organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1256

(±)-1,2-Bis(N′-benzoyl­thio­ureido)cyclo­hexa­ne

aFaculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Nilai N. Sembilan, Malaysia, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, USM 11800, Penang, Malaysia, and cSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500, Bangi Selangor, Malaysia
*Correspondence e-mail: bohari@ukm.my

(Received 4 April 2011; accepted 21 April 2011; online 29 April 2011)

In the title compound, C22H24N4O2S2, the two thio­urea segments of the side-arm groups are inclined at a dihedral angle of 73.09 (9)°. The central cyclo­hexane bridge adopts a chair conformation. The mol­ecule is stabilized by N—H⋯O intra­molecular hydrogen bonds forming S(6) rings, and N—H⋯O and N—H⋯S inter­molecular hydrogen bonds forming infinite chains developing parallel to the b axis.

Related literature

For related structures, see: Yusof et al. (2008[Yusof, M. S. M., Ayob, N. A. C., Kadir, M. A. & Yamin, B. M. (2008). Acta Cryst. E64, o937.]); Thiam et al. (2008[Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.]). For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a description of hydrogen-bonding patterns, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24N4O2S2

  • Mr = 440.57

  • Monoclinic, C 2/c

  • a = 19.725 (6) Å

  • b = 11.054 (3) Å

  • c = 20.700 (5) Å

  • β = 91.252 (9)°

  • V = 4512 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.45 × 0.39 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.891, Tmax = 0.950

  • 16892 measured reflections

  • 4212 independent reflections

  • 3334 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.145

  • S = 1.11

  • 4212 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 2.01 2.677 (3) 134
N3—H3A⋯O2 0.86 1.96 2.645 (3) 136
N1—H1A⋯O2i 0.86 2.26 3.077 (3) 159
N4—H4A⋯S2ii 0.86 2.56 3.405 (3) 166
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON.

Supporting information


Comment top

The title compound, (I) is similar to 1,2-bis[N'-(2,2-dimethylpropionyl) thioureido]cyclohexane (Yusof et al., 2008) except the two side arms are benzoylthioureido (Fig. 1) groups instead of 2,2-dimethylpropionylthioureido.The bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in 1,2-bis[N'-(2,2-dimethylpropionyl)thioureido]cycylohexane and 1,2-bis (N'-benzoylthioureido)benzene (Thiam et al., 2008). However, the dihedral angle between the thiourea groups of 73.09 (9)° is slightly smaller compare to 78.55 (7)° in the propionylthioureido analog.

Both thiourea moieties, S1/N2/C7/C8/C9 and S2/N3/N4/C14/C15 are planar with maximum deviation of 0.017 (3)Å for C9 atom from the least square plane. There are two intramolecular hydrogen bonds N2—H2A..O1 and N3—H3A···O2 forming two pseudo-six membered rings S(6) (Etter et al., 1990; Bernstein et al., 1995) O1···H2A—N2—C8—N1—C7 and O2..H3A—N3—C15—N4—C16 respectively (Table 1). In the crystal structure, the molecules are linked by intermolecular hydrogen bonds N1—H1A···O2 forming a R42(18) graph set motif and N4—H4A···S2 forming a R22(8) motif (Etter et al., 1990; Bernstein et al., 1995). These intermolecular interactions result in the formation of chains extending along the b axis (Fig.2; Table 1).

Related literature top

For related crystal structures, see: Yusof et al. (2008); Thiam et al. (2008). For bond-length data, see Allen et al. (1987). For a description of hydrogen-bonding patterns, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

A solution of benzoylisothiocyanate (3.26 g, 0.02 mol) in 30 ml acetone was added into a flask containing 30 ml acetone solution of 1,2-diamino cyclohexane (1.14 g, 0.01 mol).The mixture was refluxed for 1 h. Then, the solution was filtered-off and left to evaporate at room temperature. The colourless solid was obtained after one day of evaporation(yield 81%, m.p 495.3–497.3 K)

Refinement top

H atoms on the parent carbon atoms were positioned geometrically with C—H= 0.96–0.98 Å and constrained to ride on their parent atoms with Uiso(H)= xUeq(parent atom) where x=1.5 for CH3 group and 1.2 for CH2 and CH groups.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Partial packing view of compound ( I ), showing the formation of chains along the b axis built from hydrogen bonds, and the formation of R 42(18) and R22(8) rings. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.[Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z+1]
(±)-1-Benzoyl-3-[2-(N'-benzoylthioureido)cyclohexyl]thiourea top
Crystal data top
C22H24N4O2S2F(000) = 1856
Mr = 440.57Dx = 1.297 Mg m3
Monoclinic, C2/cMelting point = 495.3–497.3 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 19.725 (6) ÅCell parameters from 4375 reflections
b = 11.054 (3) Åθ = 2.0–25.2°
c = 20.700 (5) ŵ = 0.26 mm1
β = 91.252 (9)°T = 298 K
V = 4512 (2) Å3Block, colourless
Z = 80.45 × 0.39 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4212 independent reflections
Radiation source: fine-focus sealed tube3334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 2.0°
ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1313
Tmin = 0.891, Tmax = 0.950l = 2425
16892 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0596P)2 + 4.3773P]
where P = (Fo2 + 2Fc2)/3
4212 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C22H24N4O2S2V = 4512 (2) Å3
Mr = 440.57Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.725 (6) ŵ = 0.26 mm1
b = 11.054 (3) ÅT = 298 K
c = 20.700 (5) Å0.45 × 0.39 × 0.20 mm
β = 91.252 (9)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4212 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3334 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.950Rint = 0.043
16892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.11Δρmax = 0.37 e Å3
4212 reflectionsΔρmin = 0.21 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02397 (4)0.38387 (8)0.42308 (5)0.0633 (3)
S20.02746 (4)0.92533 (8)0.41333 (4)0.0586 (3)
O10.09838 (10)0.7174 (2)0.36607 (12)0.0702 (7)
O20.14844 (9)0.71111 (18)0.56241 (9)0.0492 (5)
N10.07970 (10)0.5330 (2)0.41058 (11)0.0468 (6)
H1A0.10040.47300.42790.056*
N20.02222 (10)0.6069 (2)0.37479 (11)0.0454 (6)
H2A0.00010.67230.36640.054*
N30.12087 (11)0.7590 (2)0.43944 (10)0.0450 (6)
H3A0.14560.72170.46780.054*
N40.08148 (11)0.86601 (19)0.52667 (10)0.0410 (5)
H4A0.05910.92810.53940.049*
C10.21028 (19)0.5515 (3)0.4688 (2)0.0898 (13)
H1B0.17910.49900.48810.108*
C20.2756 (2)0.5544 (4)0.4898 (3)0.124 (2)
H2B0.28840.50350.52310.149*
C30.32249 (19)0.6311 (5)0.4623 (3)0.1007 (17)
H3B0.36680.63240.47670.121*
C40.3036 (2)0.7045 (5)0.4142 (2)0.1030 (17)
H4B0.33520.75640.39510.124*
C50.23709 (17)0.7038 (4)0.39271 (18)0.0871 (13)
H5A0.22450.75650.36010.104*
C60.19050 (14)0.6265 (3)0.41907 (15)0.0523 (8)
C70.11937 (14)0.6315 (3)0.39623 (14)0.0477 (7)
C80.01047 (13)0.5160 (3)0.40108 (13)0.0440 (6)
C90.09410 (13)0.6023 (3)0.35922 (13)0.0446 (6)
H9A0.11600.54200.38740.054*
C100.10317 (15)0.5628 (3)0.28926 (15)0.0606 (8)
H10A0.08190.48460.28250.073*
H10B0.08100.62050.26050.073*
C110.17797 (17)0.5547 (4)0.27354 (17)0.0723 (10)
H11A0.19930.49190.29970.087*
H11B0.18270.53300.22850.087*
C120.21279 (16)0.6735 (4)0.28648 (16)0.0701 (10)
H12A0.19470.73420.25700.084*
H12B0.26090.66520.27860.084*
C130.20305 (14)0.7155 (4)0.35590 (15)0.0631 (9)
H13A0.22380.79440.36190.076*
H13B0.22550.65940.38530.076*
C140.12781 (12)0.7232 (3)0.37194 (12)0.0434 (6)
H14A0.10610.78450.34420.052*
C150.07964 (13)0.8440 (2)0.46047 (12)0.0419 (6)
C160.11438 (12)0.8012 (2)0.57403 (13)0.0398 (6)
C170.10748 (12)0.8470 (3)0.64079 (13)0.0419 (6)
C180.10957 (15)0.9688 (3)0.65517 (14)0.0526 (7)
H18A0.11431.02530.62230.063*
C190.10464 (18)1.0065 (3)0.71809 (17)0.0713 (10)
H19A0.10661.08860.72780.086*
C200.09689 (18)0.9240 (4)0.76659 (17)0.0742 (10)
H20A0.09330.95040.80900.089*
C210.09432 (17)0.8037 (4)0.75319 (15)0.0673 (9)
H21A0.08840.74820.78630.081*
C220.10055 (15)0.7639 (3)0.69031 (14)0.0546 (8)
H22A0.10010.68150.68130.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0446 (4)0.0520 (5)0.0936 (7)0.0080 (3)0.0057 (4)0.0092 (4)
S20.0634 (5)0.0719 (6)0.0406 (4)0.0246 (4)0.0012 (3)0.0038 (4)
O10.0475 (12)0.0653 (15)0.0982 (18)0.0125 (11)0.0131 (12)0.0236 (13)
O20.0491 (11)0.0522 (12)0.0463 (11)0.0115 (9)0.0001 (9)0.0018 (9)
N10.0325 (11)0.0479 (13)0.0602 (15)0.0014 (10)0.0076 (10)0.0023 (11)
N20.0320 (11)0.0500 (13)0.0544 (14)0.0050 (10)0.0054 (10)0.0016 (11)
N30.0399 (12)0.0545 (14)0.0405 (13)0.0060 (11)0.0009 (10)0.0002 (11)
N40.0438 (12)0.0408 (12)0.0387 (12)0.0064 (10)0.0041 (9)0.0007 (10)
C10.067 (2)0.060 (2)0.144 (4)0.0126 (18)0.050 (2)0.012 (2)
C20.086 (3)0.073 (3)0.217 (6)0.002 (2)0.090 (4)0.002 (3)
C30.045 (2)0.112 (4)0.147 (5)0.008 (2)0.030 (2)0.065 (3)
C40.051 (2)0.175 (5)0.083 (3)0.042 (3)0.009 (2)0.032 (3)
C50.053 (2)0.141 (4)0.067 (2)0.036 (2)0.0017 (17)0.002 (2)
C60.0376 (15)0.0555 (18)0.064 (2)0.0017 (13)0.0041 (13)0.0204 (15)
C70.0389 (14)0.0502 (18)0.0541 (18)0.0014 (13)0.0022 (13)0.0044 (14)
C80.0365 (13)0.0499 (16)0.0456 (16)0.0021 (12)0.0004 (11)0.0064 (13)
C90.0335 (13)0.0547 (17)0.0459 (16)0.0058 (12)0.0061 (11)0.0004 (13)
C100.0539 (18)0.072 (2)0.0557 (19)0.0005 (16)0.0075 (14)0.0163 (16)
C110.060 (2)0.100 (3)0.057 (2)0.018 (2)0.0176 (16)0.0145 (19)
C120.0414 (16)0.111 (3)0.059 (2)0.0034 (18)0.0204 (14)0.005 (2)
C130.0391 (16)0.093 (3)0.0574 (19)0.0060 (16)0.0096 (13)0.0071 (18)
C140.0352 (13)0.0594 (18)0.0358 (14)0.0029 (12)0.0063 (11)0.0006 (13)
C150.0370 (13)0.0480 (16)0.0411 (15)0.0013 (12)0.0077 (11)0.0026 (13)
C160.0327 (13)0.0414 (15)0.0453 (15)0.0023 (11)0.0028 (11)0.0035 (12)
C170.0343 (13)0.0500 (16)0.0413 (15)0.0019 (12)0.0009 (11)0.0017 (13)
C180.0573 (17)0.0518 (18)0.0485 (17)0.0038 (14)0.0049 (13)0.0018 (14)
C190.089 (3)0.064 (2)0.061 (2)0.0148 (19)0.0099 (18)0.0170 (18)
C200.082 (2)0.096 (3)0.0451 (19)0.016 (2)0.0042 (17)0.018 (2)
C210.073 (2)0.088 (3)0.0418 (18)0.0025 (19)0.0034 (15)0.0087 (17)
C220.0590 (18)0.0589 (19)0.0457 (17)0.0045 (15)0.0003 (14)0.0005 (15)
Geometric parameters (Å, º) top
S1—C81.670 (3)C9—C141.513 (4)
S2—C151.666 (3)C9—C101.527 (4)
O1—C71.215 (3)C9—H9A0.9800
O2—C161.228 (3)C10—C111.521 (4)
N1—C71.370 (4)C10—H10A0.9700
N1—C81.397 (3)C10—H10B0.9700
N1—H1A0.8600C11—C121.504 (5)
N2—C81.318 (3)C11—H11A0.9700
N2—C91.462 (3)C11—H11B0.9700
N2—H2A0.8600C12—C131.526 (4)
N3—C151.323 (3)C12—H12A0.9700
N3—C141.462 (3)C12—H12B0.9700
N3—H3A0.8600C13—C141.530 (4)
N4—C161.366 (3)C13—H13A0.9700
N4—C151.392 (3)C13—H13B0.9700
N4—H4A0.8600C14—H14A0.9800
C1—C21.369 (5)C16—C171.481 (4)
C1—C61.385 (5)C17—C181.379 (4)
C1—H1B0.9300C17—C221.386 (4)
C2—C31.369 (7)C18—C191.373 (4)
C2—H2B0.9300C18—H18A0.9300
C3—C41.342 (7)C19—C201.367 (5)
C3—H3B0.9300C19—H19A0.9300
C4—C51.394 (5)C20—C211.359 (5)
C4—H4B0.9300C20—H20A0.9300
C5—C61.360 (5)C21—C221.382 (4)
C5—H5A0.9300C21—H21A0.9300
C6—C71.491 (4)C22—H22A0.9300
C7—N1—C8129.2 (2)C12—C11—C10110.6 (3)
C7—N1—H1A115.4C12—C11—H11A109.5
C8—N1—H1A115.4C10—C11—H11A109.5
C8—N2—C9123.4 (2)C12—C11—H11B109.5
C8—N2—H2A118.3C10—C11—H11B109.5
C9—N2—H2A118.3H11A—C11—H11B108.1
C15—N3—C14125.3 (2)C11—C12—C13111.5 (3)
C15—N3—H3A117.4C11—C12—H12A109.3
C14—N3—H3A117.4C13—C12—H12A109.3
C16—N4—C15128.1 (2)C11—C12—H12B109.3
C16—N4—H4A116.0C13—C12—H12B109.3
C15—N4—H4A116.0H12A—C12—H12B108.0
C2—C1—C6120.2 (4)C12—C13—C14111.3 (2)
C2—C1—H1B119.9C12—C13—H13A109.4
C6—C1—H1B119.9C14—C13—H13A109.4
C1—C2—C3121.0 (5)C12—C13—H13B109.4
C1—C2—H2B119.5C14—C13—H13B109.4
C3—C2—H2B119.5H13A—C13—H13B108.0
C4—C3—C2119.1 (4)N3—C14—C9110.8 (2)
C4—C3—H3B120.5N3—C14—C13109.5 (2)
C2—C3—H3B120.5C9—C14—C13109.8 (2)
C3—C4—C5120.8 (4)N3—C14—H14A108.9
C3—C4—H4B119.6C9—C14—H14A108.9
C5—C4—H4B119.6C13—C14—H14A108.9
C6—C5—C4120.5 (4)N3—C15—N4116.4 (2)
C6—C5—H5A119.8N3—C15—S2124.6 (2)
C4—C5—H5A119.8N4—C15—S2119.00 (19)
C5—C6—C1118.4 (3)O2—C16—N4122.5 (2)
C5—C6—C7118.8 (3)O2—C16—C17121.5 (2)
C1—C6—C7122.7 (3)N4—C16—C17116.0 (2)
O1—C7—N1122.3 (3)C18—C17—C22119.4 (3)
O1—C7—C6121.7 (3)C18—C17—C16122.2 (3)
N1—C7—C6116.0 (3)C22—C17—C16118.4 (3)
N2—C8—N1116.4 (2)C19—C18—C17119.9 (3)
N2—C8—S1125.4 (2)C19—C18—H18A120.0
N1—C8—S1118.2 (2)C17—C18—H18A120.0
N2—C9—C14110.8 (2)C20—C19—C18120.4 (3)
N2—C9—C10110.7 (2)C20—C19—H19A119.8
C14—C9—C10110.9 (2)C18—C19—H19A119.8
N2—C9—H9A108.1C21—C20—C19120.4 (3)
C14—C9—H9A108.1C21—C20—H20A119.8
C10—C9—H9A108.1C19—C20—H20A119.8
C11—C10—C9110.8 (2)C20—C21—C22120.0 (3)
C11—C10—H10A109.5C20—C21—H21A120.0
C9—C10—H10A109.5C22—C21—H21A120.0
C11—C10—H10B109.5C21—C22—C17119.8 (3)
C9—C10—H10B109.5C21—C22—H22A120.1
H10A—C10—H10B108.1C17—C22—H22A120.1
C6—C1—C2—C30.2 (7)C15—N3—C14—C13132.9 (3)
C1—C2—C3—C40.2 (8)N2—C9—C14—N358.4 (3)
C2—C3—C4—C50.5 (7)C10—C9—C14—N3178.2 (2)
C3—C4—C5—C61.5 (7)N2—C9—C14—C13179.4 (2)
C4—C5—C6—C11.8 (6)C10—C9—C14—C1357.2 (3)
C4—C5—C6—C7178.0 (4)C12—C13—C14—N3177.7 (3)
C2—C1—C6—C51.2 (6)C12—C13—C14—C955.9 (4)
C2—C1—C6—C7177.2 (4)C14—N3—C15—N4178.8 (2)
C8—N1—C7—O17.3 (5)C14—N3—C15—S20.5 (4)
C8—N1—C7—C6173.5 (3)C16—N4—C15—N38.8 (4)
C5—C6—C7—O116.3 (5)C16—N4—C15—S2171.9 (2)
C1—C6—C7—O1159.7 (3)C15—N4—C16—O20.5 (4)
C5—C6—C7—N1162.9 (3)C15—N4—C16—C17179.7 (2)
C1—C6—C7—N121.1 (4)O2—C16—C17—C18138.7 (3)
C9—N2—C8—N1177.5 (2)N4—C16—C17—C1840.5 (3)
C9—N2—C8—S12.1 (4)O2—C16—C17—C2239.6 (4)
C7—N1—C8—N20.2 (4)N4—C16—C17—C22141.3 (3)
C7—N1—C8—S1179.4 (2)C22—C17—C18—C190.1 (4)
C8—N2—C9—C14143.0 (3)C16—C17—C18—C19178.4 (3)
C8—N2—C9—C1093.5 (3)C17—C18—C19—C200.7 (5)
N2—C9—C10—C11178.4 (3)C18—C19—C20—C210.3 (5)
C14—C9—C10—C1158.1 (4)C19—C20—C21—C220.9 (5)
C9—C10—C11—C1256.7 (4)C20—C21—C22—C171.8 (5)
C10—C11—C12—C1355.7 (4)C18—C17—C22—C211.4 (4)
C11—C12—C13—C1455.7 (4)C16—C17—C22—C21179.7 (3)
C15—N3—C14—C9105.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.012.677 (3)134
N3—H3A···O20.861.962.645 (3)136
N1—H1A···O2i0.862.263.077 (3)159
N4—H4A···S2ii0.862.563.405 (3)166
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H24N4O2S2
Mr440.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)19.725 (6), 11.054 (3), 20.700 (5)
β (°) 91.252 (9)
V3)4512 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.45 × 0.39 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.891, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
16892, 4212, 3334
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.145, 1.11
No. of reflections4212
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.012.677 (3)134
N3—H3A···O20.861.962.645 (3)136
N1—H1A···O2i0.862.263.077 (3)159
N4—H4A···S2ii0.862.563.405 (3)166
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
 

Acknowledgements

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia, Universiti Sains Islam Malaysia and the Ministry of Higher Education, Malaysia for research grants Nos. UKM-GUP-NBT-08-27-110 and USIM-FST-FRGS-05-50209.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Ayob, N. A. C., Kadir, M. A. & Yamin, B. M. (2008). Acta Cryst. E64, o937.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1256
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds