organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1218

2-Bromo-N-(di­benzyl­carbamo­thioyl)benzamide

aFuel Cell Institute, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, bDepartment of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, and cSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: ibnhum@gmail.com

(Received 14 April 2011; accepted 19 April 2011; online 29 April 2011)

The 2-bromo­benzoyl group in the title compound, C22H19BrN2OS, adopts an E conformation with respect to the thiono S atom across the N—C bond. In the crystal structure, the mol­ecule is stablized by N—H⋯O inter­molecular hydrogen bonds, forming a one-dimensional chain along the b axis.

Related literature

For related structures, see: Yamin & Hassan (2004[Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.]); Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.],c[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.], 2009[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.]). For the synthesis, see: Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.]). For reference bond distances, see: Allen et al. (2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19BrN2OS

  • Mr = 439.36

  • Tetragonal, P 43

  • a = 12.2833 (16) Å

  • c = 14.002 (4) Å

  • V = 2112.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 273 K

  • 0.35 × 0.31 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.533, Tmax = 0.649

  • 15683 measured reflections

  • 5217 independent reflections

  • 2506 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.118

  • S = 0.93

  • 5217 reflections

  • 244 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2474 Friedel pairs

  • Flack parameter: −0.001 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1 0.86 2.79 3.220 (3) 113
N1—H1A⋯O1i 0.86 2.20 2.903 (4) 139
Symmetry code: (i) [-y+1, x, z-{\script{1\over 4}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON.

Supporting information


Comment top

The title compound, I, is a thiourea derivative of dibenzylamine analogous to our previous reported, ethyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008a), propyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008b), butyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008c) and 1-(2-morpholinoethyl)-3-(3-phenylacryloyl)thiourea (Yamin & Hassan, 2004). The molecule has the 2-bromobenzoyl group adopting an E conformation, with respect to the thiono S atom across the N1—C8 bond, whereas both the phenyl ring of the dibenzylamine group adopt E and Z conformation relative to the S atom across the N2—C8 bond (Fig. 1). The phenyl ring, (C1–C6), and the thiourea fragment, (S1/N1/N2/C8), are essentially planar and the dihedral angle between them is 72.9 (2)°. The bond lengths and angles in the molecules are in normal ranges (Allen et al., 1987).

Both phenyl rings, [C10/C11/C12/C13/C14/C15] and [C17/C18/C19/C20/C21/C22] are essentially planar and they are twisted to each other by a dihedral angle of 22.4 (4)°. There is weak intramolecular hydrogen bond, N1—H1A···Br1 (Table 1). As a result, one pseudo-six-membered ring (N1/H1A/Br1/C1/C6/C7) is formed. The intermolecular N1—H1A···O1 hydrogen bonds (Table 1,) links the molecules into a chain parallel to the b axis (Fig. 2).

Related literature top

For related structures, see: Yamin & Hassan (2004); Hassan et al. (2008a,b,c, 2009). For synthesis, see: Hassan et al. (2008a). For reference bond distances, see: Allen et al. (1987).

Experimental top

The title compound was synthesized according to a previously reported compound (Hassan et al., 2008a). A colourless crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from methanolic solution at room temperature (yield 83%).

Refinement top

H atoms of both C and N atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso = 1.2Ueq(C) for aromatic 0.93 Å, Uiso = 1.2Ueq (C) for CH2 0.97 Å, Uiso = 1.2Ueq (N) for N—H 0.86 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atoms labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of (I) showing the formation of the chain through N—H···O hydrogen bondings. H bonds are shown as dashed lines. [Symmetry code: (i) -y + 1, x, z - 1/4]
2-Bromo-N-(dibenzylcarbamothioyl)benzamide top
Crystal data top
C22H19BrN2OSDx = 1.381 Mg m3
Mr = 439.36Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 2531 reflections
Hall symbol: P 4cwθ = 1.7–28.4°
a = 12.2833 (16) ŵ = 2.06 mm1
c = 14.002 (4) ÅT = 273 K
V = 2112.6 (7) Å3Block, colourless
Z = 40.35 × 0.31 × 0.23 mm
F(000) = 896
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5217 independent reflections
Radiation source: fine-focus sealed tube2506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1216
Tmin = 0.533, Tmax = 0.649k = 1416
15683 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0418P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
5217 reflectionsΔρmax = 0.57 e Å3
244 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), with 2474 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (11)
Crystal data top
C22H19BrN2OSZ = 4
Mr = 439.36Mo Kα radiation
Tetragonal, P43µ = 2.06 mm1
a = 12.2833 (16) ÅT = 273 K
c = 14.002 (4) Å0.35 × 0.31 × 0.23 mm
V = 2112.6 (7) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5217 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2506 reflections with I > 2σ(I)
Tmin = 0.533, Tmax = 0.649Rint = 0.064
15683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.57 e Å3
S = 0.93Δρmin = 0.20 e Å3
5217 reflectionsAbsolute structure: Flack (1983), with 2474 Friedel pairs
244 parametersAbsolute structure parameter: 0.001 (11)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.20156 (4)0.59332 (4)0.23207 (5)0.0975 (2)
S10.48743 (15)0.81061 (10)0.01270 (10)0.1136 (5)
O10.5373 (2)0.6765 (2)0.2480 (2)0.0656 (7)
N10.4138 (2)0.6950 (2)0.1306 (2)0.0552 (8)
H1A0.35840.66630.10270.066*
N20.4512 (3)0.8761 (3)0.1662 (2)0.0642 (9)
C10.3189 (3)0.4915 (3)0.2306 (3)0.0685 (11)
C20.2938 (5)0.3838 (5)0.2467 (4)0.0973 (16)
H2A0.22180.36280.25620.117*
C30.3751 (6)0.3079 (4)0.2485 (4)0.1067 (18)
H3A0.35790.23490.25780.128*
C40.4787 (5)0.3375 (4)0.2371 (5)0.0959 (15)
H4A0.53330.28510.24000.115*
C50.5061 (4)0.4451 (3)0.2210 (3)0.0684 (11)
H5A0.57860.46470.21260.082*
C60.4249 (3)0.5240 (3)0.2174 (3)0.0567 (10)
C70.4632 (3)0.6395 (3)0.2022 (3)0.0517 (10)
C80.4501 (4)0.7972 (3)0.1011 (3)0.0638 (11)
C90.3979 (4)0.8690 (3)0.2597 (3)0.0694 (12)
H9A0.45230.87630.30950.083*
H9B0.36450.79790.26630.083*
C100.3114 (4)0.9563 (4)0.2731 (4)0.0733 (13)
C110.2355 (5)0.9757 (5)0.2031 (5)0.120 (2)
H11A0.23830.93830.14540.144*
C120.1542 (6)1.0525 (7)0.2202 (8)0.156 (3)
H12A0.10351.06720.17260.187*
C130.1477 (6)1.1055 (6)0.3037 (9)0.137 (3)
H13A0.09231.15560.31450.164*
C140.2215 (7)1.0855 (5)0.3709 (6)0.116 (2)
H14A0.21711.12220.42890.139*
C150.3049 (5)1.0111 (4)0.3565 (4)0.0841 (14)
H15A0.35620.99910.40410.101*
C160.5113 (4)0.9773 (3)0.1497 (4)0.0799 (13)
H16A0.46551.03870.16640.096*
H16B0.52920.98310.08240.096*
C170.6145 (4)0.9818 (3)0.2075 (4)0.0722 (13)
C180.6297 (6)1.0599 (5)0.2746 (5)0.117 (2)
H18A0.57581.11190.28390.140*
C190.7213 (7)1.0642 (6)0.3286 (7)0.161 (4)
H19A0.72791.11640.37630.193*
C200.8018 (6)0.9934 (7)0.3131 (6)0.134 (3)
H20A0.86721.00070.34590.160*
C210.7890 (5)0.9132 (6)0.2515 (7)0.132 (3)
H21A0.84320.86090.24430.158*
C220.6946 (5)0.9072 (5)0.1976 (4)0.1103 (19)
H22A0.68610.85080.15390.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0739 (3)0.1215 (4)0.0970 (4)0.0048 (3)0.0148 (3)0.0028 (4)
S10.1990 (16)0.0888 (8)0.0531 (7)0.0186 (9)0.0167 (10)0.0149 (8)
O10.0769 (17)0.0579 (16)0.0620 (19)0.0059 (14)0.0219 (16)0.0042 (14)
N10.064 (2)0.056 (2)0.0457 (18)0.0031 (16)0.0102 (15)0.0076 (14)
N20.082 (2)0.050 (2)0.061 (2)0.0049 (18)0.0021 (18)0.0128 (18)
C10.083 (3)0.072 (3)0.051 (2)0.016 (2)0.003 (3)0.007 (2)
C20.108 (4)0.097 (4)0.087 (4)0.042 (4)0.011 (3)0.011 (3)
C30.156 (6)0.066 (3)0.098 (4)0.026 (4)0.007 (4)0.014 (3)
C40.134 (5)0.063 (3)0.090 (4)0.012 (3)0.004 (4)0.019 (3)
C50.092 (3)0.057 (2)0.056 (3)0.000 (2)0.005 (2)0.013 (2)
C60.075 (3)0.055 (2)0.041 (2)0.009 (2)0.0036 (19)0.0091 (18)
C70.060 (2)0.056 (2)0.039 (2)0.007 (2)0.0019 (18)0.0025 (17)
C80.079 (3)0.054 (3)0.058 (3)0.001 (2)0.009 (2)0.013 (2)
C90.076 (3)0.065 (3)0.067 (3)0.006 (2)0.003 (2)0.004 (2)
C100.070 (3)0.056 (3)0.094 (4)0.001 (2)0.003 (3)0.004 (2)
C110.110 (4)0.113 (4)0.135 (6)0.034 (4)0.056 (4)0.034 (4)
C120.117 (5)0.139 (6)0.212 (10)0.046 (5)0.072 (6)0.031 (7)
C130.082 (5)0.090 (5)0.237 (10)0.007 (4)0.039 (6)0.006 (6)
C140.143 (6)0.065 (4)0.140 (6)0.003 (4)0.042 (5)0.017 (4)
C150.099 (4)0.058 (3)0.095 (4)0.002 (3)0.009 (3)0.009 (3)
C160.109 (4)0.049 (3)0.082 (3)0.004 (3)0.005 (3)0.013 (2)
C170.080 (3)0.048 (2)0.089 (4)0.000 (2)0.011 (3)0.002 (2)
C180.129 (5)0.079 (4)0.143 (5)0.021 (4)0.033 (4)0.041 (4)
C190.125 (6)0.128 (5)0.229 (10)0.021 (5)0.057 (6)0.094 (6)
C200.095 (5)0.148 (6)0.159 (7)0.013 (5)0.022 (4)0.042 (5)
C210.087 (4)0.143 (6)0.166 (7)0.027 (4)0.004 (5)0.039 (6)
C220.105 (4)0.110 (4)0.116 (5)0.013 (4)0.007 (4)0.041 (3)
Geometric parameters (Å, º) top
Br1—C11.909 (4)C10—C111.372 (7)
S1—C81.666 (4)C11—C121.394 (10)
O1—C71.203 (4)C11—H11A0.9300
N1—C71.356 (5)C12—C131.341 (11)
N1—C81.396 (5)C12—H12A0.9300
N1—H1A0.8602C13—C141.329 (11)
N2—C81.330 (5)C13—H13A0.9300
N2—C161.464 (6)C14—C151.388 (8)
N2—C91.467 (5)C14—H14A0.9300
C1—C61.375 (5)C15—H15A0.9300
C1—C21.376 (6)C16—C171.505 (7)
C2—C31.367 (8)C16—H16A0.9700
C2—H2A0.9300C16—H16B0.9700
C3—C41.334 (8)C17—C221.352 (7)
C3—H3A0.9300C17—C181.355 (7)
C4—C51.382 (6)C18—C191.356 (9)
C4—H4A0.9300C18—H18A0.9300
C5—C61.392 (5)C19—C201.334 (9)
C5—H5A0.9300C19—H19A0.9300
C6—C71.509 (5)C20—C211.319 (10)
C9—C101.521 (6)C20—H20A0.9300
C9—H9A0.9700C21—C221.386 (9)
C9—H9B0.9700C21—H21A0.9300
C10—C151.350 (7)C22—H22A0.9300
C7—N1—C8121.9 (3)C10—C11—C12118.7 (6)
C7—N1—H1A119.0C10—C11—H11A120.6
C8—N1—H1A119.2C12—C11—H11A120.6
C8—N2—C16121.0 (4)C13—C12—C11121.4 (7)
C8—N2—C9124.3 (3)C13—C12—H12A119.3
C16—N2—C9114.6 (4)C11—C12—H12A119.3
C6—C1—C2120.9 (4)C14—C13—C12119.1 (7)
C6—C1—Br1121.7 (3)C14—C13—H13A120.4
C2—C1—Br1117.3 (4)C12—C13—H13A120.4
C3—C2—C1119.7 (5)C13—C14—C15121.4 (7)
C3—C2—H2A120.2C13—C14—H14A119.3
C1—C2—H2A120.2C15—C14—H14A119.3
C4—C3—C2120.6 (5)C10—C15—C14119.9 (6)
C4—C3—H3A119.7C10—C15—H15A120.1
C2—C3—H3A119.7C14—C15—H15A120.1
C3—C4—C5120.8 (5)N2—C16—C17111.8 (4)
C3—C4—H4A119.6N2—C16—H16A109.3
C5—C4—H4A119.6C17—C16—H16A109.3
C4—C5—C6119.9 (5)N2—C16—H16B109.3
C4—C5—H5A120.1C17—C16—H16B109.3
C6—C5—H5A120.1H16A—C16—H16B107.9
C1—C6—C5118.1 (4)C22—C17—C18116.8 (5)
C1—C6—C7126.0 (4)C22—C17—C16122.2 (5)
C5—C6—C7115.9 (4)C18—C17—C16121.0 (5)
O1—C7—N1122.9 (3)C17—C18—C19121.9 (6)
O1—C7—C6121.1 (3)C17—C18—H18A119.1
N1—C7—C6115.9 (3)C19—C18—H18A119.1
N2—C8—N1117.1 (3)C20—C19—C18119.9 (7)
N2—C8—S1125.5 (3)C20—C19—H19A120.0
N1—C8—S1117.4 (3)C18—C19—H19A120.0
N2—C9—C10112.3 (4)C21—C20—C19120.3 (7)
N2—C9—H9A109.1C21—C20—H20A119.8
C10—C9—H9A109.1C19—C20—H20A119.8
N2—C9—H9B109.1C20—C21—C22119.7 (6)
C10—C9—H9B109.1C20—C21—H21A120.2
H9A—C9—H9B107.9C22—C21—H21A120.2
C15—C10—C11119.4 (5)C17—C22—C21121.1 (5)
C15—C10—C9119.9 (5)C17—C22—H22A119.4
C11—C10—C9120.6 (5)C21—C22—H22A119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.862.793.220 (3)113
N1—H1A···O1i0.862.202.903 (4)139
Symmetry code: (i) y+1, x, z1/4.

Experimental details

Crystal data
Chemical formulaC22H19BrN2OS
Mr439.36
Crystal system, space groupTetragonal, P43
Temperature (K)273
a, c (Å)12.2833 (16), 14.002 (4)
V3)2112.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.35 × 0.31 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.533, 0.649
No. of measured, independent and
observed [I > 2σ(I)] reflections
15683, 5217, 2506
Rint0.064
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.118, 0.93
No. of reflections5217
No. of parameters244
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.20
Absolute structureFlack (1983), with 2474 Friedel pairs
Absolute structure parameter0.001 (11)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.862.793.220 (3)112.5
N1—H1A···O1i0.862.202.903 (4)138.7
Symmetry code: (i) y+1, x, z1/4.
 

Acknowledgements

The authors thank the Universiti Kebangsaan Malaysia for providing facilities and grants (postdoctoral for INH, grant Nos. UKM-GUP-BTT-07-30-190 and UKM-OUP-TK-16-73/2010), and the Kementerian Pengajian Tinggi, Malaysia, for research fund No. UKM-AP-TK-05-2009.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1218
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds