organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1253-o1254

1,3-Di­benzyl-1H-anthra[1,2-d]imidazole-2,6,11(3H)-trione

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, cLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: kandri_rodi@yahoo.fr

(Received 17 April 2011; accepted 21 April 2011; online 29 April 2011)

The mol­ecule of the title compound, C29H20N2O3, contains four fused rings, three are six-membered rings and one is the five-membered imidazole ring. The fused-ring system is linked to two benzyl groups. The four fused rings are folded around the O=C⋯C=O direction of the anthraquinone, with a dihedral angle of 16.36 (8)° between the two terminal rings (A and D). The imidazole ring (D) is almost perpendicular to the two benzyl groups (E and F) with dihedral angles of 86.69 (17) and 83.15 (13)°, respectively. In the crystal, adjacent mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonding.

Related literature

For background to the pharmacological activity of anthraquinone, see: Alves et al. (2004[Alves, D. S., Perez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549-561.]); Gatto et al. (1996[Gatto, B., Zagotto, G., Sissi, C., Cera, C., Uriarte, E., Palu, G., Capranico, G. & Palumbo, M. (1996). J. Med. Chem. 39, 3114-3122.]); Krapcho et al. (1991[Krapcho, A. P., Getahun, Z., Avery, K. L., Vargas, K. J., Hacker, M. P., Spinelli, S., Pezzoni, G. & Manzotti, C. (1991). J. Med. Chem. 34, 2373-2380.]). For information on its use as a synthetic dye, see: Naeimi & Namdari (2009[Naeimi, H. & Namdari, R. (2009). Dyes Pigments, 81, 259-263.]). For related structures, see: Afrakssou et al. (2010[Afrakssou, Z., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1851.]); Guimarães et al. (2009[Guimarães, T. T., Da Silva Júnior, E. N., Carvalho, C. E. M., De Simone, C. A. & Pinto, A. V. (2009). Acta Cryst. E65, o1063.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C29H20N2O3

  • Mr = 444.47

  • Orthorhombic, P 21 21 21

  • a = 8.1389 (3) Å

  • b = 12.8748 (4) Å

  • c = 21.5528 (8) Å

  • V = 2258.45 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.49 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.987

  • 36228 measured reflections

  • 2629 independent reflections

  • 2137 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.05

  • 2629 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.39 3.312 (3) 171
C23—H23A⋯O2ii 0.97 2.47 3.439 (4) 174
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Anthraquinone-containing extracts from different plant sources such as senna, cascara, aloe, frangula, and rhubarb have been found to have wide variety of pharmacological activities such as antiinflammatory, wound healing, analgesic, antipyretic, antimicrobial, and antitumor activities (Alves et al., 2004). Anthraquinone planarity allows an intercalation between base pairs of DNA in the β conformation, while its redox properties are linked to the production of radical species in biological systems. The chemical and biological activity of anthraquinone compounds depends on the different substituents of the planar ring system (Gatto et al., 1996; Krapcho et al., 1991). Anthraquinone dyes are used for coloration of cotton and cellulose fibers as well as of hydrophobic, synthetic materials (Naeimi et al., 2009).

The present work is a continuation of the preparation of new derivatives of anthra[1,2-d]imidazole-2,6,11–trione for biological applications (Afrakssou et al., (2010), Guimarães et al. (2009)). The reactivity of benzyl bromide towards 1H-anthra [2,1-d]imidazole-2,6,11(3H)-trione under phase-transfer catalysis conditions using tetra n-butyl ammonium bromide (TBAB) as catalyst and potassium carbonate as base leads to 1,3-dibenzyl-1H-anthra[2,1-d]imidazole-2,6,11(3H)-trione with good yield (Scheme 1).

All rings forming the molecule are planar except for the anthraquinone (B) which adopts a twisted conformation (Fig. 1), as indicated by Cremer & Pople (1975) with puckering parameters Q = 0.242 (2) Å, θ = 104.7 (5) ° and ϕ = 137.6 (5)°. The fused five and six-membered rings (C, D) are planar and built with A ring (sheme 1) a dihedral angle of 16.36 (8) °. The imidazole ring (D) is almost perpendicular to the two benzyl groups (E, F) with dihedral angles of 86.69 (17) ° and 83.15 (13) ° respectively. In the crystal, adjacent molecules are linked by intermolecular C—H···O hydrogen bonding (Table 1). The structure is further stabilized by π-π interactions between rings A and D with a centroid to centroid distance of 3.411 (2) Å and an interplanar distance of 3.395 (2)Å resulting in slight offset of 5.32°.

Related literature top

For background on the pharmacological activities of anthraquinone, see: Alves et al. (2004); Gatto et al. (1996); Krapcho et al. (1991). For information on its use as a synthetic dye, see: Naeimi & Namdari (2009). For related compounds, see: Afrakssou et al. (2010); Guimarães et al. (2009). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a solution of 1H-anthra [2, 1 - d] imidazole-2, 6, 11(3H)-trione (0.5 g, 0.18 mmol), potassium carbonate (0.78 g, 0.56 mmol) and tetra n-butylammonium bromide (0.06 g, 0.018 mmol) in DMF (15 ml)) was added Benzyl bromide (0.56 ml, 0.47 mmol). Stirring was continued at room temperature for 24 h. The mixture was filtered and the solvent removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate-hexane (1/1) as eluent. Orange crystals were isolated when the solvent was allowed to evaporate.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å for all H atoms with Uiso(H) = 1.2 Ueq aromatic and methylene. In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and thus the Friedel pairs were merged and any references to the Flack parameter were removed. The reflections (0 0 2) and (0 1 1) were omitted because the difference between their calculated and observed intensities are very large. They are affected by the beamstop.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular plot the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
1,3-Dibenzyl-1H-anthra[1,2-d]imidazole-2,6,11(3H)-trione top
Crystal data top
C29H20N2O3F(000) = 928
Mr = 444.47Dx = 1.307 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2629 reflections
a = 8.1389 (3) Åθ = 2.5–26.4°
b = 12.8748 (4) ŵ = 0.09 mm1
c = 21.5528 (8) ÅT = 296 K
V = 2258.45 (14) Å3Flat, orange
Z = 40.49 × 0.18 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2629 independent reflections
Radiation source: fine-focus sealed tube2137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.982, Tmax = 0.987k = 1516
36228 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.2421P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2629 reflectionsΔρmax = 0.23 e Å3
308 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0123 (15)
Crystal data top
C29H20N2O3V = 2258.45 (14) Å3
Mr = 444.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.1389 (3) ŵ = 0.09 mm1
b = 12.8748 (4) ÅT = 296 K
c = 21.5528 (8) Å0.49 × 0.18 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2629 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2137 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.987Rint = 0.047
36228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2629 reflectionsΔρmin = 0.18 e Å3
308 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0570 (3)0.41604 (19)0.84012 (11)0.0512 (6)
C20.2441 (3)0.53761 (17)0.81399 (10)0.0420 (5)
C30.0919 (3)0.58851 (17)0.82177 (9)0.0375 (5)
C40.0807 (3)0.69572 (17)0.81222 (9)0.0387 (5)
C50.2294 (3)0.74849 (19)0.79858 (10)0.0439 (5)
C60.3764 (3)0.6961 (2)0.79119 (12)0.0508 (6)
H60.47110.73330.78180.061*
C70.3851 (3)0.5888 (2)0.79761 (11)0.0503 (6)
H70.48290.55320.79100.060*
C80.0748 (3)0.75336 (18)0.80889 (10)0.0425 (5)
C90.0669 (3)0.86723 (18)0.81962 (10)0.0471 (6)
C100.0803 (3)0.92029 (19)0.81274 (10)0.0507 (6)
C110.2320 (4)0.8639 (2)0.79481 (12)0.0546 (6)
C120.0849 (5)1.0278 (2)0.82132 (12)0.0674 (8)
H120.18261.06420.81580.081*
C130.0569 (5)1.0794 (2)0.83799 (13)0.0758 (9)
H130.05381.15070.84490.091*
C140.2029 (5)1.0266 (2)0.84455 (13)0.0730 (9)
H140.29751.06240.85580.088*
C150.2100 (4)0.9207 (2)0.83451 (13)0.0606 (7)
H150.30950.88550.83770.073*
C160.1814 (3)0.5233 (2)0.86850 (12)0.0506 (6)
H16A0.23100.45520.87280.061*
H16B0.25300.56510.84260.061*
C170.1677 (3)0.5729 (2)0.93142 (12)0.0590 (7)
C180.0688 (5)0.5290 (4)0.97586 (16)0.1043 (13)
H180.00910.46940.96670.125*
C190.0579 (8)0.5726 (6)1.0333 (2)0.155 (2)
H190.00950.54251.06310.186*
C200.1443 (10)0.6593 (6)1.0473 (2)0.164 (3)
H200.13520.68881.08660.197*
C210.2439 (9)0.7032 (4)1.0045 (3)0.152 (3)
H210.30420.76241.01400.183*
C220.2544 (6)0.6587 (3)0.94659 (17)0.1007 (13)
H220.32300.68860.91710.121*
C230.3437 (3)0.3524 (2)0.82695 (13)0.0583 (7)
H23A0.42410.36520.79460.070*
H23B0.29250.28590.81840.070*
C240.4309 (3)0.34610 (19)0.88834 (12)0.0522 (6)
C250.5405 (5)0.2681 (3)0.8964 (2)0.1062 (14)
H250.55820.22070.86450.127*
C260.6266 (7)0.2583 (5)0.9517 (3)0.143 (2)
H260.70190.20450.95630.172*
C270.6028 (6)0.3250 (4)0.9984 (2)0.1106 (15)
H270.65770.31621.03590.133*
C280.4987 (5)0.4050 (3)0.99050 (14)0.0869 (10)
H280.48560.45361.02210.104*
C290.4106 (4)0.4159 (2)0.93574 (13)0.0680 (8)
H290.33740.47090.93120.082*
N10.0211 (2)0.51260 (15)0.83808 (8)0.0440 (5)
N20.2183 (2)0.43334 (15)0.82446 (9)0.0484 (5)
O10.0047 (3)0.33329 (14)0.85284 (11)0.0743 (6)
O20.3554 (3)0.91046 (17)0.77953 (12)0.0851 (7)
O30.2048 (2)0.71168 (14)0.79558 (9)0.0562 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0601 (15)0.0381 (13)0.0553 (13)0.0009 (12)0.0041 (12)0.0057 (10)
C20.0419 (12)0.0429 (12)0.0412 (11)0.0069 (10)0.0025 (10)0.0031 (9)
C30.0349 (11)0.0410 (11)0.0366 (10)0.0006 (10)0.0014 (9)0.0027 (9)
C40.0382 (11)0.0420 (12)0.0358 (10)0.0022 (10)0.0006 (9)0.0008 (9)
C50.0424 (13)0.0459 (13)0.0433 (12)0.0039 (11)0.0011 (10)0.0043 (10)
C60.0374 (12)0.0613 (16)0.0539 (13)0.0058 (12)0.0048 (11)0.0031 (12)
C70.0348 (12)0.0621 (15)0.0540 (13)0.0065 (12)0.0018 (10)0.0024 (12)
C80.0421 (12)0.0444 (12)0.0410 (11)0.0045 (11)0.0014 (10)0.0026 (9)
C90.0588 (14)0.0397 (12)0.0427 (12)0.0091 (12)0.0023 (12)0.0030 (9)
C100.0676 (16)0.0409 (12)0.0437 (12)0.0020 (13)0.0013 (12)0.0066 (10)
C110.0595 (16)0.0503 (14)0.0541 (14)0.0097 (13)0.0074 (12)0.0093 (12)
C120.103 (2)0.0414 (14)0.0578 (15)0.0049 (17)0.0003 (17)0.0088 (12)
C130.130 (3)0.0387 (13)0.0591 (16)0.016 (2)0.0005 (19)0.0022 (12)
C140.101 (3)0.0517 (16)0.0663 (17)0.0253 (18)0.0034 (17)0.0017 (13)
C150.0702 (17)0.0507 (14)0.0608 (15)0.0181 (14)0.0031 (14)0.0013 (12)
C160.0371 (12)0.0480 (13)0.0666 (14)0.0062 (11)0.0028 (11)0.0018 (11)
C170.0514 (14)0.0671 (16)0.0586 (14)0.0085 (15)0.0149 (12)0.0018 (13)
C180.096 (3)0.151 (4)0.0661 (19)0.017 (3)0.009 (2)0.003 (2)
C190.145 (5)0.254 (8)0.064 (2)0.017 (6)0.012 (3)0.020 (3)
C200.203 (7)0.214 (7)0.076 (3)0.038 (6)0.041 (4)0.055 (4)
C210.209 (7)0.148 (5)0.100 (3)0.019 (5)0.060 (4)0.043 (4)
C220.124 (3)0.094 (3)0.084 (2)0.021 (3)0.032 (2)0.010 (2)
C230.0621 (16)0.0460 (13)0.0666 (16)0.0194 (13)0.0007 (14)0.0110 (12)
C240.0457 (13)0.0493 (13)0.0615 (14)0.0066 (12)0.0049 (12)0.0079 (11)
C250.119 (3)0.093 (3)0.106 (3)0.061 (3)0.024 (3)0.004 (2)
C260.148 (4)0.148 (4)0.133 (4)0.082 (4)0.040 (4)0.016 (4)
C270.092 (3)0.152 (4)0.087 (3)0.008 (3)0.027 (2)0.044 (3)
C280.093 (2)0.111 (3)0.0569 (17)0.014 (2)0.0090 (17)0.0104 (17)
C290.0717 (19)0.0707 (17)0.0618 (16)0.0085 (17)0.0029 (14)0.0048 (14)
N10.0427 (11)0.0397 (10)0.0497 (10)0.0022 (9)0.0009 (9)0.0037 (8)
N20.0468 (11)0.0403 (11)0.0582 (11)0.0097 (9)0.0025 (10)0.0058 (9)
O10.0786 (14)0.0369 (9)0.1073 (17)0.0058 (10)0.0062 (12)0.0017 (9)
O20.0745 (14)0.0620 (12)0.1188 (18)0.0200 (12)0.0288 (14)0.0139 (12)
O30.0412 (9)0.0526 (10)0.0749 (12)0.0058 (8)0.0080 (8)0.0012 (9)
Geometric parameters (Å, º) top
C1—O11.209 (3)C16—C171.503 (4)
C1—N21.374 (3)C16—H16A0.9700
C1—N11.397 (3)C16—H16B0.9700
C2—C71.370 (3)C17—C221.351 (5)
C2—N21.377 (3)C17—C181.373 (5)
C2—C31.412 (3)C18—C191.362 (6)
C3—N11.387 (3)C18—H180.9300
C3—C41.398 (3)C19—C201.353 (9)
C4—C51.418 (3)C19—H190.9300
C4—C81.469 (3)C20—C211.353 (9)
C5—C61.383 (3)C20—H200.9300
C5—C111.488 (4)C21—C221.375 (7)
C6—C71.390 (4)C21—H210.9300
C6—H60.9300C22—H220.9300
C7—H70.9300C23—N21.460 (3)
C8—O31.220 (3)C23—C241.504 (4)
C8—C91.486 (3)C23—H23A0.9700
C9—C101.387 (4)C23—H23B0.9700
C9—C151.391 (4)C24—C251.354 (4)
C10—C121.396 (4)C24—C291.371 (4)
C10—C111.483 (4)C25—C261.389 (6)
C11—O21.215 (3)C25—H250.9300
C12—C131.380 (5)C26—C271.338 (6)
C12—H120.9300C26—H260.9300
C13—C141.376 (5)C27—C281.344 (5)
C13—H130.9300C27—H270.9300
C14—C151.382 (4)C28—C291.388 (4)
C14—H140.9300C28—H280.9300
C15—H150.9300C29—H290.9300
C16—N11.467 (3)
O1—C1—N2126.5 (2)H16A—C16—H16B107.9
O1—C1—N1127.0 (2)C22—C17—C18118.3 (3)
N2—C1—N1106.4 (2)C22—C17—C16121.8 (3)
C7—C2—N2129.7 (2)C18—C17—C16119.9 (3)
C7—C2—C3122.8 (2)C19—C18—C17120.2 (5)
N2—C2—C3107.4 (2)C19—C18—H18119.9
N1—C3—C4133.6 (2)C17—C18—H18119.9
N1—C3—C2106.54 (18)C20—C19—C18120.6 (5)
C4—C3—C2119.8 (2)C20—C19—H19119.7
C3—C4—C5116.6 (2)C18—C19—H19119.7
C3—C4—C8124.2 (2)C21—C20—C19120.2 (5)
C5—C4—C8118.87 (18)C21—C20—H20119.9
C6—C5—C4121.9 (2)C19—C20—H20119.9
C6—C5—C11117.9 (2)C20—C21—C22118.9 (6)
C4—C5—C11120.1 (2)C20—C21—H21120.6
C5—C6—C7121.2 (2)C22—C21—H21120.6
C5—C6—H6119.4C17—C22—C21121.8 (5)
C7—C6—H6119.4C17—C22—H22119.1
C2—C7—C6117.5 (2)C21—C22—H22119.1
C2—C7—H7121.3N2—C23—C24113.6 (2)
C6—C7—H7121.3N2—C23—H23A108.8
O3—C8—C4122.4 (2)C24—C23—H23A108.8
O3—C8—C9120.5 (2)N2—C23—H23B108.8
C4—C8—C9117.0 (2)C24—C23—H23B108.8
C10—C9—C15120.3 (2)H23A—C23—H23B107.7
C10—C9—C8120.5 (2)C25—C24—C29118.0 (3)
C15—C9—C8119.2 (2)C25—C24—C23117.6 (3)
C9—C10—C12119.8 (3)C29—C24—C23124.3 (2)
C9—C10—C11120.4 (2)C24—C25—C26120.7 (4)
C12—C10—C11119.8 (3)C24—C25—H25119.7
O2—C11—C10121.1 (2)C26—C25—H25119.7
O2—C11—C5121.3 (3)C27—C26—C25120.9 (4)
C10—C11—C5117.5 (2)C27—C26—H26119.5
C13—C12—C10119.3 (3)C25—C26—H26119.5
C13—C12—H12120.4C26—C27—C28119.2 (4)
C10—C12—H12120.4C26—C27—H27120.4
C14—C13—C12120.8 (3)C28—C27—H27120.4
C14—C13—H13119.6C27—C28—C29120.7 (4)
C12—C13—H13119.6C27—C28—H28119.6
C13—C14—C15120.5 (3)C29—C28—H28119.6
C13—C14—H14119.8C24—C29—C28120.3 (3)
C15—C14—H14119.8C24—C29—H29119.8
C14—C15—C9119.3 (3)C28—C29—H29119.8
C14—C15—H15120.4C3—N1—C1109.50 (19)
C9—C15—H15120.4C3—N1—C16129.55 (19)
N1—C16—C17112.2 (2)C1—N1—C16118.3 (2)
N1—C16—H16A109.2C1—N2—C2110.11 (19)
C17—C16—H16A109.2C1—N2—C23122.9 (2)
N1—C16—H16B109.2C2—N2—C23126.6 (2)
C17—C16—H16B109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.393.312 (3)171
C23—H23A···O2ii0.972.473.439 (4)174
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC29H20N2O3
Mr444.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.1389 (3), 12.8748 (4), 21.5528 (8)
V3)2258.45 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.982, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
36228, 2629, 2137
Rint0.047
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.05
No. of reflections2629
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.393.312 (3)170.5
C23—H23A···O2ii0.972.473.439 (4)173.7
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+3/2.
 

References

First citationAfrakssou, Z., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlves, D. S., Perez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549–561.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGatto, B., Zagotto, G., Sissi, C., Cera, C., Uriarte, E., Palu, G., Capranico, G. & Palumbo, M. (1996). J. Med. Chem. 39, 3114–3122.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGuimarães, T. T., Da Silva Júnior, E. N., Carvalho, C. E. M., De Simone, C. A. & Pinto, A. V. (2009). Acta Cryst. E65, o1063.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrapcho, A. P., Getahun, Z., Avery, K. L., Vargas, K. J., Hacker, M. P., Spinelli, S., Pezzoni, G. & Manzotti, C. (1991). J. Med. Chem. 34, 2373–2380.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNaeimi, H. & Namdari, R. (2009). Dyes Pigments, 81, 259–263.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1253-o1254
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds