metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dicarbon­yl(η5-cyclo­penta­dien­yl)[2-(phenyl­sulfan­yl)eth­yl]iron(II)

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 11 April 2011; accepted 21 April 2011; online 29 April 2011)

The title compound, [Fe(C5H5)(C8H9S)(CO)2], is a three-legged piano-stool iron(II) complex that is characterized by a thio­ethyl-linked phenyl ring and a cyclo­penta­dienyl moiety that occupies the apical coordination site. The two aromatic rings are essentially planar with the same maximum deviation of 0.009 Å. The mean planes of the phenyl and cyclo­penta­dienyl rings bis­ect at an acute angle of 50.08°.

Related literature

For general background and related synthesis, see: King & Bisnette (1965a[King, R. B. & Bisnette, M. B. (1965a). Inorg. Chem. 4, 482-485.],b[King, R. B. & Bisnette, M. B. (1965b). Inorg. Chem. 4, 486-493.]); Theys et al. (2009[Theys, R. D., Dudely, M. E. & Hossain, M. M. (2009). Coord. Chem. Rev. 253, 180-234.]); Nyamori et al. (2008[Nyamori, V. O., Mhlanga, S. D. & Coville, N. J. (2008). J. Organomet. Chem. 693, 2205-2222.]). For related structures, see: O'Connor et al. (1987[O'Connor, E. J., Brandt, S. & Helquist, P. (1987). J. Am. Chem. Soc. 109, 3739-3747.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C8H9S)(CO)2]

  • Mr = 314.17

  • Orthorhombic, P b c a

  • a = 10.3992 (5) Å

  • b = 7.6402 (4) Å

  • c = 35.4173 (16) Å

  • V = 2814.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 173 K

  • 0.57 × 0.27 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.545, Tmax = 0.909

  • 20490 measured reflections

  • 2752 independent reflections

  • 2339 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.153

  • S = 1.26

  • 2752 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.75 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Organosulfur compounds of iron are valuable compounds that are used for the synthesis of organometallic catalysts and catalysts precursor salts. Amongst many applications this salts have been used for the cyclopropanation of alkenes (O'Connor et al., 1987). The recent proliferation and interest in the chemistry of materials has also rekindled interest in Fe-based organometallics as catalysts for the synthesis of carbon nanotubes and nanomaterials in general (Nyamori et al., 2008).

We are currently studying the application of (I) as a precursor catalyst in the synthesis of carbon nanomaterials. The presence of sulfur in this compound was believed to play the role of increasing the yield and affecting the morphology of the products obtained. In the title compound (I), the coordination of ligands around the Fe(II) ion is described as three-legged piano stool distorted octahedral geometry (Fig. 1). This is a typical geometry for complexes based on the dicarbonyl(η5-cyclopentadienyl)Fe(II) moiety (generally abbreviated as the Fp anion) and many compounds of iron with this geometry are well documented (Theys, et al., 2009; O'Connor et al., 1987).

Related literature top

For general background and related synthesis, see: King & Bisnette (1965a,b); Theys, et al. (2009); Nyamori et al. (2008). For related structures, see: O'Connor et al. (1987).

Experimental top

A solution of cyclopentadienylirondicarbonyl dimer (1.501 g, 0.424 mmol) in dry tetrahydrofuran was treated with Na/Hg amalgam [sodium (0.2902 g, 12.70 mmol) and mercury (2.8 ml, 18.75 mmol)] and stirred at room temperature for two hours. The resulting yellowish-brown solution was transferred into another flask via a cannula and reacted with 2-chloroethyl phenyl sulfide (0.729 g, 4.242 mmol). The reaction mixture was allowed to stir for 16 h at room temperature. After concentrating the greyish brown mixture in vacuo it was extracted with dichloromethane (3 × 30 ml). Filtration of the extracted product through a celite pad afforded a clear brownish-orange filtrate which was further reduced in vacuo. The brown oil that resulted was purified by flash collumn chromatography on silica using hexane as mobile phase. A dark yellow band was collected and removal of volatiles afforded 0.8183 g of the final product as a yellow crystalline solid (yield, 61%).

1H NMR δH (400 MHz, CDCl3, p.p.m.): 1.58 (2H, t, J 8.56, CH2), 3.02 (2H, t, J 8.40, CH2), 4.68 (5H, s, Cp), 7.08 (1H, t, ArH), 7.20 (2H, m, J16.4, ArH2), 7.26 (2H, m, J 16.5, ArH2).

13C NMR (400 MHz, CDCl3, p.p.m.): 40.72, 84.03, 124.3, 127.6, 127.8, 136.1, 215.6.

IR (νCO, cm-1): 1993, 1937, 1708.

Refinement top

All H-atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: APEX2 (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radii.
Dicarbonyl(η5-cyclopentadienyl)[2-(phenylsulfanyl)ethyl]iron(II) top
Crystal data top
[Fe(C5H5)(C8H9S)(CO)2]F(000) = 1296
Mr = 314.17Dx = 1.483 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6363 reflections
a = 10.3992 (5) Åθ = 2.3–27.3°
b = 7.6402 (4) ŵ = 1.21 mm1
c = 35.4173 (16) ÅT = 173 K
V = 2814.0 (2) Å3Plate, yellow
Z = 80.57 × 0.27 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2752 independent reflections
Radiation source: fine-focus sealed tube2339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: integration
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.545, Tmax = 0.909k = 99
20490 measured reflectionsl = 4143
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.P)2 + 19.462P]
where P = (Fo2 + 2Fc2)/3
2752 reflections(Δ/σ)max = 0.004
172 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Fe(C5H5)(C8H9S)(CO)2]V = 2814.0 (2) Å3
Mr = 314.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.3992 (5) ŵ = 1.21 mm1
b = 7.6402 (4) ÅT = 173 K
c = 35.4173 (16) Å0.57 × 0.27 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2752 independent reflections
Absorption correction: integration
(SADABS; Bruker, 2009)
2339 reflections with I > 2σ(I)
Tmin = 0.545, Tmax = 0.909Rint = 0.068
20490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.P)2 + 19.462P]
where P = (Fo2 + 2Fc2)/3
2752 reflectionsΔρmax = 0.49 e Å3
172 parametersΔρmin = 0.75 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5039 (8)0.7838 (8)0.40483 (18)0.0425 (17)
H10.43310.85090.39610.051*
C20.5565 (8)0.7851 (9)0.44168 (19)0.0459 (19)
H20.52660.85510.46200.055*
C30.6571 (7)0.6697 (10)0.4435 (2)0.0461 (18)
H30.70900.64650.46500.055*
C40.6699 (7)0.5910 (9)0.4073 (2)0.0430 (17)
H40.73080.50400.40040.052*
C50.5767 (7)0.6644 (7)0.38373 (17)0.0348 (15)
H50.56480.63790.35780.042*
C60.5240 (6)0.3405 (8)0.45376 (15)0.0279 (13)
C70.3395 (7)0.5626 (8)0.45266 (17)0.0366 (15)
C80.3943 (6)0.3817 (8)0.39055 (16)0.0333 (14)
H8A0.32940.30980.40390.040*
H8B0.34760.45900.37280.040*
C90.4800 (6)0.2613 (8)0.36798 (16)0.0327 (14)
H9A0.52820.18250.38510.039*
H9B0.54240.33020.35300.039*
C100.4778 (7)0.0152 (8)0.31408 (16)0.0377 (15)
C110.6121 (7)0.0106 (7)0.31470 (16)0.0357 (15)
H110.65530.07560.32930.043*
C120.6823 (7)0.1315 (9)0.29414 (17)0.0392 (16)
H120.77360.12610.29430.047*
C130.6207 (8)0.2602 (9)0.27334 (18)0.0471 (19)
H130.66910.34310.25930.056*
C140.4893 (9)0.2665 (10)0.27328 (18)0.053 (2)
H140.44680.35510.25920.063*
C150.4172 (8)0.1468 (9)0.29330 (17)0.0453 (18)
H150.32600.15380.29300.054*
Fe10.48739 (8)0.53522 (10)0.42952 (2)0.0264 (2)
O10.5463 (4)0.2142 (5)0.46915 (12)0.0375 (11)
O20.2434 (5)0.5784 (7)0.46790 (14)0.0558 (14)
S10.37701 (18)0.1351 (2)0.33694 (5)0.0407 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (5)0.025 (3)0.043 (4)0.004 (3)0.005 (4)0.014 (3)
C20.066 (5)0.035 (4)0.037 (4)0.024 (4)0.015 (3)0.002 (3)
C30.043 (4)0.050 (4)0.045 (4)0.022 (4)0.010 (3)0.017 (3)
C40.034 (4)0.039 (4)0.055 (4)0.002 (3)0.012 (3)0.018 (3)
C50.052 (4)0.025 (3)0.028 (3)0.008 (3)0.008 (3)0.006 (2)
C60.026 (3)0.033 (3)0.025 (3)0.003 (3)0.000 (2)0.000 (2)
C70.046 (4)0.033 (3)0.031 (3)0.004 (3)0.001 (3)0.003 (3)
C80.035 (4)0.032 (3)0.034 (3)0.005 (3)0.003 (3)0.006 (3)
C90.041 (4)0.027 (3)0.031 (3)0.006 (3)0.001 (3)0.002 (2)
C100.058 (5)0.033 (3)0.022 (3)0.011 (3)0.008 (3)0.006 (2)
C110.058 (4)0.020 (3)0.030 (3)0.002 (3)0.004 (3)0.004 (2)
C120.049 (4)0.036 (3)0.033 (3)0.002 (3)0.003 (3)0.008 (3)
C130.078 (6)0.031 (3)0.033 (4)0.003 (4)0.003 (4)0.001 (3)
C140.079 (6)0.047 (4)0.033 (3)0.016 (4)0.002 (4)0.010 (3)
C150.061 (5)0.042 (4)0.032 (3)0.014 (4)0.009 (3)0.003 (3)
Fe10.0295 (5)0.0238 (4)0.0259 (4)0.0012 (4)0.0019 (4)0.0043 (3)
O10.043 (3)0.030 (2)0.040 (2)0.001 (2)0.001 (2)0.007 (2)
O20.044 (3)0.063 (4)0.060 (3)0.009 (3)0.016 (3)0.006 (3)
S10.0453 (11)0.0401 (9)0.0367 (8)0.0059 (8)0.0100 (8)0.0045 (7)
Geometric parameters (Å, º) top
C1—C51.401 (9)C8—C91.510 (8)
C1—C21.415 (9)C8—Fe12.054 (6)
C1—Fe12.098 (6)C8—H8A0.9900
C1—H10.9489C8—H8B0.9900
C2—C31.370 (11)C9—S11.812 (6)
C2—Fe12.085 (6)C9—H9A0.9900
C2—H20.9490C9—H9B0.9900
C3—C41.422 (10)C10—C151.396 (9)
C3—Fe12.101 (7)C10—C111.397 (10)
C3—H30.9500C10—S11.753 (7)
C4—C51.396 (9)C11—C121.384 (9)
C4—Fe12.098 (7)C11—H110.9500
C4—H40.9501C12—C131.386 (9)
C5—Fe12.114 (6)C12—H120.9500
C5—H50.9485C13—C141.367 (11)
C6—O11.132 (7)C13—H130.9500
C6—Fe11.759 (6)C14—C151.379 (10)
C7—O21.142 (8)C14—H140.9500
C7—Fe11.755 (7)C15—H150.9500
C5—C1—C2106.7 (6)C11—C10—S1125.1 (5)
C5—C1—Fe171.2 (3)C12—C11—C10120.2 (6)
C2—C1—Fe169.7 (4)C12—C11—H11119.9
C5—C1—H1126.7C10—C11—H11119.9
C2—C1—H1126.6C11—C12—C13120.6 (7)
Fe1—C1—H1124.1C11—C12—H12119.7
C3—C2—C1109.5 (7)C13—C12—H12119.7
C3—C2—Fe171.5 (4)C14—C13—C12119.2 (7)
C1—C2—Fe170.7 (4)C14—C13—H13120.4
C3—C2—H2125.3C12—C13—H13120.4
C1—C2—H2125.2C13—C14—C15121.3 (7)
Fe1—C2—H2124.0C13—C14—H14119.4
C2—C3—C4107.5 (6)C15—C14—H14119.4
C2—C3—Fe170.3 (4)C14—C15—C10120.2 (7)
C4—C3—Fe170.1 (4)C14—C15—H15119.9
C2—C3—H3126.3C10—C15—H15119.9
C4—C3—H3126.2C7—Fe1—C693.6 (3)
Fe1—C3—H3125.1C7—Fe1—C888.2 (3)
C5—C4—C3107.7 (6)C6—Fe1—C887.0 (3)
C5—C4—Fe171.2 (4)C7—Fe1—C295.5 (3)
C3—C4—Fe170.3 (4)C6—Fe1—C2126.8 (3)
C5—C4—H4126.1C8—Fe1—C2145.5 (3)
C3—C4—H4126.2C7—Fe1—C4160.7 (3)
Fe1—C4—H4123.9C6—Fe1—C499.1 (3)
C4—C5—C1108.5 (6)C8—Fe1—C4106.9 (3)
C4—C5—Fe170.0 (3)C2—Fe1—C465.2 (3)
C1—C5—Fe170.0 (3)C7—Fe1—C199.1 (3)
C4—C5—H5125.7C6—Fe1—C1162.0 (3)
C1—C5—H5125.8C8—Fe1—C1106.0 (3)
Fe1—C5—H5125.9C2—Fe1—C139.6 (3)
O1—C6—Fe1179.2 (6)C4—Fe1—C165.5 (3)
O2—C7—Fe1179.2 (6)C7—Fe1—C3124.6 (3)
C9—C8—Fe1115.2 (4)C6—Fe1—C396.7 (3)
C9—C8—H8A108.5C8—Fe1—C3146.4 (3)
Fe1—C8—H8A108.5C2—Fe1—C338.2 (3)
C9—C8—H8B108.5C4—Fe1—C339.6 (3)
Fe1—C8—H8B108.5C1—Fe1—C365.6 (3)
H8A—C8—H8B107.5C7—Fe1—C5133.5 (3)
C8—C9—S1107.3 (4)C6—Fe1—C5132.4 (3)
C8—C9—H9A110.3C8—Fe1—C587.6 (2)
S1—C9—H9A110.3C2—Fe1—C565.1 (2)
C8—C9—H9B110.3C4—Fe1—C538.7 (3)
S1—C9—H9B110.3C1—Fe1—C538.9 (2)
H9A—C9—H9B108.5C3—Fe1—C565.4 (3)
C15—C10—C11118.5 (7)C10—S1—C9106.0 (3)
C15—C10—S1116.4 (6)
C5—C1—C2—C30.6 (7)C5—C4—Fe1—C863.4 (4)
Fe1—C1—C2—C361.4 (5)C3—C4—Fe1—C8179.1 (4)
C5—C1—C2—Fe162.0 (4)C5—C4—Fe1—C280.6 (4)
C1—C2—C3—C40.4 (7)C3—C4—Fe1—C237.0 (4)
Fe1—C2—C3—C460.5 (4)C5—C4—Fe1—C136.9 (4)
C1—C2—C3—Fe160.8 (5)C3—C4—Fe1—C180.7 (4)
C2—C3—C4—C51.2 (7)C5—C4—Fe1—C3117.6 (6)
Fe1—C3—C4—C561.8 (4)C3—C4—Fe1—C5117.6 (6)
C2—C3—C4—Fe160.6 (5)C5—C1—Fe1—C7155.6 (4)
C3—C4—C5—C11.6 (7)C2—C1—Fe1—C787.6 (5)
Fe1—C4—C5—C159.6 (4)C5—C1—Fe1—C669.9 (9)
C3—C4—C5—Fe161.2 (4)C2—C1—Fe1—C646.9 (10)
C2—C1—C5—C41.4 (7)C5—C1—Fe1—C864.9 (5)
Fe1—C1—C5—C459.6 (4)C2—C1—Fe1—C8178.4 (4)
C2—C1—C5—Fe161.0 (4)C5—C1—Fe1—C2116.7 (6)
Fe1—C8—C9—S1178.1 (3)C5—C1—Fe1—C436.8 (4)
C15—C10—C11—C121.9 (9)C2—C1—Fe1—C480.0 (5)
S1—C10—C11—C12177.0 (4)C5—C1—Fe1—C380.4 (5)
C10—C11—C12—C131.3 (9)C2—C1—Fe1—C336.3 (4)
C11—C12—C13—C140.1 (10)C2—C1—Fe1—C5116.7 (6)
C12—C13—C14—C150.4 (11)C2—C3—Fe1—C746.6 (5)
C13—C14—C15—C100.3 (11)C4—C3—Fe1—C7164.7 (4)
C11—C10—C15—C141.4 (9)C2—C3—Fe1—C6145.7 (4)
S1—C10—C15—C14177.6 (5)C4—C3—Fe1—C696.2 (4)
C9—C8—Fe1—C7160.1 (5)C2—C3—Fe1—C8119.7 (5)
C9—C8—Fe1—C666.4 (5)C4—C3—Fe1—C81.6 (7)
C9—C8—Fe1—C2102.8 (6)C4—C3—Fe1—C2118.1 (6)
C9—C8—Fe1—C432.3 (5)C2—C3—Fe1—C4118.1 (6)
C9—C8—Fe1—C1100.9 (5)C2—C3—Fe1—C137.6 (4)
C9—C8—Fe1—C331.2 (7)C4—C3—Fe1—C180.5 (4)
C9—C8—Fe1—C566.3 (4)C2—C3—Fe1—C580.5 (4)
C3—C2—Fe1—C7143.1 (4)C4—C3—Fe1—C537.6 (4)
C1—C2—Fe1—C797.6 (5)C4—C5—Fe1—C7153.7 (5)
C3—C2—Fe1—C644.4 (5)C1—C5—Fe1—C734.2 (6)
C1—C2—Fe1—C6163.7 (4)C4—C5—Fe1—C637.4 (5)
C3—C2—Fe1—C8122.0 (6)C1—C5—Fe1—C6156.9 (4)
C1—C2—Fe1—C82.7 (8)C4—C5—Fe1—C8121.1 (4)
C3—C2—Fe1—C438.3 (4)C1—C5—Fe1—C8119.4 (4)
C1—C2—Fe1—C481.0 (5)C4—C5—Fe1—C280.7 (5)
C3—C2—Fe1—C1119.3 (6)C1—C5—Fe1—C238.8 (4)
C1—C2—Fe1—C3119.3 (6)C1—C5—Fe1—C4119.5 (6)
C3—C2—Fe1—C581.1 (4)C4—C5—Fe1—C1119.5 (6)
C1—C2—Fe1—C538.1 (4)C4—C5—Fe1—C338.4 (4)
C5—C4—Fe1—C776.5 (10)C1—C5—Fe1—C381.0 (5)
C3—C4—Fe1—C741.1 (10)C15—C10—S1—C9169.7 (5)
C5—C4—Fe1—C6153.0 (4)C11—C10—S1—C911.5 (6)
C3—C4—Fe1—C689.5 (4)C8—C9—S1—C10175.3 (4)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C8H9S)(CO)2]
Mr314.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)10.3992 (5), 7.6402 (4), 35.4173 (16)
V3)2814.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.57 × 0.27 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionIntegration
(SADABS; Bruker, 2009)
Tmin, Tmax0.545, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
20490, 2752, 2339
Rint0.068
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.153, 1.26
No. of reflections2752
No. of parameters172
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.P)2 + 19.462P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.49, 0.75

Computer programs: APEX2 (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Bruker, 2009).

 

Acknowledgements

The authors thank Dr Manuel Fernandes for data collection, the NRF and the University of KwaZulu-Natal for financial support.

References

First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKing, R. B. & Bisnette, M. B. (1965a). Inorg. Chem. 4, 482–485.  CrossRef CAS Google Scholar
First citationKing, R. B. & Bisnette, M. B. (1965b). Inorg. Chem. 4, 486–493.  CrossRef CAS Google Scholar
First citationNyamori, V. O., Mhlanga, S. D. & Coville, N. J. (2008). J. Organomet. Chem. 693, 2205–2222.  CrossRef CAS Google Scholar
First citationO'Connor, E. J., Brandt, S. & Helquist, P. (1987). J. Am. Chem. Soc. 109, 3739–3747.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTheys, R. D., Dudely, M. E. & Hossain, M. M. (2009). Coord. Chem. Rev. 253, 180–234.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds