (8)C17—C16—H16A109.0
N1—Ti1—N374.71 (7)N6—C16—H16B109.0
N4—Ti1—N390.18 (7)C17—C16—H16B109.0
N7—Ti1—N6160.41 (8)H16A—C16—H16B107.8
N8—Ti1—N695.38 (8)C22—C17—C18118.2 (2)
N1—Ti1—N689.31 (7)C22—C17—C16121.9 (2)
N4—Ti1—N674.39 (7)C18—C17—C16119.9 (2)
N3—Ti1—N673.21 (7)C19—C18—C17120.5 (3)
C2—N1—C1103.6 (2)C19—C18—H18119.8
C2—N1—Ti1139.84 (18)C17—C18—H18119.8
C1—N1—Ti1115.71 (15)C20—C19—C18120.6 (3)
C1—N2—C3102.6 (2)C20—C19—H19119.7
C4—N3—C5120.8 (2)C18—C19—H19119.7
C4—N3—Ti1112.44 (16)C19—C20—C21119.5 (3)
C5—N3—Ti1126.65 (16)C19—C20—H20120.3
C12—N4—C13103.6 (2)C21—C20—H20120.3
C12—N4—Ti1116.54 (16)C20—C21—C22120.0 (3)
C13—N4—Ti1139.36 (18)C20—C21—H21120.0
C12—N5—C14102.8 (2)C22—C21—H21120.0
C15—N6—C16117.2 (2)C17—C22—C21121.2 (3)
C15—N6—Ti1112.47 (17)C17—C22—H22119.4
C16—N6—Ti1129.59 (16)C21—C22—H22119.4
C23—N7—C25113.6 (2)N7—C23—C24115.6 (3)
C23—N7—Ti1126.96 (17)N7—C23—H23A108.4
C25—N7—Ti1118.60 (17)C24—C23—H23A108.4
C27—N8—C29113.4 (2)N7—C23—H23B108.4
C27—N8—Ti1125.74 (16)C24—C23—H23B108.4
C29—N8—Ti1119.51 (17)H23A—C23—H23B107.4
N2—C1—N1114.7 (2)C23—C24—H24A109.5
N2—C1—C4127.1 (2)C23—C24—H24B109.5
N1—C1—C4118.2 (2)H24A—C24—H24B109.5
N1—C2—C3108.3 (2)C23—C24—H24C109.5
N1—C2—H2125.9H24A—C24—H24C109.5
C3—C2—H2125.9H24B—C24—H24C109.5
N2—C3—C2110.8 (2)N7—C25—C26114.5 (2)
N2—C3—H3124.6N7—C25—H25A108.6
C2—C3—H3124.6C26—C25—H25A108.6
N3—C4—C1118.5 (2)N7—C25—H25B108.6
N3—C4—H4120.8C26—C25—H25B108.6
C1—C4—H4120.8H25A—C25—H25B107.6
N3—C5—C6116.3 (2)C25—C26—H26A109.5
N3—C5—H5A108.2C25—C26—H26B109.5
C6—C5—H5A108.2H26A—C26—H26B109.5
N3—C5—H5B108.2C25—C26—H26C109.5
C6—C5—H5B108.2H26A—C26—H26C109.5
H5A—C5—H5B107.4H26B—C26—H26C109.5
C7—C6—C11117.8 (2)N8—C27—C28115.8 (2)
C7—C6—C5120.8 (2)N8—C27—H27A108.3
C11—C6—C5121.4 (3)C28—C27—H27A108.3
C8—C7—C6121.7 (3)N8—C27—H27B108.3
C8—C7—H7119.1C28—C27—H27B108.3
C6—C7—H7119.1H27A—C27—H27B107.4
C9—C8—C7120.2 (3)C27—C28—H28A109.5
C9—C8—H8119.9C27—C28—H28B109.5
C7—C8—H8119.9H28A—C28—H28B109.5
C8—C9—C10120.8 (3)C27—C28—H28C109.5
C8—C9—H9119.6H28A—C28—H28C109.5
C10—C9—H9119.6H28B—C28—H28C109.5
C9—C10—C11119.3 (3)N8—C29—C30114.2 (2)
C9—C10—H10120.4N8—C29—H29A108.7
C11—C10—H10120.4C30—C29—H29A108.7
C6—C11—C10120.2 (3)N8—C29—H29B108.7
C6—C11—H11119.9C30—C29—H29B108.7
C10—C11—H11119.9H29A—C29—H29B107.6
N5—C12—N4114.9 (2)C29—C30—H30A109.5
N5—C12—C15127.7 (3)C29—C30—H30B109.5
N4—C12—C15117.5 (2)H30A—C30—H30B109.5
N4—C13—C14107.7 (2)C29—C30—H30C109.5
N4—C13—H13126.2H30A—C30—H30C109.5
C14—C13—H13126.2H30B—C30—H30C109.5
N5—C14—C13111.1 (2)
N7—Ti1—N1—C284.9 (3)C3—N2—C1—N10.1 (3)
N8—Ti1—N1—C218.2 (3)C3—N2—C1—C4179.8 (3)
N4—Ti1—N1—C2146.2 (3)C2—N1—C1—N20.1 (3)
N3—Ti1—N1—C2173.7 (3)Ti1—N1—C1—N2171.77 (16)
N6—Ti1—N1—C2113.5 (3)C2—N1—C1—C4179.8 (2)
N7—Ti1—N1—C182.46 (18)Ti1—N1—C1—C48.1 (3)
N8—Ti1—N1—C1174.42 (17)C1—N1—C2—C30.1 (3)
N4—Ti1—N1—C146.4 (3)Ti1—N1—C2—C3168.4 (2)
N3—Ti1—N1—C16.32 (16)C1—N2—C3—C20.0 (3)
N6—Ti1—N1—C179.08 (17)N1—C2—C3—N20.0 (3)
N7—Ti1—N3—C493.32 (18)C5—N3—C4—C1174.6 (2)
N8—Ti1—N3—C454.8 (4)Ti1—N3—C4—C11.4 (3)
N1—Ti1—N3—C44.14 (17)N2—C1—C4—N3175.6 (2)
N4—Ti1—N3—C4171.75 (18)N1—C1—C4—N34.3 (4)
N6—Ti1—N3—C498.12 (18)C4—N3—C5—C66.5 (4)
N7—Ti1—N3—C591.0 (2)Ti1—N3—C5—C6178.21 (17)
N8—Ti1—N3—C5120.8 (3)N3—C5—C6—C787.1 (3)
N1—Ti1—N3—C5171.5 (2)N3—C5—C6—C1192.4 (3)
N4—Ti1—N3—C53.9 (2)C11—C6—C7—C80.4 (4)
N6—Ti1—N3—C577.5 (2)C5—C6—C7—C8179.0 (3)
N7—Ti1—N4—C12166.58 (17)C6—C7—C8—C90.3 (5)
N8—Ti1—N4—C1290.43 (18)C7—C8—C9—C100.1 (6)
N1—Ti1—N4—C1237.4 (3)C8—C9—C10—C110.1 (6)
N3—Ti1—N4—C1275.79 (17)C7—C6—C11—C100.3 (4)
N6—Ti1—N4—C123.30 (16)C5—C6—C11—C10179.2 (3)
N7—Ti1—N4—C1323.5 (3)C9—C10—C11—C60.0 (5)
N8—Ti1—N4—C1379.5 (3)C14—N5—C12—N40.7 (3)
N1—Ti1—N4—C13152.7 (3)C14—N5—C12—C15179.1 (3)
N3—Ti1—N4—C13114.3 (3)C13—N4—C12—N50.8 (3)
N6—Ti1—N4—C13173.2 (3)Ti1—N4—C12—N5174.10 (17)
N7—Ti1—N6—C1559.2 (3)C13—N4—C12—C15179.0 (2)
N8—Ti1—N6—C1595.02 (18)Ti1—N4—C12—C155.7 (3)
N1—Ti1—N6—C15169.74 (18)C12—N4—C13—C140.5 (3)
N4—Ti1—N6—C150.48 (17)Ti1—N4—C13—C14171.3 (2)
N3—Ti1—N6—C1595.51 (18)C12—N5—C14—C130.4 (3)
N7—Ti1—N6—C16110.1 (3)N4—C13—C14—N50.1 (3)
N8—Ti1—N6—C1695.6 (2)C16—N6—C15—C12173.1 (2)
N1—Ti1—N6—C160.4 (2)Ti1—N6—C15—C122.3 (3)
N4—Ti1—N6—C16168.9 (2)N5—C12—C15—N6174.4 (3)
N3—Ti1—N6—C1673.9 (2)N4—C12—C15—N65.4 (4)
N8—Ti1—N7—C23146.5 (2)C15—N6—C16—C17104.0 (3)
N1—Ti1—N7—C23116.4 (2)Ti1—N6—C16—C1787.1 (3)
N4—Ti1—N7—C2348.5 (2)N6—C16—C17—C22119.2 (3)
N3—Ti1—N7—C2341.8 (2)N6—C16—C17—C1860.9 (3)
N6—Ti1—N7—C237.2 (4)C22—C17—C18—C190.5 (4)
N8—Ti1—N7—C2545.04 (19)C16—C17—C18—C19179.5 (3)
N1—Ti1—N7—C2552.04 (19)C17—C18—C19—C200.3 (5)
N4—Ti1—N7—C25143.04 (18)C18—C19—C20—C210.5 (5)
N3—Ti1—N7—C25126.72 (18)C19—C20—C21—C221.0 (5)
N6—Ti1—N7—C25161.2 (2)C18—C17—C22—C210.1 (4)
N7—Ti1—N8—C27151.9 (2)C16—C17—C22—C21180.0 (3)
N1—Ti1—N8—C2753.1 (2)C20—C21—C22—C170.9 (5)
N4—Ti1—N8—C27111.6 (2)C25—N7—C23—C2452.2 (3)
N3—Ti1—N8—C274.6 (4)Ti1—N7—C23—C24138.8 (2)
N6—Ti1—N8—C2736.7 (2)C23—N7—C25—C2661.8 (3)
N7—Ti1—N8—C2942.4 (2)Ti1—N7—C25—C26108.1 (2)
N1—Ti1—N8—C29141.14 (18)C29—N8—C27—C2854.1 (3)
N4—Ti1—N8—C2954.19 (19)Ti1—N8—C27—C28139.3 (2)
N3—Ti1—N8—C29170.3 (3)C27—N8—C29—C3060.6 (3)
N6—Ti1—N8—C29129.06 (18)Ti1—N8—C29—C30106.9 (3)

Experimental details

Crystal data
Chemical formula[Ti(C4H10N)2(C11H10N3)2]
Mr560.60
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.6465 (9), 10.3796 (10), 16.3341 (16)
α, β, γ (°)102.931 (2), 102.082 (2), 93.184 (2)
V3)1549.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.35 × 0.24 × 0.14
Data collection
DiffractometerBRUKER SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.900, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
7867, 5478, 3387
Rint0.029
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.100, 0.94
No. of reflections5478
No. of parameters356
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

 

Footnotes

Part of the masters degree thesis, the North-West University, Xi'an, 2011.

Acknowledgements

Financial support from the National Natural Science Foundation of China (project Nos. 20702041 and 21072157) and the Shaanxi Province Administration of Foreign Experts Bureau Foundation (grant No. 20106100079) is gratefully acknowledged. The authors are thankful to Mr Wang Minchang and Mr Su Pengfei (Xi'an Modern Chemistry Research Institute) for their help in carrying out the NMR spectroscopic and X-ray diffraction experiments.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArmarego, W. L. F. & Perrin, D. D. (1997). Purification of Laboratory Chemicals, Fourth Edition. Oxford: Pergamon.  Google Scholar
First citationBradley, D. C. & Thomas, I. M. (1960). J. Chem. Soc. pp. 3857–3861.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBürger, H. & Dämmen, U. (1974). Z. Anorg. Allg. Chem. 407, 201–210.  Google Scholar
First citationConnely, N. G., Hartsborn, R. M., Damhus, T. & Hutton, A. T. (2005). Editor. Nomenclature of Inorganic Chemistry - IUPAC Recommendations, Cambridge, UK: Royal Society of Chemistry.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFandos, R., Hernandez, C., Otero, A., Rodriguez, A. & Ruiz, M. J. (2005). J. Organomet. Chem. 690, 4828–4834.  CrossRef CAS Google Scholar
First citationFix, R. M., Gordon, R. G. & Hoffman, D. M. (1990). Chem. Mater. 2, 235–241.  CrossRef CAS Google Scholar
First citationKempe, R. (1997). Z. Kristallogr. 212, 477–478.  CAS Google Scholar
First citationMarsh, R. E. (2004). Acta Cryst. B60, 252–253.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKnight, A. L. & Waymouth, R. M. (1998). Chem. Rev. 98, 2587–2598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOberthur, M., Hillebrand, G., Arndt, P. & Kempe, R. (1997). Chem. Ber. 130, 789–794.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmolensky, E., Kapon, M., Woollins, J. D. & Eisen, M. S. (2005). Organometallics, 24, 3255–3265.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiang, L., Song, H. & Zi, G. (2008). Eur. J. Inorg. Chem. pp. 1135–1140.  CrossRef Google Scholar
First citationZaher, D., Tomov, A. K., Gibson, V. C. & White, A. J. P. (2008). J. Organomet. Chem. 693, 3889–3896.  CrossRef CAS Google Scholar
First citationZi, G., Wang, Q., Xiang, L. & Song, H. (2008). Dalton Trans. pp. 5930–5944.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m590-m591
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds