organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1195

N-Benzyl­aniline

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 5 April 2011; accepted 18 April 2011; online 22 April 2011)

The title compound, C13H13N, is an N-alkyl­ated derivative of aniline. The N atom is present in a nearly planar mol­ecular geometry (angles sums at the N atom are 358 and 359° in the two molecules of the asymmetric unit). The planes defined by the aromatic rings intersect at angles of 80.76 (4) and 81.40 (4)° in the two molecules. In the crystal, N—H⋯Cg inter­actions connect the two mol­ecules of the asymmetric unit to form infinite homodromic chains along the crystallographic b axis [N⋯π = 3.4782 (12) and 3.4642 (13) Å].

Related literature

For the crystal structure analysis of a ruthenium coordination compound featuring the title compound as a ligand, see: Casey et al. (2006[Casey, C. P., Bikzhanova, G. A. & Guzei, I. A. (2006). J. Am. Chem. Soc. 128, 2286-2293.]). For the crystal structure analysis of a rhodium coordination compound containing the title compound as a ligand, see: Marcazzan et al. (2003[Marcazzan, P., Patrick, B. O. & James, B. R. (2003). Organometallics, 22, 1177-1179.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N

  • Mr = 183.24

  • Monoclinic, P 21 /c

  • a = 18.8185 (6) Å

  • b = 5.7911 (2) Å

  • c = 19.3911 (7) Å

  • β = 103.338 (1)°

  • V = 2056.24 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 200 K

  • 0.60 × 0.33 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 18958 measured reflections

  • 4929 independent reflections

  • 4088 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.04

  • 4929 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C21–C26 ring and Cg2 is the centroid of the C41–C46 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯Cg1i 0.889 (17) 2.608 (17) 3.4782 (12) 166.0 (14)
N2—H72⋯Cg2i 0.858 (17) 2.625 (17) 3.4642 (13) 165.5 (15)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The coordination behaviour of monodentate ligands is influenced by electronic as well as steric factors. In this aspect, derivatives of aniline are particularily interesting and promising compounds due to a series of reasons: first, they can act as neutral or – upon deprotonation – as anionic ligands. Second, the derivatization of the aromatic system of aniline allows for the fine-tuning of the basicity and nucleophilicity of the N atom and thus its coordination behaviour in terms of Lewis basicity. Third, the steric pretense of the ligand can be varied by applying different patterns of substituents among the aromatic regime as well as by endowing the N atom itself with sterically more demanding groups. In our continuous efforts to elucidate the coordination behaviour of N donor ligands, it seemed necessary to determine the crystal structure of the title compound to enable comparative studies with the coordination compounds obtained. So far, only two structure determinations involving the title compound as a ligand are present in the literature (Casey et al., 2006; Marcazzan et al., 2003).

The molecular geometry around both molecules of the asymmetric unit is essentially planar with X—N—Y angles ranging from 117.0 (10)° to 124.54 (11)°. The biggest of these angles in the title compound is found for both molecules for the C—N—C angle. The phenyl rings within one molecule of the asymmetric unit are nearly orientated perpendicular to each other, the least-squares planes defined by the aromatic rings within one molecule enclose angles of 80.76 (4)° and 81.40 (4)°, respectively (Fig. 1).

The N—H groups do not interact with each other. Instead, the formation of N—H···Cg contacts is observed in the crystal structure. These contacts exclusively use the aromatic moiety of the benzyl substituent as acceptor and are present only between one of the molecules of the asymmetric unit and its translation symmetry-generated equivalents (Fig. 2). In total, the formation of two one-dimensional chains of molecules along the crystallographic b axis is observed.

The packing of the title compound is shown in Fig. 3.

Related literature top

For the crystal structure analysis of a ruthenium coordination compound featuring the title compound as a ligand, see: Casey et al. (2006). For the crystal structure analysis of a rhodium coordination compound containing the title compound as a ligand, see: Marcazzan et al. (2003).

Experimental top

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were taken directly from the provided compound.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms, C—H 0.99 Å for aliphatic C atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular N–H···Cg contacts, viewed along [00\=1]. Symmetry operators: i x, y + 1, z; ii x, y - 1, z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [010] (anisotropic displacement ellipsoids drawn at 50% probability level).
N-Benzylaniline top
Crystal data top
C13H13NF(000) = 784
Mr = 183.24Dx = 1.184 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9996 reflections
a = 18.8185 (6) Åθ = 2.2–28.3°
b = 5.7911 (2) ŵ = 0.07 mm1
c = 19.3911 (7) ÅT = 200 K
β = 103.338 (1)°Block, colourless
V = 2056.24 (12) Å30.60 × 0.33 × 0.13 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4088 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 28.0°, θmin = 1.1°
ϕ and ω scansh = 2424
18958 measured reflectionsk = 77
4929 independent reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.4031P]
where P = (Fo2 + 2Fc2)/3
4929 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C13H13NV = 2056.24 (12) Å3
Mr = 183.24Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.8185 (6) ŵ = 0.07 mm1
b = 5.7911 (2) ÅT = 200 K
c = 19.3911 (7) Å0.60 × 0.33 × 0.13 mm
β = 103.338 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4088 reflections with I > 2σ(I)
18958 measured reflectionsRint = 0.038
4929 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.17 e Å3
4929 reflectionsΔρmin = 0.15 e Å3
261 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03311 (6)0.97897 (19)0.16847 (6)0.0493 (2)
H710.0550 (9)1.099 (3)0.1535 (9)0.070 (5)*
N20.46883 (6)0.44222 (19)0.15115 (6)0.0540 (3)
H720.4494 (9)0.561 (3)0.1275 (9)0.068 (5)*
C10.07935 (7)0.8108 (2)0.21148 (6)0.0479 (3)
H1A0.05130.73770.24300.058*
H1B0.12090.89350.24210.058*
C20.42036 (7)0.2780 (2)0.17124 (7)0.0503 (3)
H2A0.37760.36290.18000.060*
H2B0.44580.20730.21670.060*
C110.03932 (6)0.94047 (18)0.13574 (6)0.0385 (2)
C120.07788 (7)1.1118 (2)0.09194 (7)0.0493 (3)
H120.05351.24880.08350.059*
C130.15091 (7)1.0841 (2)0.06090 (7)0.0560 (3)
H130.17631.20290.03140.067*
C140.18771 (7)0.8866 (2)0.07191 (7)0.0529 (3)
H140.23820.86900.05080.063*
C150.14974 (7)0.7155 (2)0.11411 (7)0.0501 (3)
H150.17440.57810.12170.060*
C160.07616 (6)0.7395 (2)0.14580 (6)0.0436 (3)
H160.05090.61860.17440.052*
C210.10986 (5)0.62091 (19)0.17312 (6)0.0386 (2)
C220.15966 (6)0.4669 (2)0.21269 (6)0.0442 (3)
H220.17280.48130.26280.053*
C230.19021 (7)0.2936 (2)0.18036 (7)0.0522 (3)
H230.22490.19170.20810.063*
C240.17031 (7)0.2678 (2)0.10746 (7)0.0546 (3)
H240.19100.14780.08500.066*
C250.12036 (7)0.4171 (2)0.06781 (7)0.0536 (3)
H250.10620.39870.01780.064*
C260.09050 (6)0.5938 (2)0.09998 (6)0.0464 (3)
H260.05660.69720.07190.056*
C310.54218 (6)0.40591 (19)0.15682 (6)0.0412 (2)
C320.57707 (6)0.2029 (2)0.18503 (6)0.0431 (3)
H320.54960.08180.19940.052*
C330.65154 (7)0.1774 (2)0.19213 (6)0.0489 (3)
H330.67470.03860.21160.059*
C340.69271 (7)0.3490 (2)0.17147 (7)0.0545 (3)
H340.74380.33000.17660.065*
C350.65833 (8)0.5495 (2)0.14311 (8)0.0568 (3)
H350.68610.66950.12870.068*
C360.58427 (7)0.5778 (2)0.13539 (7)0.0508 (3)
H360.56160.71630.11520.061*
C410.39244 (6)0.0851 (2)0.11933 (6)0.0414 (2)
C420.34291 (6)0.0710 (2)0.13551 (7)0.0495 (3)
H420.32840.05660.17910.059*
C430.31429 (7)0.2472 (3)0.08936 (8)0.0606 (4)
H430.27960.35090.10080.073*
C440.33613 (8)0.2722 (3)0.02670 (8)0.0645 (4)
H440.31690.39400.00500.077*
C450.38576 (7)0.1206 (3)0.01009 (7)0.0620 (4)
H450.40110.13850.03300.074*
C460.41358 (7)0.0583 (2)0.05581 (6)0.0506 (3)
H460.44740.16350.04360.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0465 (5)0.0416 (5)0.0569 (6)0.0028 (4)0.0063 (5)0.0007 (5)
N20.0498 (6)0.0445 (6)0.0672 (7)0.0091 (5)0.0125 (5)0.0067 (5)
C10.0479 (6)0.0532 (7)0.0393 (6)0.0025 (5)0.0030 (5)0.0033 (5)
C20.0487 (6)0.0567 (7)0.0475 (6)0.0072 (5)0.0154 (5)0.0017 (5)
C110.0435 (5)0.0363 (5)0.0368 (5)0.0012 (4)0.0117 (4)0.0048 (4)
C120.0557 (7)0.0366 (6)0.0536 (7)0.0013 (5)0.0086 (5)0.0023 (5)
C130.0558 (7)0.0511 (7)0.0559 (7)0.0079 (6)0.0020 (6)0.0040 (6)
C140.0422 (6)0.0648 (8)0.0511 (7)0.0004 (6)0.0096 (5)0.0066 (6)
C150.0502 (6)0.0515 (7)0.0535 (7)0.0084 (5)0.0223 (5)0.0027 (6)
C160.0492 (6)0.0408 (6)0.0438 (6)0.0015 (5)0.0168 (5)0.0043 (5)
C210.0346 (5)0.0438 (6)0.0367 (5)0.0047 (4)0.0071 (4)0.0022 (4)
C220.0397 (5)0.0501 (6)0.0399 (5)0.0035 (5)0.0028 (4)0.0052 (5)
C230.0435 (6)0.0506 (7)0.0597 (7)0.0057 (5)0.0062 (5)0.0080 (6)
C240.0498 (7)0.0556 (7)0.0614 (8)0.0044 (6)0.0190 (6)0.0047 (6)
C250.0536 (7)0.0687 (8)0.0400 (6)0.0030 (6)0.0143 (5)0.0040 (6)
C260.0459 (6)0.0560 (7)0.0363 (5)0.0054 (5)0.0074 (5)0.0049 (5)
C310.0474 (6)0.0377 (5)0.0370 (5)0.0026 (4)0.0070 (4)0.0055 (4)
C320.0479 (6)0.0394 (6)0.0401 (5)0.0001 (5)0.0061 (5)0.0004 (5)
C330.0486 (6)0.0484 (7)0.0452 (6)0.0062 (5)0.0017 (5)0.0018 (5)
C340.0458 (6)0.0604 (8)0.0560 (7)0.0031 (6)0.0092 (5)0.0094 (6)
C350.0614 (8)0.0492 (7)0.0636 (8)0.0109 (6)0.0222 (6)0.0061 (6)
C360.0644 (8)0.0354 (6)0.0535 (7)0.0016 (5)0.0154 (6)0.0007 (5)
C410.0346 (5)0.0499 (6)0.0393 (5)0.0108 (4)0.0078 (4)0.0067 (5)
C420.0399 (6)0.0585 (7)0.0512 (6)0.0106 (5)0.0130 (5)0.0139 (6)
C430.0415 (6)0.0577 (8)0.0776 (9)0.0008 (6)0.0037 (6)0.0134 (7)
C440.0528 (7)0.0674 (9)0.0631 (8)0.0030 (7)0.0074 (6)0.0091 (7)
C450.0552 (7)0.0858 (10)0.0419 (6)0.0070 (7)0.0047 (6)0.0080 (7)
C460.0442 (6)0.0679 (8)0.0403 (6)0.0015 (6)0.0112 (5)0.0028 (6)
Geometric parameters (Å, º) top
N1—C111.3823 (14)C23—H230.9500
N1—C11.4375 (15)C24—C251.3743 (18)
N1—H710.889 (17)C24—H240.9500
N2—C311.3753 (15)C25—C261.3837 (18)
N2—C21.4327 (17)C25—H250.9500
N2—H720.858 (17)C26—H260.9500
C1—C211.5131 (16)C31—C361.3940 (17)
C1—H1A0.9900C31—C321.3953 (15)
C1—H1B0.9900C32—C331.3840 (16)
C2—C411.5141 (17)C32—H320.9500
C2—H2A0.9900C33—C341.3755 (19)
C2—H2B0.9900C33—H330.9500
C11—C161.3915 (15)C34—C351.380 (2)
C11—C121.3955 (16)C34—H340.9500
C12—C131.3766 (18)C35—C361.3768 (19)
C12—H120.9500C35—H350.9500
C13—C141.3792 (19)C36—H360.9500
C13—H130.9500C41—C421.3853 (17)
C14—C151.3757 (19)C41—C461.3877 (16)
C14—H140.9500C42—C431.382 (2)
C15—C161.3863 (17)C42—H420.9500
C15—H150.9500C43—C441.377 (2)
C16—H160.9500C43—H430.9500
C21—C261.3894 (15)C44—C451.373 (2)
C21—C221.3895 (15)C44—H440.9500
C22—C231.3774 (18)C45—C461.3852 (19)
C22—H220.9500C45—H450.9500
C23—C241.3844 (19)C46—H460.9500
C11—N1—C1123.90 (10)C25—C24—C23119.49 (12)
C11—N1—H71117.2 (10)C25—C24—H24120.3
C1—N1—H71117.0 (10)C23—C24—H24120.3
C31—N2—C2124.54 (11)C24—C25—C26120.64 (11)
C31—N2—H72117.4 (11)C24—C25—H25119.7
C2—N2—H72117.1 (11)C26—C25—H25119.7
N1—C1—C21117.05 (10)C25—C26—C21120.37 (11)
N1—C1—H1A108.0C25—C26—H26119.8
C21—C1—H1A108.0C21—C26—H26119.8
N1—C1—H1B108.0N2—C31—C36119.72 (11)
C21—C1—H1B108.0N2—C31—C32122.21 (11)
H1A—C1—H1B107.3C36—C31—C32118.05 (11)
N2—C2—C41117.01 (10)C33—C32—C31120.21 (11)
N2—C2—H2A108.0C33—C32—H32119.9
C41—C2—H2A108.0C31—C32—H32119.9
N2—C2—H2B108.0C34—C33—C32121.28 (12)
C41—C2—H2B108.0C34—C33—H33119.4
H2A—C2—H2B107.3C32—C33—H33119.4
N1—C11—C16122.75 (10)C33—C34—C35118.71 (12)
N1—C11—C12118.95 (10)C33—C34—H34120.6
C16—C11—C12118.29 (11)C35—C34—H34120.6
C13—C12—C11120.67 (11)C36—C35—C34120.88 (12)
C13—C12—H12119.7C36—C35—H35119.6
C11—C12—H12119.7C34—C35—H35119.6
C12—C13—C14120.99 (12)C35—C36—C31120.86 (12)
C12—C13—H13119.5C35—C36—H36119.6
C14—C13—H13119.5C31—C36—H36119.6
C15—C14—C13118.63 (12)C42—C41—C46118.27 (12)
C15—C14—H14120.7C42—C41—C2118.63 (10)
C13—C14—H14120.7C46—C41—C2123.09 (11)
C14—C15—C16121.34 (11)C43—C42—C41121.15 (12)
C14—C15—H15119.3C43—C42—H42119.4
C16—C15—H15119.3C41—C42—H42119.4
C15—C16—C11120.05 (11)C44—C43—C42119.85 (13)
C15—C16—H16120.0C44—C43—H43120.1
C11—C16—H16120.0C42—C43—H43120.1
C26—C21—C22118.41 (11)C45—C44—C43119.83 (14)
C26—C21—C1122.95 (10)C45—C44—H44120.1
C22—C21—C1118.63 (10)C43—C44—H44120.1
C23—C22—C21121.03 (11)C44—C45—C46120.34 (13)
C23—C22—H22119.5C44—C45—H45119.8
C21—C22—H22119.5C46—C45—H45119.8
C22—C23—C24120.03 (11)C45—C46—C41120.55 (12)
C22—C23—H23120.0C45—C46—H46119.7
C24—C23—H23120.0C41—C46—H46119.7
C11—N1—C1—C2178.24 (15)C1—C21—C26—C25179.85 (11)
C31—N2—C2—C4179.87 (15)C2—N2—C31—C36179.76 (11)
C1—N1—C11—C165.02 (17)C2—N2—C31—C321.69 (18)
C1—N1—C11—C12176.44 (11)N2—C31—C32—C33177.61 (11)
N1—C11—C12—C13177.14 (12)C36—C31—C32—C330.96 (16)
C16—C11—C12—C131.47 (18)C31—C32—C33—C340.32 (18)
C11—C12—C13—C140.3 (2)C32—C33—C34—C350.12 (19)
C12—C13—C14—C150.7 (2)C33—C34—C35—C360.1 (2)
C13—C14—C15—C160.59 (19)C34—C35—C36—C310.8 (2)
C14—C15—C16—C110.56 (18)N2—C31—C36—C35177.41 (12)
N1—C11—C16—C15176.99 (11)C32—C31—C36—C351.20 (17)
C12—C11—C16—C151.57 (16)N2—C2—C41—C42177.15 (10)
N1—C1—C21—C265.22 (17)N2—C2—C41—C462.21 (17)
N1—C1—C21—C22174.60 (10)C46—C41—C42—C430.91 (17)
C26—C21—C22—C231.09 (17)C2—C41—C42—C43178.48 (11)
C1—C21—C22—C23178.73 (11)C41—C42—C43—C441.26 (18)
C21—C22—C23—C241.32 (18)C42—C43—C44—C450.6 (2)
C22—C23—C24—C250.4 (2)C43—C44—C45—C460.5 (2)
C23—C24—C25—C260.7 (2)C44—C45—C46—C410.8 (2)
C24—C25—C26—C210.9 (2)C42—C41—C46—C450.13 (17)
C22—C21—C26—C250.04 (17)C2—C41—C46—C45179.48 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···Cg1i0.889 (17)2.608 (17)3.4782 (12)166.0 (14)
N2—H72···Cg2i0.858 (17)2.625 (17)3.4642 (13)165.5 (15)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H13N
Mr183.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)18.8185 (6), 5.7911 (2), 19.3911 (7)
β (°) 103.338 (1)
V3)2056.24 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.60 × 0.33 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18958, 4929, 4088
Rint0.038
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.04
No. of reflections4929
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···Cg1i0.889 (17)2.608 (17)3.4782 (12)166.0 (14)
N2—H72···Cg2i0.858 (17)2.625 (17)3.4642 (13)165.5 (15)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Mrs Anna vom Kernpoint for helpful discussions.

References

First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasey, C. P., Bikzhanova, G. A. & Guzei, I. A. (2006). J. Am. Chem. Soc. 128, 2286–2293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarcazzan, P., Patrick, B. O. & James, B. R. (2003). Organometallics, 22, 1177–1179.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1195
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds