metal-organic compounds
Dicarbonyl(η5-cyclopentadienyl)[2-(phenylsulfanyl)ethyl]iron(II)
aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za
The title compound, [Fe(C5H5)(C8H9S)(CO)2], is a three-legged piano-stool iron(II) complex that is characterized by a thioethyl-linked phenyl ring and a cyclopentadienyl moiety that occupies the apical coordination site. The two aromatic rings are essentially planar with the same maximum deviation of 0.009 Å. The mean planes of the phenyl and cyclopentadienyl rings bisect at an acute angle of 50.08°.
Related literature
For general background and related synthesis, see: King & Bisnette (1965a,b); Theys et al. (2009); Nyamori et al. (2008). For related structures, see: O'Connor et al. (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S160053681101511X/dn2676sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681101511X/dn2676Isup2.hkl
A solution of cyclopentadienylirondicarbonyl dimer (1.501 g, 0.424 mmol) in dry tetrahydrofuran was treated with Na/Hg amalgam [sodium (0.2902 g, 12.70 mmol) and mercury (2.8 ml, 18.75 mmol)] and stirred at room temperature for two hours. The resulting yellowish-brown solution was transferred into another flask via a cannula and reacted with 2-chloroethyl phenyl sulfide (0.729 g, 4.242 mmol). The reaction mixture was allowed to stir for 16 h at room temperature. After concentrating the greyish brown mixture in vacuo it was extracted with dichloromethane (3 × 30 ml). Filtration of the extracted product through a celite pad afforded a clear brownish-orange filtrate which was further reduced in vacuo. The brown oil that resulted was purified by flash collumn
on silica using hexane as mobile phase. A dark yellow band was collected and removal of volatiles afforded 0.8183 g of the final product as a yellow crystalline solid (yield, 61%).1H NMR δH (400 MHz, CDCl3, p.p.m.): 1.58 (2H, t, J 8.56, CH2), 3.02 (2H, t, J 8.40, CH2), 4.68 (5H, s, Cp), 7.08 (1H, t, ArH), 7.20 (2H, m, J16.4, ArH2), 7.26 (2H, m, J 16.5, ArH2).
13C NMR (400 MHz, CDCl3, p.p.m.): 40.72, 84.03, 124.3, 127.6, 127.8, 136.1, 215.6.
IR (νCO, cm-1): 1993, 1937, 1708.
All H-atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2.
Data collection: APEX2 (Bruker, 2009); cell
APEX2 (Bruker, 2009); data reduction: APEX2 (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 2009).[Fe(C5H5)(C8H9S)(CO)2] | F(000) = 1296 |
Mr = 314.17 | Dx = 1.483 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 6363 reflections |
a = 10.3992 (5) Å | θ = 2.3–27.3° |
b = 7.6402 (4) Å | µ = 1.21 mm−1 |
c = 35.4173 (16) Å | T = 173 K |
V = 2814.0 (2) Å3 | Plate, yellow |
Z = 8 | 0.57 × 0.27 × 0.08 mm |
Bruker APEXII CCD area-detector diffractometer | 2752 independent reflections |
Radiation source: fine-focus sealed tube | 2339 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.3° |
Absorption correction: integration (SADABS; Bruker, 2009) | h = −12→12 |
Tmin = 0.545, Tmax = 0.909 | k = −9→9 |
20490 measured reflections | l = −41→43 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.075 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.26 | w = 1/[σ2(Fo2) + (0.P)2 + 19.462P] where P = (Fo2 + 2Fc2)/3 |
2752 reflections | (Δ/σ)max = 0.004 |
172 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.75 e Å−3 |
[Fe(C5H5)(C8H9S)(CO)2] | V = 2814.0 (2) Å3 |
Mr = 314.17 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 10.3992 (5) Å | µ = 1.21 mm−1 |
b = 7.6402 (4) Å | T = 173 K |
c = 35.4173 (16) Å | 0.57 × 0.27 × 0.08 mm |
Bruker APEXII CCD area-detector diffractometer | 2752 independent reflections |
Absorption correction: integration (SADABS; Bruker, 2009) | 2339 reflections with I > 2σ(I) |
Tmin = 0.545, Tmax = 0.909 | Rint = 0.068 |
20490 measured reflections |
R[F2 > 2σ(F2)] = 0.075 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.26 | w = 1/[σ2(Fo2) + (0.P)2 + 19.462P] where P = (Fo2 + 2Fc2)/3 |
2752 reflections | Δρmax = 0.49 e Å−3 |
172 parameters | Δρmin = −0.75 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5039 (8) | 0.7838 (8) | 0.40483 (18) | 0.0425 (17) | |
H1 | 0.4331 | 0.8509 | 0.3961 | 0.051* | |
C2 | 0.5565 (8) | 0.7851 (9) | 0.44168 (19) | 0.0459 (19) | |
H2 | 0.5266 | 0.8551 | 0.4620 | 0.055* | |
C3 | 0.6571 (7) | 0.6697 (10) | 0.4435 (2) | 0.0461 (18) | |
H3 | 0.7090 | 0.6465 | 0.4650 | 0.055* | |
C4 | 0.6699 (7) | 0.5910 (9) | 0.4073 (2) | 0.0430 (17) | |
H4 | 0.7308 | 0.5040 | 0.4004 | 0.052* | |
C5 | 0.5767 (7) | 0.6644 (7) | 0.38373 (17) | 0.0348 (15) | |
H5 | 0.5648 | 0.6379 | 0.3578 | 0.042* | |
C6 | 0.5240 (6) | 0.3405 (8) | 0.45376 (15) | 0.0279 (13) | |
C7 | 0.3395 (7) | 0.5626 (8) | 0.45266 (17) | 0.0366 (15) | |
C8 | 0.3943 (6) | 0.3817 (8) | 0.39055 (16) | 0.0333 (14) | |
H8A | 0.3294 | 0.3098 | 0.4039 | 0.040* | |
H8B | 0.3476 | 0.4590 | 0.3728 | 0.040* | |
C9 | 0.4800 (6) | 0.2613 (8) | 0.36798 (16) | 0.0327 (14) | |
H9A | 0.5282 | 0.1825 | 0.3851 | 0.039* | |
H9B | 0.5424 | 0.3302 | 0.3530 | 0.039* | |
C10 | 0.4778 (7) | −0.0152 (8) | 0.31408 (16) | 0.0377 (15) | |
C11 | 0.6121 (7) | −0.0106 (7) | 0.31470 (16) | 0.0357 (15) | |
H11 | 0.6553 | 0.0756 | 0.3293 | 0.043* | |
C12 | 0.6823 (7) | −0.1315 (9) | 0.29414 (17) | 0.0392 (16) | |
H12 | 0.7736 | −0.1261 | 0.2943 | 0.047* | |
C13 | 0.6207 (8) | −0.2602 (9) | 0.27334 (18) | 0.0471 (19) | |
H13 | 0.6691 | −0.3431 | 0.2593 | 0.056* | |
C14 | 0.4893 (9) | −0.2665 (10) | 0.27328 (18) | 0.053 (2) | |
H14 | 0.4468 | −0.3551 | 0.2592 | 0.063* | |
C15 | 0.4172 (8) | −0.1468 (9) | 0.29330 (17) | 0.0453 (18) | |
H15 | 0.3260 | −0.1538 | 0.2930 | 0.054* | |
Fe1 | 0.48739 (8) | 0.53522 (10) | 0.42952 (2) | 0.0264 (2) | |
O1 | 0.5463 (4) | 0.2142 (5) | 0.46915 (12) | 0.0375 (11) | |
O2 | 0.2434 (5) | 0.5784 (7) | 0.46790 (14) | 0.0558 (14) | |
S1 | 0.37701 (18) | 0.1351 (2) | 0.33694 (5) | 0.0407 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.059 (5) | 0.025 (3) | 0.043 (4) | −0.004 (3) | 0.005 (4) | 0.014 (3) |
C2 | 0.066 (5) | 0.035 (4) | 0.037 (4) | −0.024 (4) | 0.015 (3) | 0.002 (3) |
C3 | 0.043 (4) | 0.050 (4) | 0.045 (4) | −0.022 (4) | −0.010 (3) | 0.017 (3) |
C4 | 0.034 (4) | 0.039 (4) | 0.055 (4) | −0.002 (3) | 0.012 (3) | 0.018 (3) |
C5 | 0.052 (4) | 0.025 (3) | 0.028 (3) | −0.008 (3) | 0.008 (3) | 0.006 (2) |
C6 | 0.026 (3) | 0.033 (3) | 0.025 (3) | 0.003 (3) | 0.000 (2) | 0.000 (2) |
C7 | 0.046 (4) | 0.033 (3) | 0.031 (3) | 0.004 (3) | −0.001 (3) | 0.003 (3) |
C8 | 0.035 (4) | 0.032 (3) | 0.034 (3) | −0.005 (3) | −0.003 (3) | 0.006 (3) |
C9 | 0.041 (4) | 0.027 (3) | 0.031 (3) | −0.006 (3) | 0.001 (3) | −0.002 (2) |
C10 | 0.058 (5) | 0.033 (3) | 0.022 (3) | −0.011 (3) | −0.008 (3) | 0.006 (2) |
C11 | 0.058 (4) | 0.020 (3) | 0.030 (3) | −0.002 (3) | −0.004 (3) | 0.004 (2) |
C12 | 0.049 (4) | 0.036 (3) | 0.033 (3) | 0.002 (3) | 0.003 (3) | 0.008 (3) |
C13 | 0.078 (6) | 0.031 (3) | 0.033 (4) | 0.003 (4) | 0.003 (4) | 0.001 (3) |
C14 | 0.079 (6) | 0.047 (4) | 0.033 (3) | −0.016 (4) | −0.002 (4) | −0.010 (3) |
C15 | 0.061 (5) | 0.042 (4) | 0.032 (3) | −0.014 (4) | −0.009 (3) | 0.003 (3) |
Fe1 | 0.0295 (5) | 0.0238 (4) | 0.0259 (4) | −0.0012 (4) | 0.0019 (4) | 0.0043 (3) |
O1 | 0.043 (3) | 0.030 (2) | 0.040 (2) | 0.001 (2) | 0.001 (2) | 0.007 (2) |
O2 | 0.044 (3) | 0.063 (4) | 0.060 (3) | 0.009 (3) | 0.016 (3) | 0.006 (3) |
S1 | 0.0453 (11) | 0.0401 (9) | 0.0367 (8) | −0.0059 (8) | −0.0100 (8) | −0.0045 (7) |
C1—C5 | 1.401 (9) | C8—C9 | 1.510 (8) |
C1—C2 | 1.415 (9) | C8—Fe1 | 2.054 (6) |
C1—Fe1 | 2.098 (6) | C8—H8A | 0.9900 |
C1—H1 | 0.9489 | C8—H8B | 0.9900 |
C2—C3 | 1.370 (11) | C9—S1 | 1.812 (6) |
C2—Fe1 | 2.085 (6) | C9—H9A | 0.9900 |
C2—H2 | 0.9490 | C9—H9B | 0.9900 |
C3—C4 | 1.422 (10) | C10—C15 | 1.396 (9) |
C3—Fe1 | 2.101 (7) | C10—C11 | 1.397 (10) |
C3—H3 | 0.9500 | C10—S1 | 1.753 (7) |
C4—C5 | 1.396 (9) | C11—C12 | 1.384 (9) |
C4—Fe1 | 2.098 (7) | C11—H11 | 0.9500 |
C4—H4 | 0.9501 | C12—C13 | 1.386 (9) |
C5—Fe1 | 2.114 (6) | C12—H12 | 0.9500 |
C5—H5 | 0.9485 | C13—C14 | 1.367 (11) |
C6—O1 | 1.132 (7) | C13—H13 | 0.9500 |
C6—Fe1 | 1.759 (6) | C14—C15 | 1.379 (10) |
C7—O2 | 1.142 (8) | C14—H14 | 0.9500 |
C7—Fe1 | 1.755 (7) | C15—H15 | 0.9500 |
C5—C1—C2 | 106.7 (6) | C11—C10—S1 | 125.1 (5) |
C5—C1—Fe1 | 71.2 (3) | C12—C11—C10 | 120.2 (6) |
C2—C1—Fe1 | 69.7 (4) | C12—C11—H11 | 119.9 |
C5—C1—H1 | 126.7 | C10—C11—H11 | 119.9 |
C2—C1—H1 | 126.6 | C11—C12—C13 | 120.6 (7) |
Fe1—C1—H1 | 124.1 | C11—C12—H12 | 119.7 |
C3—C2—C1 | 109.5 (7) | C13—C12—H12 | 119.7 |
C3—C2—Fe1 | 71.5 (4) | C14—C13—C12 | 119.2 (7) |
C1—C2—Fe1 | 70.7 (4) | C14—C13—H13 | 120.4 |
C3—C2—H2 | 125.3 | C12—C13—H13 | 120.4 |
C1—C2—H2 | 125.2 | C13—C14—C15 | 121.3 (7) |
Fe1—C2—H2 | 124.0 | C13—C14—H14 | 119.4 |
C2—C3—C4 | 107.5 (6) | C15—C14—H14 | 119.4 |
C2—C3—Fe1 | 70.3 (4) | C14—C15—C10 | 120.2 (7) |
C4—C3—Fe1 | 70.1 (4) | C14—C15—H15 | 119.9 |
C2—C3—H3 | 126.3 | C10—C15—H15 | 119.9 |
C4—C3—H3 | 126.2 | C7—Fe1—C6 | 93.6 (3) |
Fe1—C3—H3 | 125.1 | C7—Fe1—C8 | 88.2 (3) |
C5—C4—C3 | 107.7 (6) | C6—Fe1—C8 | 87.0 (3) |
C5—C4—Fe1 | 71.2 (4) | C7—Fe1—C2 | 95.5 (3) |
C3—C4—Fe1 | 70.3 (4) | C6—Fe1—C2 | 126.8 (3) |
C5—C4—H4 | 126.1 | C8—Fe1—C2 | 145.5 (3) |
C3—C4—H4 | 126.2 | C7—Fe1—C4 | 160.7 (3) |
Fe1—C4—H4 | 123.9 | C6—Fe1—C4 | 99.1 (3) |
C4—C5—C1 | 108.5 (6) | C8—Fe1—C4 | 106.9 (3) |
C4—C5—Fe1 | 70.0 (3) | C2—Fe1—C4 | 65.2 (3) |
C1—C5—Fe1 | 70.0 (3) | C7—Fe1—C1 | 99.1 (3) |
C4—C5—H5 | 125.7 | C6—Fe1—C1 | 162.0 (3) |
C1—C5—H5 | 125.8 | C8—Fe1—C1 | 106.0 (3) |
Fe1—C5—H5 | 125.9 | C2—Fe1—C1 | 39.6 (3) |
O1—C6—Fe1 | 179.2 (6) | C4—Fe1—C1 | 65.5 (3) |
O2—C7—Fe1 | 179.2 (6) | C7—Fe1—C3 | 124.6 (3) |
C9—C8—Fe1 | 115.2 (4) | C6—Fe1—C3 | 96.7 (3) |
C9—C8—H8A | 108.5 | C8—Fe1—C3 | 146.4 (3) |
Fe1—C8—H8A | 108.5 | C2—Fe1—C3 | 38.2 (3) |
C9—C8—H8B | 108.5 | C4—Fe1—C3 | 39.6 (3) |
Fe1—C8—H8B | 108.5 | C1—Fe1—C3 | 65.6 (3) |
H8A—C8—H8B | 107.5 | C7—Fe1—C5 | 133.5 (3) |
C8—C9—S1 | 107.3 (4) | C6—Fe1—C5 | 132.4 (3) |
C8—C9—H9A | 110.3 | C8—Fe1—C5 | 87.6 (2) |
S1—C9—H9A | 110.3 | C2—Fe1—C5 | 65.1 (2) |
C8—C9—H9B | 110.3 | C4—Fe1—C5 | 38.7 (3) |
S1—C9—H9B | 110.3 | C1—Fe1—C5 | 38.9 (2) |
H9A—C9—H9B | 108.5 | C3—Fe1—C5 | 65.4 (3) |
C15—C10—C11 | 118.5 (7) | C10—S1—C9 | 106.0 (3) |
C15—C10—S1 | 116.4 (6) | ||
C5—C1—C2—C3 | −0.6 (7) | C5—C4—Fe1—C8 | 63.4 (4) |
Fe1—C1—C2—C3 | 61.4 (5) | C3—C4—Fe1—C8 | −179.1 (4) |
C5—C1—C2—Fe1 | −62.0 (4) | C5—C4—Fe1—C2 | −80.6 (4) |
C1—C2—C3—C4 | −0.4 (7) | C3—C4—Fe1—C2 | 37.0 (4) |
Fe1—C2—C3—C4 | 60.5 (4) | C5—C4—Fe1—C1 | −36.9 (4) |
C1—C2—C3—Fe1 | −60.8 (5) | C3—C4—Fe1—C1 | 80.7 (4) |
C2—C3—C4—C5 | 1.2 (7) | C5—C4—Fe1—C3 | −117.6 (6) |
Fe1—C3—C4—C5 | 61.8 (4) | C3—C4—Fe1—C5 | 117.6 (6) |
C2—C3—C4—Fe1 | −60.6 (5) | C5—C1—Fe1—C7 | −155.6 (4) |
C3—C4—C5—C1 | −1.6 (7) | C2—C1—Fe1—C7 | 87.6 (5) |
Fe1—C4—C5—C1 | 59.6 (4) | C5—C1—Fe1—C6 | 69.9 (9) |
C3—C4—C5—Fe1 | −61.2 (4) | C2—C1—Fe1—C6 | −46.9 (10) |
C2—C1—C5—C4 | 1.4 (7) | C5—C1—Fe1—C8 | −64.9 (5) |
Fe1—C1—C5—C4 | −59.6 (4) | C2—C1—Fe1—C8 | 178.4 (4) |
C2—C1—C5—Fe1 | 61.0 (4) | C5—C1—Fe1—C2 | 116.7 (6) |
Fe1—C8—C9—S1 | 178.1 (3) | C5—C1—Fe1—C4 | 36.8 (4) |
C15—C10—C11—C12 | 1.9 (9) | C2—C1—Fe1—C4 | −80.0 (5) |
S1—C10—C11—C12 | −177.0 (4) | C5—C1—Fe1—C3 | 80.4 (5) |
C10—C11—C12—C13 | −1.3 (9) | C2—C1—Fe1—C3 | −36.3 (4) |
C11—C12—C13—C14 | 0.1 (10) | C2—C1—Fe1—C5 | −116.7 (6) |
C12—C13—C14—C15 | 0.4 (11) | C2—C3—Fe1—C7 | −46.6 (5) |
C13—C14—C15—C10 | 0.3 (11) | C4—C3—Fe1—C7 | −164.7 (4) |
C11—C10—C15—C14 | −1.4 (9) | C2—C3—Fe1—C6 | −145.7 (4) |
S1—C10—C15—C14 | 177.6 (5) | C4—C3—Fe1—C6 | 96.2 (4) |
C9—C8—Fe1—C7 | −160.1 (5) | C2—C3—Fe1—C8 | 119.7 (5) |
C9—C8—Fe1—C6 | −66.4 (5) | C4—C3—Fe1—C8 | 1.6 (7) |
C9—C8—Fe1—C2 | 102.8 (6) | C4—C3—Fe1—C2 | −118.1 (6) |
C9—C8—Fe1—C4 | 32.3 (5) | C2—C3—Fe1—C4 | 118.1 (6) |
C9—C8—Fe1—C1 | 100.9 (5) | C2—C3—Fe1—C1 | 37.6 (4) |
C9—C8—Fe1—C3 | 31.2 (7) | C4—C3—Fe1—C1 | −80.5 (4) |
C9—C8—Fe1—C5 | 66.3 (4) | C2—C3—Fe1—C5 | 80.5 (4) |
C3—C2—Fe1—C7 | 143.1 (4) | C4—C3—Fe1—C5 | −37.6 (4) |
C1—C2—Fe1—C7 | −97.6 (5) | C4—C5—Fe1—C7 | 153.7 (5) |
C3—C2—Fe1—C6 | 44.4 (5) | C1—C5—Fe1—C7 | 34.2 (6) |
C1—C2—Fe1—C6 | 163.7 (4) | C4—C5—Fe1—C6 | −37.4 (5) |
C3—C2—Fe1—C8 | −122.0 (6) | C1—C5—Fe1—C6 | −156.9 (4) |
C1—C2—Fe1—C8 | −2.7 (8) | C4—C5—Fe1—C8 | −121.1 (4) |
C3—C2—Fe1—C4 | −38.3 (4) | C1—C5—Fe1—C8 | 119.4 (4) |
C1—C2—Fe1—C4 | 81.0 (5) | C4—C5—Fe1—C2 | 80.7 (5) |
C3—C2—Fe1—C1 | −119.3 (6) | C1—C5—Fe1—C2 | −38.8 (4) |
C1—C2—Fe1—C3 | 119.3 (6) | C1—C5—Fe1—C4 | −119.5 (6) |
C3—C2—Fe1—C5 | −81.1 (4) | C4—C5—Fe1—C1 | 119.5 (6) |
C1—C2—Fe1—C5 | 38.1 (4) | C4—C5—Fe1—C3 | 38.4 (4) |
C5—C4—Fe1—C7 | −76.5 (10) | C1—C5—Fe1—C3 | −81.0 (5) |
C3—C4—Fe1—C7 | 41.1 (10) | C15—C10—S1—C9 | 169.7 (5) |
C5—C4—Fe1—C6 | 153.0 (4) | C11—C10—S1—C9 | −11.5 (6) |
C3—C4—Fe1—C6 | −89.5 (4) | C8—C9—S1—C10 | −175.3 (4) |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C8H9S)(CO)2] |
Mr | 314.17 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 173 |
a, b, c (Å) | 10.3992 (5), 7.6402 (4), 35.4173 (16) |
V (Å3) | 2814.0 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.21 |
Crystal size (mm) | 0.57 × 0.27 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Integration (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.545, 0.909 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20490, 2752, 2339 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.075, 0.153, 1.26 |
No. of reflections | 2752 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.P)2 + 19.462P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.49, −0.75 |
Computer programs: APEX2 (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Bruker, 2009).
Acknowledgements
The authors thank Dr Manuel Fernandes for data collection, the NRF and the University of KwaZulu-Natal for financial support.
References
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
King, R. B. & Bisnette, M. B. (1965a). Inorg. Chem. 4, 482–485. CrossRef CAS Google Scholar
King, R. B. & Bisnette, M. B. (1965b). Inorg. Chem. 4, 486–493. CrossRef CAS Google Scholar
Nyamori, V. O., Mhlanga, S. D. & Coville, N. J. (2008). J. Organomet. Chem. 693, 2205–2222. CrossRef CAS Google Scholar
O'Connor, E. J., Brandt, S. & Helquist, P. (1987). J. Am. Chem. Soc. 109, 3739–3747. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Theys, R. D., Dudely, M. E. & Hossain, M. M. (2009). Coord. Chem. Rev. 253, 180–234. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organosulfur compounds of iron are valuable compounds that are used for the synthesis of organometallic catalysts and catalysts precursor salts. Amongst many applications this salts have been used for the cyclopropanation of alkenes (O'Connor et al., 1987). The recent proliferation and interest in the chemistry of materials has also rekindled interest in Fe-based organometallics as catalysts for the synthesis of carbon nanotubes and nanomaterials in general (Nyamori et al., 2008).
We are currently studying the application of (I) as a precursor catalyst in the synthesis of carbon nanomaterials. The presence of sulfur in this compound was believed to play the role of increasing the yield and affecting the morphology of the products obtained. In the title compound (I), the coordination of ligands around the Fe(II) ion is described as three-legged piano stool distorted octahedral geometry (Fig. 1). This is a typical geometry for complexes based on the dicarbonyl(η5-cyclopentadienyl)Fe(II) moiety (generally abbreviated as the Fp anion) and many compounds of iron with this geometry are well documented (Theys, et al., 2009; O'Connor et al., 1987).