metal-organic compounds
rac-(OC-6-33)-bis[2-(N-Benzylmethyliminomethyl-κN)-1H-imidazol-1-ido-κN1]bis(ethylamido)titanium(IV)
aKey Laboratory of Synthetic and Natural Chemistry of the Ministry of Education, College of Chemistry and Material Science, the North-West University of Xi'an, Taibai Bei Avenue 229, Xi'an 710069, Shaanxi Province, People's Republic of China
*Correspondence e-mail: maxborzov@mail.ru
The title compound, [[Ti(C2H10N)2(C11H10N3)2] or Ti(C11H10N3)2(NEt2)2], was prepared by direct reaction of 2-(N-phenylmethyliminomethyl)-1H-imidazole and [Ti(NEt2)4]. The TiIV atom is in a pseudo-octahedral coordination environment with the imidazolido-group N-atoms occupying apical positions and amido- and imino-N-atoms cis-located in the equatorial plane. The presence of two bidentate chelating ligands determines the of the TiIV atom. The crystallographically independent unit, except for its phenyl rings, adopts nearly pseudo-C2 symmetry (rotation around a twofold axis passing through the Ti atom and the centre of the imino-N⋯imino-N segment). The Ti—Namido, Ti—Nimidazolido, and Ti—Nimino bond lengths essentially differ, increasing by approximately 0.2 Å in the series. All ligating N atoms are in a nearly planar environment, which is indicative of additional pπ–dπ donations towards the metal atom. The two diazametallacyclic units are planar within 0.03 and 0.05 Å.
Related literature
For mononuclear neutral TiIV complexes bearing two chelating amido-imino and two amido ligands see: Xiang et al. (2008); Zi et al. (2008). For closely related mononuclear neutral TiIV complexes bearing two chelating amido-amino and two amido ligands see: Fandos et al. (2005); Kempe (1997); Marsh (2004); Oberthur et al. (1997); Smolensky et al. (2005); Xiang et al. (2008); Zaher et al. (2008). For the practical applications of the complexes of the type, see: McKnight & Waymouth (1998); Fix et al. (1990). For procedures used in the complex preparation, see: Bürger & Dämmen (1974); Bradley & Thomas (1960); Armarego & Perrin (1997). For a description of the configuration of the coordination entities, see: Connely et al. (2005). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL and OLEX2.
Supporting information
10.1107/S1600536811013183/dn2674sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811013183/dn2674Isup2.hkl
All operations were performed under argon atmosphere in conventional glassware or in all-sealed evacuated glass vessels with application of the high-vacuum line (the residual pressure of non-condensable gases within 1.5–1.0×10 -3 Torr; 1 Torr = 133 Pa). Ti(NEt2)4 was prepared as described earlier (Bürger & Dämmen, 1974; Bradley & Thomas, 1960). All other chemicals were commercially available and purified by conventional methods (Armarego & Perrin, 1997). Solvents were purified by distillation over sodium benzophenoneketyl (diethyl ether, THF), Na—K alloy (toluene, benzene), and CaH2 (chloroform). Deuterated solvents were dried similarly. — NMR spectra were recorded on a Varian INOVA-400 instrument. For 1H and 13C spectra, the solvent [δH = 7.16 and δC = 128.00 (C6D6)] or TMS (δH = 0.00 and δC = 0.0) (CDCl3) resonances were used as internal reference standards. — Chromato-mass spectra were measured on Agilent 6890 Series GC system equipped with HP 5973 mass-selective detector.
2-(N-Phenylmethyliminomethyl)-1H-imidazole, II: To a solution of 1H-imidazole-2-carbaldehyde (1.92 g, 20.0 mmol) in methanol (20 ml), a solution of benzylamine (2.14 g, 20 mmol) in methanol (10 ml) was added dropwise under reflux and stirring during 30 min. The reaction mixture was refluxed for additional 6 h, cooled dow to ambient temperature and concentrated under reduced pressure. The formed crystalline material was collected by filtration and re-crystallized from the minimal amount of refluxing methanol what gave 3.33 g of II (90%). — 1H NMR (298 K, CDCl3): δ = 4.72 (s, 2 H, CH2), 7.08 (broad s, 2 H, CH in imidazole), 7.24–7.39 (m, 5 H, CH in Ph), 8.34 (s, 1 H, N═CH). — 13C{1H} NMR (298 K, CDCl3): δ = 64.11 (CH2Ph), 127.79 (p-CH in Ph), 127.79, 128.35 (o-, m-CH in Ph), 137.74 (C in Ph), 144.33 (CH═N), 152.79 (C in imidazole). Imidazole ring CH-carbon signals are not observed (too broad due to exchange). EI MS (70 eV) m/z (%): 185 (31) [M]+., 184 (20) [M – H.]+, 169 (87) [M – H. – NH.].+, 157 (16) [M – HCN].+, 117 (55) [[M – C3H4N2].+, 91 (100) [C7H7]+, 81 (16) C4H5N2]+, 69 (42) [C3H5N2]+, 65 (29) [C3H2N2]+.
Complex I: To a solution of II (0.74 g, 2 mmol) in toluene (10 ml), a solution of Ti(NEt2)4 (0.67 g, 2 mmol) in toluene (10 ml) was added under stirring and cooling. The reaction mixture was heated at 353 K for 8 h. The resultant mixture was cooled down to room temperature and then left to stay at 255 K for several days. The mother liquor was decanted from the orange crystals, the crystals were washed with minimal amount of cold toluene and dried on the high-vacuum line what gave 0.73 g of I (65%). — 1H NMR (298 K, C6D6): δ = 0.56 (virt. t, an X-part of an ABX3 spin system, 12 H, 3JAX = 3JBX = 7.0 Hz, NCH2CH3), 3.60, 3.96 (both virt.dq, an AB-part of an ABX3 spin system, 4 H + 4H, 3JAX = 3JBX = 7.0 Hz, 2JAB = 14.1 Hz, NCH2CH3), 3.86, 4.01 (AB spin system, 2 H + 2 H, 14.6 Hz, NCH2), 6.56, 6.99 (both m, 4 H + 6 H, CH in Ph), 7.56 (broadened s, 2 H, N═CH), 7.75, 7.81 (both broadened s, 2 H + 2 H, CH in imidazole). — 13C{1H} NMR (298 K, C6D6): δ =12.39 (CH3), 45.57 (CH2 in Et), 59.88 (CH2Ph), 128.79, 128.69 (o-, m-CH in Ph), 130.21 (p-CH in Ph), 134.06 (CH in imidazole), 142.34 (C in Ph), 152.37, 159.44 (CH═N and C in imidazole).
A crystal of (I) suitable for X-ray
was picked up from the isolated material and mounted inside a Lindemann glass capillary (diameter 0.5 mm; N2-filled glove-box).H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), 0.97 (CH2), 0.93 Å (CArH), and Uiso(H) = 1.5 Ueq(C), 1.2 Ueq(C), and 1.2 Ueq(C), respectively.
Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).[Ti(C4H10N)2(C11H10N3)2] | Z = 2 |
Mr = 560.60 | F(000) = 596 |
Triclinic, P1 | Dx = 1.201 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6465 (9) Å | Cell parameters from 4167 reflections |
b = 10.3796 (10) Å | θ = 2.3–27.8° |
c = 16.3341 (16) Å | µ = 0.31 mm−1 |
α = 102.931 (2)° | T = 296 K |
β = 102.082 (2)° | Block, orange |
γ = 93.184 (2)° | 0.35 × 0.24 × 0.14 mm |
V = 1549.7 (3) Å3 |
BRUKER SMART APEXII diffractometer | 5478 independent reflections |
Radiation source: fine-focus sealed tube | 3387 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 8.333 pixels mm-1 | θmax = 25.1°, θmin = 2.0° |
phi and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −8→12 |
Tmin = 0.900, Tmax = 0.958 | l = −19→19 |
7867 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0394P)2] where P = (Fo2 + 2Fc2)/3 |
5478 reflections | (Δ/σ)max = 0.001 |
356 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
[Ti(C4H10N)2(C11H10N3)2] | γ = 93.184 (2)° |
Mr = 560.60 | V = 1549.7 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.6465 (9) Å | Mo Kα radiation |
b = 10.3796 (10) Å | µ = 0.31 mm−1 |
c = 16.3341 (16) Å | T = 296 K |
α = 102.931 (2)° | 0.35 × 0.24 × 0.14 mm |
β = 102.082 (2)° |
BRUKER SMART APEXII diffractometer | 5478 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3387 reflections with I > 2σ(I) |
Tmin = 0.900, Tmax = 0.958 | Rint = 0.029 |
7867 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.27 e Å−3 |
5478 reflections | Δρmin = −0.25 e Å−3 |
356 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.67106 (5) | 0.95033 (5) | 0.77116 (3) | 0.03941 (15) | |
N1 | 0.8932 (2) | 0.9452 (2) | 0.81198 (12) | 0.0408 (5) | |
N2 | 1.0873 (2) | 0.8371 (2) | 0.79390 (15) | 0.0529 (6) | |
N3 | 0.7318 (2) | 0.79631 (19) | 0.66290 (12) | 0.0416 (5) | |
N4 | 0.4688 (2) | 0.9508 (2) | 0.69011 (12) | 0.0413 (5) | |
N5 | 0.3353 (3) | 1.0264 (2) | 0.58256 (15) | 0.0617 (7) | |
N6 | 0.7129 (2) | 1.0613 (2) | 0.67001 (13) | 0.0425 (5) | |
N7 | 0.6114 (2) | 0.8134 (2) | 0.81961 (13) | 0.0439 (5) | |
N8 | 0.6623 (2) | 1.1057 (2) | 0.85617 (12) | 0.0439 (5) | |
C1 | 0.9513 (3) | 0.8501 (2) | 0.76137 (16) | 0.0409 (6) | |
C2 | 1.0016 (3) | 0.9955 (3) | 0.88178 (16) | 0.0492 (7) | |
H2 | 0.9975 | 1.0629 | 0.9292 | 0.059* | |
C3 | 1.1177 (3) | 0.9302 (3) | 0.87046 (19) | 0.0576 (8) | |
H3 | 1.2055 | 0.9469 | 0.9097 | 0.069* | |
C4 | 0.8635 (3) | 0.7761 (2) | 0.68127 (16) | 0.0457 (7) | |
H4 | 0.9008 | 0.7145 | 0.6432 | 0.055* | |
C5 | 0.6388 (3) | 0.7312 (3) | 0.57744 (17) | 0.0595 (8) | |
H5A | 0.6090 | 0.7998 | 0.5479 | 0.071* | |
H5B | 0.5537 | 0.6876 | 0.5866 | 0.071* | |
C6 | 0.7024 (3) | 0.6313 (3) | 0.51933 (15) | 0.0424 (6) | |
C7 | 0.6961 (3) | 0.5009 (3) | 0.52388 (18) | 0.0561 (7) | |
H7 | 0.6502 | 0.4748 | 0.5632 | 0.067* | |
C8 | 0.7553 (4) | 0.4085 (3) | 0.4723 (2) | 0.0782 (10) | |
H8 | 0.7499 | 0.3207 | 0.4770 | 0.094* | |
C9 | 0.8212 (4) | 0.4434 (5) | 0.4150 (2) | 0.0871 (12) | |
H9 | 0.8612 | 0.3796 | 0.3800 | 0.105* | |
C10 | 0.8305 (4) | 0.5713 (5) | 0.4071 (2) | 0.0901 (12) | |
H10 | 0.8763 | 0.5949 | 0.3671 | 0.108* | |
C11 | 0.7702 (4) | 0.6667 (3) | 0.4600 (2) | 0.0723 (9) | |
H11 | 0.7759 | 0.7543 | 0.4551 | 0.087* | |
C12 | 0.4652 (3) | 1.0178 (3) | 0.62701 (16) | 0.0447 (6) | |
C13 | 0.3286 (3) | 0.9160 (3) | 0.68532 (17) | 0.0506 (7) | |
H13 | 0.2928 | 0.8692 | 0.7201 | 0.061* | |
C14 | 0.2500 (3) | 0.9621 (3) | 0.6202 (2) | 0.0618 (8) | |
H14 | 0.1509 | 0.9509 | 0.6039 | 0.074* | |
C15 | 0.5979 (3) | 1.0702 (3) | 0.61621 (16) | 0.0482 (7) | |
H15 | 0.6013 | 1.1101 | 0.5710 | 0.058* | |
C16 | 0.8495 (3) | 1.1028 (3) | 0.65087 (17) | 0.0505 (7) | |
H16A | 0.8329 | 1.1056 | 0.5907 | 0.061* | |
H16B | 0.9150 | 1.0369 | 0.6597 | 0.061* | |
C17 | 0.9174 (3) | 1.2367 (3) | 0.70619 (16) | 0.0420 (6) | |
C18 | 0.8462 (3) | 1.3481 (3) | 0.70256 (18) | 0.0562 (7) | |
H18 | 0.7563 | 1.3397 | 0.6663 | 0.067* | |
C19 | 0.9076 (4) | 1.4714 (3) | 0.7523 (2) | 0.0653 (8) | |
H19 | 0.8589 | 1.5456 | 0.7491 | 0.078* | |
C20 | 1.0391 (4) | 1.4856 (3) | 0.8062 (2) | 0.0716 (9) | |
H20 | 1.0803 | 1.5691 | 0.8393 | 0.086* | |
C21 | 1.1098 (3) | 1.3760 (3) | 0.8111 (2) | 0.0703 (9) | |
H21 | 1.1988 | 1.3847 | 0.8484 | 0.084* | |
C22 | 1.0488 (3) | 1.2524 (3) | 0.76066 (19) | 0.0565 (8) | |
H22 | 1.0983 | 1.1786 | 0.7639 | 0.068* | |
C23 | 0.5296 (3) | 0.6855 (3) | 0.77301 (19) | 0.0622 (8) | |
H23A | 0.5953 | 0.6182 | 0.7681 | 0.075* | |
H23B | 0.4858 | 0.6915 | 0.7150 | 0.075* | |
C24 | 0.4141 (3) | 0.6393 (4) | 0.8133 (2) | 0.0974 (13) | |
H24A | 0.3581 | 0.5617 | 0.7745 | 0.146* | |
H24B | 0.3538 | 0.7087 | 0.8243 | 0.146* | |
H24C | 0.4570 | 0.6182 | 0.8666 | 0.146* | |
C25 | 0.6712 (3) | 0.8214 (3) | 0.91142 (17) | 0.0575 (8) | |
H25A | 0.5934 | 0.8079 | 0.9389 | 0.069* | |
H25B | 0.7185 | 0.9103 | 0.9385 | 0.069* | |
C26 | 0.7767 (3) | 0.7214 (3) | 0.9281 (2) | 0.0741 (9) | |
H26A | 0.7304 | 0.6328 | 0.9029 | 0.111* | |
H26B | 0.8106 | 0.7327 | 0.9892 | 0.111* | |
H26C | 0.8558 | 0.7355 | 0.9027 | 0.111* | |
C27 | 0.7500 (3) | 1.2329 (3) | 0.87333 (17) | 0.0583 (8) | |
H27A | 0.6945 | 1.2917 | 0.8445 | 0.070* | |
H27B | 0.8314 | 1.2174 | 0.8476 | 0.070* | |
C28 | 0.8044 (3) | 1.3036 (3) | 0.96745 (19) | 0.0813 (10) | |
H28A | 0.8729 | 1.3772 | 0.9724 | 0.122* | |
H28B | 0.8485 | 1.2428 | 0.9986 | 0.122* | |
H28C | 0.7261 | 1.3356 | 0.9910 | 0.122* | |
C29 | 0.5402 (3) | 1.1148 (3) | 0.89731 (18) | 0.0582 (8) | |
H29A | 0.5757 | 1.1442 | 0.9593 | 0.070* | |
H29B | 0.4895 | 1.0268 | 0.8850 | 0.070* | |
C30 | 0.4360 (3) | 1.2086 (3) | 0.8683 (2) | 0.0849 (11) | |
H30A | 0.4079 | 1.1864 | 0.8064 | 0.127* | |
H30B | 0.4807 | 1.2984 | 0.8884 | 0.127* | |
H30C | 0.3533 | 1.2005 | 0.8916 | 0.127* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0373 (3) | 0.0441 (3) | 0.0362 (3) | 0.0076 (2) | 0.0114 (2) | 0.0048 (2) |
N1 | 0.0366 (11) | 0.0433 (13) | 0.0401 (12) | 0.0043 (10) | 0.0085 (10) | 0.0058 (10) |
N2 | 0.0379 (13) | 0.0595 (16) | 0.0599 (15) | 0.0086 (11) | 0.0096 (11) | 0.0125 (12) |
N3 | 0.0420 (13) | 0.0385 (13) | 0.0404 (12) | 0.0061 (10) | 0.0092 (10) | 0.0012 (9) |
N4 | 0.0366 (12) | 0.0443 (13) | 0.0416 (12) | 0.0087 (10) | 0.0103 (10) | 0.0051 (10) |
N5 | 0.0516 (15) | 0.0729 (18) | 0.0581 (16) | 0.0194 (13) | 0.0036 (13) | 0.0159 (13) |
N6 | 0.0431 (13) | 0.0416 (13) | 0.0435 (13) | 0.0068 (10) | 0.0166 (11) | 0.0049 (10) |
N7 | 0.0416 (12) | 0.0482 (14) | 0.0434 (13) | 0.0079 (10) | 0.0128 (10) | 0.0102 (10) |
N8 | 0.0448 (13) | 0.0472 (14) | 0.0386 (12) | 0.0076 (11) | 0.0141 (10) | 0.0032 (10) |
C1 | 0.0391 (15) | 0.0396 (16) | 0.0455 (15) | 0.0054 (12) | 0.0145 (12) | 0.0086 (12) |
C2 | 0.0430 (16) | 0.0553 (18) | 0.0435 (15) | 0.0028 (14) | 0.0054 (13) | 0.0047 (13) |
C3 | 0.0396 (16) | 0.067 (2) | 0.0599 (19) | 0.0002 (15) | −0.0002 (14) | 0.0154 (16) |
C4 | 0.0463 (16) | 0.0411 (16) | 0.0513 (16) | 0.0121 (13) | 0.0190 (13) | 0.0052 (13) |
C5 | 0.0564 (18) | 0.059 (2) | 0.0504 (17) | 0.0120 (15) | 0.0041 (14) | −0.0076 (14) |
C6 | 0.0495 (16) | 0.0390 (17) | 0.0353 (14) | 0.0104 (13) | 0.0079 (12) | 0.0022 (12) |
C7 | 0.068 (2) | 0.0449 (19) | 0.0528 (17) | 0.0056 (15) | 0.0137 (15) | 0.0063 (14) |
C8 | 0.085 (3) | 0.053 (2) | 0.083 (3) | 0.0220 (19) | 0.003 (2) | −0.0005 (19) |
C9 | 0.072 (2) | 0.100 (3) | 0.073 (3) | 0.029 (2) | 0.019 (2) | −0.018 (2) |
C10 | 0.093 (3) | 0.118 (4) | 0.064 (2) | 0.001 (3) | 0.042 (2) | 0.009 (2) |
C11 | 0.098 (3) | 0.061 (2) | 0.062 (2) | 0.0069 (19) | 0.0242 (19) | 0.0191 (17) |
C12 | 0.0457 (16) | 0.0457 (17) | 0.0404 (15) | 0.0101 (13) | 0.0075 (13) | 0.0063 (13) |
C13 | 0.0393 (16) | 0.0533 (18) | 0.0575 (18) | 0.0065 (14) | 0.0144 (14) | 0.0063 (14) |
C14 | 0.0370 (16) | 0.070 (2) | 0.071 (2) | 0.0150 (15) | 0.0053 (15) | 0.0059 (17) |
C15 | 0.0602 (18) | 0.0472 (17) | 0.0401 (15) | 0.0106 (14) | 0.0136 (14) | 0.0133 (13) |
C16 | 0.0518 (17) | 0.0512 (18) | 0.0540 (17) | 0.0053 (14) | 0.0225 (14) | 0.0140 (14) |
C17 | 0.0475 (16) | 0.0415 (17) | 0.0442 (15) | 0.0051 (13) | 0.0197 (13) | 0.0167 (12) |
C18 | 0.0552 (18) | 0.054 (2) | 0.0625 (19) | 0.0080 (15) | 0.0092 (15) | 0.0237 (15) |
C19 | 0.076 (2) | 0.047 (2) | 0.081 (2) | 0.0136 (17) | 0.0242 (19) | 0.0242 (17) |
C20 | 0.083 (2) | 0.051 (2) | 0.077 (2) | −0.0070 (19) | 0.027 (2) | 0.0038 (17) |
C21 | 0.057 (2) | 0.067 (2) | 0.076 (2) | −0.0044 (17) | −0.0002 (16) | 0.0124 (18) |
C22 | 0.0504 (17) | 0.0522 (19) | 0.072 (2) | 0.0127 (15) | 0.0154 (15) | 0.0210 (16) |
C23 | 0.0602 (19) | 0.059 (2) | 0.066 (2) | −0.0031 (16) | 0.0068 (16) | 0.0202 (16) |
C24 | 0.071 (2) | 0.107 (3) | 0.117 (3) | −0.022 (2) | 0.011 (2) | 0.052 (3) |
C25 | 0.0617 (19) | 0.063 (2) | 0.0530 (18) | 0.0099 (15) | 0.0175 (15) | 0.0194 (15) |
C26 | 0.071 (2) | 0.082 (2) | 0.071 (2) | 0.0200 (19) | 0.0022 (17) | 0.0321 (18) |
C27 | 0.069 (2) | 0.0525 (19) | 0.0522 (17) | 0.0082 (16) | 0.0216 (15) | 0.0034 (14) |
C28 | 0.086 (2) | 0.076 (2) | 0.067 (2) | −0.0043 (19) | 0.0150 (18) | −0.0107 (17) |
C29 | 0.0580 (18) | 0.060 (2) | 0.0598 (18) | 0.0188 (15) | 0.0255 (15) | 0.0065 (15) |
C30 | 0.068 (2) | 0.092 (3) | 0.096 (3) | 0.039 (2) | 0.0227 (19) | 0.012 (2) |
Ti1—N7 | 1.892 (2) | C13—C14 | 1.366 (4) |
Ti1—N8 | 1.897 (2) | C13—H13 | 0.9300 |
Ti1—N1 | 2.115 (2) | C14—H14 | 0.9300 |
Ti1—N4 | 2.117 (2) | C15—H15 | 0.9300 |
Ti1—N3 | 2.302 (2) | C16—C17 | 1.505 (3) |
Ti1—N6 | 2.302 (2) | C16—H16A | 0.9700 |
N1—C2 | 1.356 (3) | C16—H16B | 0.9700 |
N1—C1 | 1.365 (3) | C17—C22 | 1.366 (3) |
N2—C1 | 1.335 (3) | C17—C18 | 1.384 (3) |
N2—C3 | 1.363 (3) | C18—C19 | 1.377 (4) |
N3—C4 | 1.283 (3) | C18—H18 | 0.9300 |
N3—C5 | 1.482 (3) | C19—C20 | 1.363 (4) |
N4—C12 | 1.362 (3) | C19—H19 | 0.9300 |
N4—C13 | 1.362 (3) | C20—C21 | 1.367 (4) |
N5—C12 | 1.329 (3) | C20—H20 | 0.9300 |
N5—C14 | 1.354 (3) | C21—C22 | 1.382 (4) |
N6—C15 | 1.284 (3) | C21—H21 | 0.9300 |
N6—C16 | 1.480 (3) | C22—H22 | 0.9300 |
N7—C23 | 1.465 (3) | C23—C24 | 1.514 (4) |
N7—C25 | 1.471 (3) | C23—H23A | 0.9700 |
N8—C27 | 1.466 (3) | C23—H23B | 0.9700 |
N8—C29 | 1.471 (3) | C24—H24A | 0.9600 |
C1—C4 | 1.426 (3) | C24—H24B | 0.9600 |
C2—C3 | 1.365 (4) | C24—H24C | 0.9600 |
C2—H2 | 0.9300 | C25—C26 | 1.523 (4) |
C3—H3 | 0.9300 | C25—H25A | 0.9700 |
C4—H4 | 0.9300 | C25—H25B | 0.9700 |
C5—C6 | 1.492 (3) | C26—H26A | 0.9600 |
C5—H5A | 0.9700 | C26—H26B | 0.9600 |
C5—H5B | 0.9700 | C26—H26C | 0.9600 |
C6—C7 | 1.370 (3) | C27—C28 | 1.514 (4) |
C6—C11 | 1.379 (4) | C27—H27A | 0.9700 |
C7—C8 | 1.363 (4) | C27—H27B | 0.9700 |
C7—H7 | 0.9300 | C28—H28A | 0.9600 |
C8—C9 | 1.337 (5) | C28—H28B | 0.9600 |
C8—H8 | 0.9300 | C28—H28C | 0.9600 |
C9—C10 | 1.362 (5) | C29—C30 | 1.516 (4) |
C9—H9 | 0.9300 | C29—H29A | 0.9700 |
C10—C11 | 1.398 (5) | C29—H29B | 0.9700 |
C10—H10 | 0.9300 | C30—H30A | 0.9600 |
C11—H11 | 0.9300 | C30—H30B | 0.9600 |
C12—C15 | 1.423 (4) | C30—H30C | 0.9600 |
N7—Ti1—N8 | 102.26 (9) | N5—C14—H14 | 124.4 |
N7—Ti1—N1 | 97.40 (8) | C13—C14—H14 | 124.4 |
N8—Ti1—N1 | 95.28 (8) | N6—C15—C12 | 118.9 (2) |
N7—Ti1—N4 | 94.93 (8) | N6—C15—H15 | 120.6 |
N8—Ti1—N4 | 96.73 (8) | C12—C15—H15 | 120.6 |
N1—Ti1—N4 | 160.55 (8) | N6—C16—C17 | 112.8 (2) |
N7—Ti1—N3 | 90.78 (8) | N6—C16—H16A | 109.0 |
N8—Ti1—N3 | 164.61 (8) | C17—C16—H16A | 109.0 |
N1—Ti1—N3 | 74.71 (7) | N6—C16—H16B | 109.0 |
N4—Ti1—N3 | 90.18 (7) | C17—C16—H16B | 109.0 |
N7—Ti1—N6 | 160.41 (8) | H16A—C16—H16B | 107.8 |
N8—Ti1—N6 | 95.38 (8) | C22—C17—C18 | 118.2 (2) |
N1—Ti1—N6 | 89.31 (7) | C22—C17—C16 | 121.9 (2) |
N4—Ti1—N6 | 74.39 (7) | C18—C17—C16 | 119.9 (2) |
N3—Ti1—N6 | 73.21 (7) | C19—C18—C17 | 120.5 (3) |
C2—N1—C1 | 103.6 (2) | C19—C18—H18 | 119.8 |
C2—N1—Ti1 | 139.84 (18) | C17—C18—H18 | 119.8 |
C1—N1—Ti1 | 115.71 (15) | C20—C19—C18 | 120.6 (3) |
C1—N2—C3 | 102.6 (2) | C20—C19—H19 | 119.7 |
C4—N3—C5 | 120.8 (2) | C18—C19—H19 | 119.7 |
C4—N3—Ti1 | 112.44 (16) | C19—C20—C21 | 119.5 (3) |
C5—N3—Ti1 | 126.65 (16) | C19—C20—H20 | 120.3 |
C12—N4—C13 | 103.6 (2) | C21—C20—H20 | 120.3 |
C12—N4—Ti1 | 116.54 (16) | C20—C21—C22 | 120.0 (3) |
C13—N4—Ti1 | 139.36 (18) | C20—C21—H21 | 120.0 |
C12—N5—C14 | 102.8 (2) | C22—C21—H21 | 120.0 |
C15—N6—C16 | 117.2 (2) | C17—C22—C21 | 121.2 (3) |
C15—N6—Ti1 | 112.47 (17) | C17—C22—H22 | 119.4 |
C16—N6—Ti1 | 129.59 (16) | C21—C22—H22 | 119.4 |
C23—N7—C25 | 113.6 (2) | N7—C23—C24 | 115.6 (3) |
C23—N7—Ti1 | 126.96 (17) | N7—C23—H23A | 108.4 |
C25—N7—Ti1 | 118.60 (17) | C24—C23—H23A | 108.4 |
C27—N8—C29 | 113.4 (2) | N7—C23—H23B | 108.4 |
C27—N8—Ti1 | 125.74 (16) | C24—C23—H23B | 108.4 |
C29—N8—Ti1 | 119.51 (17) | H23A—C23—H23B | 107.4 |
N2—C1—N1 | 114.7 (2) | C23—C24—H24A | 109.5 |
N2—C1—C4 | 127.1 (2) | C23—C24—H24B | 109.5 |
N1—C1—C4 | 118.2 (2) | H24A—C24—H24B | 109.5 |
N1—C2—C3 | 108.3 (2) | C23—C24—H24C | 109.5 |
N1—C2—H2 | 125.9 | H24A—C24—H24C | 109.5 |
C3—C2—H2 | 125.9 | H24B—C24—H24C | 109.5 |
N2—C3—C2 | 110.8 (2) | N7—C25—C26 | 114.5 (2) |
N2—C3—H3 | 124.6 | N7—C25—H25A | 108.6 |
C2—C3—H3 | 124.6 | C26—C25—H25A | 108.6 |
N3—C4—C1 | 118.5 (2) | N7—C25—H25B | 108.6 |
N3—C4—H4 | 120.8 | C26—C25—H25B | 108.6 |
C1—C4—H4 | 120.8 | H25A—C25—H25B | 107.6 |
N3—C5—C6 | 116.3 (2) | C25—C26—H26A | 109.5 |
N3—C5—H5A | 108.2 | C25—C26—H26B | 109.5 |
C6—C5—H5A | 108.2 | H26A—C26—H26B | 109.5 |
N3—C5—H5B | 108.2 | C25—C26—H26C | 109.5 |
C6—C5—H5B | 108.2 | H26A—C26—H26C | 109.5 |
H5A—C5—H5B | 107.4 | H26B—C26—H26C | 109.5 |
C7—C6—C11 | 117.8 (2) | N8—C27—C28 | 115.8 (2) |
C7—C6—C5 | 120.8 (2) | N8—C27—H27A | 108.3 |
C11—C6—C5 | 121.4 (3) | C28—C27—H27A | 108.3 |
C8—C7—C6 | 121.7 (3) | N8—C27—H27B | 108.3 |
C8—C7—H7 | 119.1 | C28—C27—H27B | 108.3 |
C6—C7—H7 | 119.1 | H27A—C27—H27B | 107.4 |
C9—C8—C7 | 120.2 (3) | C27—C28—H28A | 109.5 |
C9—C8—H8 | 119.9 | C27—C28—H28B | 109.5 |
C7—C8—H8 | 119.9 | H28A—C28—H28B | 109.5 |
C8—C9—C10 | 120.8 (3) | C27—C28—H28C | 109.5 |
C8—C9—H9 | 119.6 | H28A—C28—H28C | 109.5 |
C10—C9—H9 | 119.6 | H28B—C28—H28C | 109.5 |
C9—C10—C11 | 119.3 (3) | N8—C29—C30 | 114.2 (2) |
C9—C10—H10 | 120.4 | N8—C29—H29A | 108.7 |
C11—C10—H10 | 120.4 | C30—C29—H29A | 108.7 |
C6—C11—C10 | 120.2 (3) | N8—C29—H29B | 108.7 |
C6—C11—H11 | 119.9 | C30—C29—H29B | 108.7 |
C10—C11—H11 | 119.9 | H29A—C29—H29B | 107.6 |
N5—C12—N4 | 114.9 (2) | C29—C30—H30A | 109.5 |
N5—C12—C15 | 127.7 (3) | C29—C30—H30B | 109.5 |
N4—C12—C15 | 117.5 (2) | H30A—C30—H30B | 109.5 |
N4—C13—C14 | 107.7 (2) | C29—C30—H30C | 109.5 |
N4—C13—H13 | 126.2 | H30A—C30—H30C | 109.5 |
C14—C13—H13 | 126.2 | H30B—C30—H30C | 109.5 |
N5—C14—C13 | 111.1 (2) | ||
N7—Ti1—N1—C2 | −84.9 (3) | C3—N2—C1—N1 | 0.1 (3) |
N8—Ti1—N1—C2 | 18.2 (3) | C3—N2—C1—C4 | −179.8 (3) |
N4—Ti1—N1—C2 | 146.2 (3) | C2—N1—C1—N2 | −0.1 (3) |
N3—Ti1—N1—C2 | −173.7 (3) | Ti1—N1—C1—N2 | −171.77 (16) |
N6—Ti1—N1—C2 | 113.5 (3) | C2—N1—C1—C4 | 179.8 (2) |
N7—Ti1—N1—C1 | 82.46 (18) | Ti1—N1—C1—C4 | 8.1 (3) |
N8—Ti1—N1—C1 | −174.42 (17) | C1—N1—C2—C3 | 0.1 (3) |
N4—Ti1—N1—C1 | −46.4 (3) | Ti1—N1—C2—C3 | 168.4 (2) |
N3—Ti1—N1—C1 | −6.32 (16) | C1—N2—C3—C2 | 0.0 (3) |
N6—Ti1—N1—C1 | −79.08 (17) | N1—C2—C3—N2 | 0.0 (3) |
N7—Ti1—N3—C4 | −93.32 (18) | C5—N3—C4—C1 | 174.6 (2) |
N8—Ti1—N3—C4 | 54.8 (4) | Ti1—N3—C4—C1 | −1.4 (3) |
N1—Ti1—N3—C4 | 4.14 (17) | N2—C1—C4—N3 | 175.6 (2) |
N4—Ti1—N3—C4 | 171.75 (18) | N1—C1—C4—N3 | −4.3 (4) |
N6—Ti1—N3—C4 | 98.12 (18) | C4—N3—C5—C6 | 6.5 (4) |
N7—Ti1—N3—C5 | 91.0 (2) | Ti1—N3—C5—C6 | −178.21 (17) |
N8—Ti1—N3—C5 | −120.8 (3) | N3—C5—C6—C7 | 87.1 (3) |
N1—Ti1—N3—C5 | −171.5 (2) | N3—C5—C6—C11 | −92.4 (3) |
N4—Ti1—N3—C5 | −3.9 (2) | C11—C6—C7—C8 | 0.4 (4) |
N6—Ti1—N3—C5 | −77.5 (2) | C5—C6—C7—C8 | −179.0 (3) |
N7—Ti1—N4—C12 | −166.58 (17) | C6—C7—C8—C9 | −0.3 (5) |
N8—Ti1—N4—C12 | 90.43 (18) | C7—C8—C9—C10 | 0.1 (6) |
N1—Ti1—N4—C12 | −37.4 (3) | C8—C9—C10—C11 | 0.1 (6) |
N3—Ti1—N4—C12 | −75.79 (17) | C7—C6—C11—C10 | −0.3 (4) |
N6—Ti1—N4—C12 | −3.30 (16) | C5—C6—C11—C10 | 179.2 (3) |
N7—Ti1—N4—C13 | 23.5 (3) | C9—C10—C11—C6 | 0.0 (5) |
N8—Ti1—N4—C13 | −79.5 (3) | C14—N5—C12—N4 | 0.7 (3) |
N1—Ti1—N4—C13 | 152.7 (3) | C14—N5—C12—C15 | −179.1 (3) |
N3—Ti1—N4—C13 | 114.3 (3) | C13—N4—C12—N5 | −0.8 (3) |
N6—Ti1—N4—C13 | −173.2 (3) | Ti1—N4—C12—N5 | −174.10 (17) |
N7—Ti1—N6—C15 | 59.2 (3) | C13—N4—C12—C15 | 179.0 (2) |
N8—Ti1—N6—C15 | −95.02 (18) | Ti1—N4—C12—C15 | 5.7 (3) |
N1—Ti1—N6—C15 | 169.74 (18) | C12—N4—C13—C14 | 0.5 (3) |
N4—Ti1—N6—C15 | 0.48 (17) | Ti1—N4—C13—C14 | 171.3 (2) |
N3—Ti1—N6—C15 | 95.51 (18) | C12—N5—C14—C13 | −0.4 (3) |
N7—Ti1—N6—C16 | −110.1 (3) | N4—C13—C14—N5 | −0.1 (3) |
N8—Ti1—N6—C16 | 95.6 (2) | C16—N6—C15—C12 | 173.1 (2) |
N1—Ti1—N6—C16 | 0.4 (2) | Ti1—N6—C15—C12 | 2.3 (3) |
N4—Ti1—N6—C16 | −168.9 (2) | N5—C12—C15—N6 | 174.4 (3) |
N3—Ti1—N6—C16 | −73.9 (2) | N4—C12—C15—N6 | −5.4 (4) |
N8—Ti1—N7—C23 | 146.5 (2) | C15—N6—C16—C17 | 104.0 (3) |
N1—Ti1—N7—C23 | −116.4 (2) | Ti1—N6—C16—C17 | −87.1 (3) |
N4—Ti1—N7—C23 | 48.5 (2) | N6—C16—C17—C22 | 119.2 (3) |
N3—Ti1—N7—C23 | −41.8 (2) | N6—C16—C17—C18 | −60.9 (3) |
N6—Ti1—N7—C23 | −7.2 (4) | C22—C17—C18—C19 | 0.5 (4) |
N8—Ti1—N7—C25 | −45.04 (19) | C16—C17—C18—C19 | −179.5 (3) |
N1—Ti1—N7—C25 | 52.04 (19) | C17—C18—C19—C20 | −0.3 (5) |
N4—Ti1—N7—C25 | −143.04 (18) | C18—C19—C20—C21 | −0.5 (5) |
N3—Ti1—N7—C25 | 126.72 (18) | C19—C20—C21—C22 | 1.0 (5) |
N6—Ti1—N7—C25 | 161.2 (2) | C18—C17—C22—C21 | 0.1 (4) |
N7—Ti1—N8—C27 | 151.9 (2) | C16—C17—C22—C21 | −180.0 (3) |
N1—Ti1—N8—C27 | 53.1 (2) | C20—C21—C22—C17 | −0.9 (5) |
N4—Ti1—N8—C27 | −111.6 (2) | C25—N7—C23—C24 | 52.2 (3) |
N3—Ti1—N8—C27 | 4.6 (4) | Ti1—N7—C23—C24 | −138.8 (2) |
N6—Ti1—N8—C27 | −36.7 (2) | C23—N7—C25—C26 | 61.8 (3) |
N7—Ti1—N8—C29 | −42.4 (2) | Ti1—N7—C25—C26 | −108.1 (2) |
N1—Ti1—N8—C29 | −141.14 (18) | C29—N8—C27—C28 | 54.1 (3) |
N4—Ti1—N8—C29 | 54.19 (19) | Ti1—N8—C27—C28 | −139.3 (2) |
N3—Ti1—N8—C29 | 170.3 (3) | C27—N8—C29—C30 | 60.6 (3) |
N6—Ti1—N8—C29 | 129.06 (18) | Ti1—N8—C29—C30 | −106.9 (3) |
Experimental details
Crystal data | |
Chemical formula | [Ti(C4H10N)2(C11H10N3)2] |
Mr | 560.60 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 9.6465 (9), 10.3796 (10), 16.3341 (16) |
α, β, γ (°) | 102.931 (2), 102.082 (2), 93.184 (2) |
V (Å3) | 1549.7 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.35 × 0.24 × 0.14 |
Data collection | |
Diffractometer | BRUKER SMART APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.900, 0.958 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7867, 5478, 3387 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.100, 0.94 |
No. of reflections | 5478 |
No. of parameters | 356 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.25 |
Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).
Footnotes
‡Part of the masters degree thesis, the North-West University, Xi'an, 2011.
Acknowledgements
Financial support from the National Natural Science Foundation of China (project Nos. 20702041 and 21072157) and the Shaanxi Province Administration of Foreign Experts Bureau Foundation (grant No. 20106100079) is gratefully acknowledged. The authors are thankful to Mr Wang Minchang and Mr Su Pengfei (Xi'an Modern Chemistry Research Institute) for their help in carrying out the NMR spectroscopic and X-ray diffraction experiments.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Armarego, W. L. F. & Perrin, D. D. (1997). Purification of Laboratory Chemicals, Fourth Edition. Oxford: Pergamon. Google Scholar
Bradley, D. C. & Thomas, I. M. (1960). J. Chem. Soc. pp. 3857–3861. CrossRef Web of Science Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bürger, H. & Dämmen, U. (1974). Z. Anorg. Allg. Chem. 407, 201–210. Google Scholar
Connely, N. G., Hartsborn, R. M., Damhus, T. & Hutton, A. T. (2005). Editor. Nomenclature of Inorganic Chemistry - IUPAC Recommendations, Cambridge, UK: Royal Society of Chemistry. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fandos, R., Hernandez, C., Otero, A., Rodriguez, A. & Ruiz, M. J. (2005). J. Organomet. Chem. 690, 4828–4834. CrossRef CAS Google Scholar
Fix, R. M., Gordon, R. G. & Hoffman, D. M. (1990). Chem. Mater. 2, 235–241. CrossRef CAS Google Scholar
Kempe, R. (1997). Z. Kristallogr. 212, 477–478. CAS Google Scholar
Marsh, R. E. (2004). Acta Cryst. B60, 252–253. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McKnight, A. L. & Waymouth, R. M. (1998). Chem. Rev. 98, 2587–2598. Web of Science CrossRef PubMed CAS Google Scholar
Oberthur, M., Hillebrand, G., Arndt, P. & Kempe, R. (1997). Chem. Ber. 130, 789–794. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smolensky, E., Kapon, M., Woollins, J. D. & Eisen, M. S. (2005). Organometallics, 24, 3255–3265. Web of Science CSD CrossRef CAS Google Scholar
Xiang, L., Song, H. & Zi, G. (2008). Eur. J. Inorg. Chem. pp. 1135–1140. CrossRef Google Scholar
Zaher, D., Tomov, A. K., Gibson, V. C. & White, A. J. P. (2008). J. Organomet. Chem. 693, 3889–3896. CrossRef CAS Google Scholar
Zi, G., Wang, Q., Xiang, L. & Song, H. (2008). Dalton Trans. pp. 5930–5944. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Mononuclear neutral Ti(IV) complexes bearing two chelating amido-imino and two amido ligands (Xiang et al., 2008; Zi et al.., 2008) and closely related ones bearing two chelating amido-amino and two amido ligands (Fandos et al.., 2005; Kempe, 1997; Marsh, 2004; Oberthur et al., 1997; Smolensky et al., 2005; Xiang et al., 2008; Zaher et al., 2008) are known as non-metallocene components of the catalytic systems for olefin polymerization (McKnight & Waymouth, 1998) and as precursors of the compounds for metal nitride films depositions from the gas phase (Fix et al., 1990). The title compound, (C11H10N3)2Ti(NEt2)2, (I), also belongs to the former family and was prepared by a direct reaction of 2-(N-phenylmethyliminomethyl)-1H-imidazole and Ti(NEt2)4 (see Experimental).
The Ti atom in I is in a pseudo-octahedral coordination environment, with imidazolido-group N-atoms occupying apical positions and amido- and imino-N-atoms cis-located in the equatorial plane [coordination environment OC-6–33 (Connely et al., 2005)]. Presence of two bidentate chelating ligands determines chirality of the Ti-centre. Crystallographically independent unit of I, except of its Ph-rings, nearly adopts pseudo-C2 symmetry (rotation around a 2-fold axis passing through Ti-atom and the centre of the imino-N···imino-N segment). Ti—Namido [1.892 (2) and 1.897 (2) Å], Ti—Nimidazolido [2.115 (2) and 2.1170 (19) Å], and Ti—Nimino [2.302 (2) and 2.302 (2) Å] bond lengths essentially differ (increase by approximately 0.2 Å in the series). All ligating N-atoms N1, N4, N3, N6, N7, N8 are in nearly planar environment [valent angles sums: 359.2 (5), 359.5 (5), 359.9 (5), 359.3 (5), 359.2 (5), and 358.7 (5)°, respectively] what is indicative of additional pπ–dπ donations towards the metal centre. Ti-atom lays in the imidazole rings r. m. s. planes N1/C1/N2/C3/C2 (PL1) and N4/C12/N5/C14/C13 (PL2) [deviations -0.274 (4) and 0.202 (4) Å, respectively]. Both diazametallacyclyc moieties in the molecule of I are planar within 0.03 and 0.05 Å.
Analysis of the Cambridge Structural Database [CSD; release May 2009 (Allen, 2002)] for mononuclear neutral Ti(IV) complexes bearing two chelating amido-imino and two amido ligands retrieves only 3 entries (8 fragments). These are three bis[2-(N-aryliminomethyl)-1H-pyroll-1-idyl-κN1,N1']bis(dimethylamido)titanium(IV) complexes (Xiang et al., 2008 and Zi et al.., 2008). Of interest, only one of these cited complexes, [N,N'-(1,1'-binaphthalin-2,2'-diyl)bi(2-iminomethyl-1H- pyrrol-1-idyl)-κN1,N1,N1',N1']bis(dimethylamido)titanium(IV) (Xiang et al., 2008), adopts the same (OC-6–33) configuration as the complex I, while the other two complexes, bis(dimethylamido)bis(2-{N-[1-(2-methoxynaphthalin-1-yl)naphthalin-2-yl] iminomethyl}-1H-pyrrol-1-idyl-κN1,N1')- and bis(dimethylamido)bis(2-{N-[2-(2-methoxy-6-methylphenyl)-3- methylphenyl]iminomethyl}-1H-pyrrol-1-idyl-κN1,N1')titaniums(IV) (Zi et al.., 2008) exhibit (OC-6–1'3) configuration (pyrollyidyl moieties in cis- and imino-moieties in trans-positions). For all these three latter complexes, the observed tendencies for the Ti—N bond lengths are the same as in the case of I, with their values in I well matching the earlier reported ranges.