metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m573-m574

Tetra­aqua­tetra­kis­­{μ2-[1-(carb­oxylato­meth­yl)cyclo­hex­yl]methanaminium}bis­(μ3-hydroxido)bis­(nitrato-κ2O,O′)tetrazinc(II)

aMolecular Science Institute, School of Chemistry, University of the Witwatersrand, PO WITS, 2050, Johannesburg, South Africa
*Correspondence e-mail: ejc.devries@gmail.com

(Received 11 February 2011; accepted 24 March 2011; online 13 April 2011)

As the title gabapentin complex, [Zn4(OH)2(NO3)2(C9H17NO2)4(H2O)4](NO3)4 is located about a centre of inversion, the asymmetric unit contains two disordered nitrate ions and half a complex mol­ecule. The two zinc ions have different coordination environments: one is slightly distorted octa­hedral and the other is trigonal–pyramidal. The conformation of the gabapentin mol­ecule is defined by the formation of two intra­molecular O—H⋯O hydrogen bonds. Furthermore, the ammonium H atoms are involved in numerous hydrogen bonds with the disordered nitrate anions.

Related literature

For related transition metal complexes with gabapentin, see: Braga et al. (2008[Braga, D., Grepioni, F., Maini, L., Brescello, R. & Cotarca, L. (2008). CrystEngComm, 10, 469-471.]). For structures with hexa- and tetra-coordinated zinc atoms, see: Clegg et al. (1991[Clegg, W., Harbron, D., Holman, C., Hunt, P., Little, I. & Straughan, B. (1991). Inorg. Chim. Acta, 186, 51-60.]); Karmakar & Baruah (2008[Karmakar, A. & Baruah, J. B. (2008). Polyhedron, 27, 3409-3416.]). For the structure of a gabapentin nitrate salt, see: de Vries et al. (2011[Vries, E. J. C. de, Gamble, C. & Shaikjee, A. (2011). Acta Cryst. E67, o513.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn4(OH)2(NO3)2(C9H17NO2)4(H2O)4](NO3)4

  • Mr = 1424.64

  • Triclinic, [P \overline 1]

  • a = 10.0160 (2) Å

  • b = 11.3524 (2) Å

  • c = 14.2480 (2) Å

  • α = 88.740 (1)°

  • β = 74.021 (1)°

  • γ = 67.295 (1)°

  • V = 1430.28 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 173 K

  • 0.51 × 0.30 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.468, Tmax = 0.698

  • 21157 measured reflections

  • 6238 independent reflections

  • 5401 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.05

  • 6238 reflections

  • 363 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.54 e Å−3

  • Δρmin = −1.42 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.075 (2)
Zn1—O5i 2.075 (2)
Zn1—O5 2.077 (2)
Zn1—O6 2.099 (2)
Zn1—O7 2.109 (3)
Zn1—O3 2.127 (2)
Zn2—O4 1.933 (3)
Zn2—O5 1.954 (2)
Zn2—O2 1.979 (3)
Zn2—O2E 1.979 (7)
Zn2—O3B 2.122 (5)
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.91 2.23 2.918 (4) 132
N1—H1D⋯O2Cii 0.91 2.18 3.003 (9) 149
N1—H1E⋯O1Bii 0.91 2.57 3.015 (6) 111
N1—H1E⋯O2Diii 0.91 2.25 3.090 (8) 153
N1—H1E⋯O3Diii 0.91 2.31 3.037 (8) 136
N2—H2C⋯O1Div 0.91 2.00 2.906 (8) 172
N2—H2D⋯O1Cii 0.91 2.02 2.884 (9) 158
N2—H2E⋯O3 0.91 2.01 2.748 (5) 138
O5—H5C⋯O1D 0.95 1.86 2.809 (8) 173
O6—H6C⋯O2Cii 0.98 1.97 2.944 (7) 170
O6—H6C⋯O2Ci 0.98 2.01 2.819 (7) 138
O6—H6D⋯O3Div 0.95 2.58 3.010 (9) 108
O6—H6D⋯O3Bi 0.95 2.00 2.927 (5) 163
O7—H7C⋯O3Ci 0.95 1.78 2.735 (9) 178
O7—H7D⋯O2D 0.96 1.87 2.819 (8) 173
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y+1, z; (iii) -x, -y+2, -z+1; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

The first transition metal complexes of gabapentin were published by Braga (Braga et al., 2008). Complexes were obtained by grinding together gabapentin and the inorganic salts ZnCl2 and CuCl2.2H2O. In the resulting crystals of the zinc complex the Zn(II) cation is tetrahedrally coordinated to two chloride anions and two zwitterionic gabapentin molecules. In this study we investigated the effect of the nitrate counterion on the nature of the metal gabapentin complex formed.

The asymmetric unit contains [Zn2(Gpn)2(H2O)2(NO3)OH]2+.(NO3-)2 (complex (I)). This molecule is situated around the centre of inversion (0, 1/2, 1/2). The two zinc metal ions in the asymmetric unit have different coordination environments. The first zinc ion (Zn1) is in a slightly distorted octahedral environment, coordinated to two water oxygen atoms, two oxygen hydroxyl atoms (one generated by symmetry) and two gabapentin carboxylate oxygen atoms. The water and hydroxyl oxygen atoms are in both the axial and equatorial positions. The second zinc ion (Zn2) is in a trigonal pyramidal coordination environment and is coordinated to two gabapentin carboxylate oxygen atoms, one hydroxyl oxygen atom and an oxygen atom of a disordered nitrate molecule (found in the axial position). The two metal ions are therefore linked by the two hydroxyl groups and two gabapentins which act as a bridge (Fig. 1). As the asymmetric unit is located around a centre of inversion each hydroxyl group is bonded to three zinc metal ions, by symmetry. This type of hexa and tetra coordinated zinc has been observed before (Clegg et al., 1991; Karmakar & Baruah, 2008). Each gabapentin is in the chair conformation, with the ammonium group in the equatorial position. The conformation of gabapentin can be described by torsion angles which indicate that the two molecules are quite similar (Table 1). Each of the nitrate counterions was found to be disordered over two positions within the structure, with one of the nitrate counterions coordinating to a metal centre.

The crystal packing is determined by hydrogen bonds involving the nitrate anions, carboxylic acid and NH3+ groups. The conformation of the gabapentin molecule is defined by the formation of two intramolecular hydrogen bonds between the ammonium and carboxylic acid oxygen atoms of gabapentin. This bond plays an important role in the determination of the structural properties of the metal complex and is also observed in Braga's Zn(II) complex (Braga et al., 2008). Furthermore, the two NH3+ groups are involved in numerous hydrogen bonds, some of which are bifurcated, with the three disordered nitrate anions. The molecular conformation is further stabilized by four intermolecular C—H···O bonds which are formed between gabapentin and the nitrate anions with distances and angles in the range of 3.138–3.394 Å and 126–164 ° respectively.

Related literature top

For related transition metal complexes with gabapentin, see: Braga et al. (2008). For structures with hexa- and tetra-coordinated zinc atoms, see: Clegg et al. (1991); Karmakar & Baruah (2008). For the structure of a gabapentin nitrate salt, see: de Vries et al. (2011).

Experimental top

Gabapentin was purchased from Sigma-Aldrich. Complex (I) is obtained by reflux solution crystallization. The metal salt (0.371 g) and gabapentin (0.428 g) were combined in 1:2 stoichiometric proportions, then dissolved in 25 ml distilled water. The solution was refluxed at 60 degrees Celcius for an hour, then allowed to cool in a fridge at 12 degrees Celcius (until crystals formed).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 0.99 (aromatic CH) 1.00 (methine CH), 0.99 (methylene CH2) and 0.98 Å (methyl CH3), and with Uiso(H) = 1.2 or 1.5 times Ueq(C). The nitrate anions are disordered over two positions and their occupancies were refined freely, with final occupancies of 0.537 (7), 0.548 (7) and 0.513 (10) for the nitrates labelled B, C and D respectively. Geometric constraints were placed on some of the nitrate anions to improve their geometries and thermal ellipsoid parameters. The hkl reflection 521 was omitted from the refinement as I(obs) and I(calc) differed more than 10 times σω.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Figures top
[Figure 1] Fig. 1. The atomic numbering scheme of complex (I). Uncoordinated anions are not shown. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. Packing diagram of complex (I) viewed down the b axis. Hydrogen atoms omitted for clarity.
Tetraaquatetrakis{µ2-[1- (carboxylatomethyl)cyclohexyl]methanaminium}bis(µ3- hydroxido)bis(nitrato-κ2O,O')tetrazinc(II) top
Crystal data top
[Zn4(OH)2(NO3)2(C9H17NO2)4(H2O)4](NO3)4Z = 1
Mr = 1424.64F(000) = 740
Triclinic, P1Dx = 1.654 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0160 (2) ÅCell parameters from 9598 reflections
b = 11.3524 (2) Åθ = 2.3–28.3°
c = 14.2480 (2) ŵ = 1.76 mm1
α = 88.740 (1)°T = 173 K
β = 74.021 (1)°Plate, colourless
γ = 67.295 (1)°0.51 × 0.30 × 0.22 mm
V = 1430.28 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6238 independent reflections
Radiation source: fine-focus sealed tube5401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.468, Tmax = 0.698k = 1414
21157 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0613P)2 + 3.8991P]
where P = (Fo2 + 2Fc2)/3
6238 reflections(Δ/σ)max = 0.013
363 parametersΔρmax = 1.54 e Å3
6 restraintsΔρmin = 1.42 e Å3
Crystal data top
[Zn4(OH)2(NO3)2(C9H17NO2)4(H2O)4](NO3)4γ = 67.295 (1)°
Mr = 1424.64V = 1430.28 (4) Å3
Triclinic, P1Z = 1
a = 10.0160 (2) ÅMo Kα radiation
b = 11.3524 (2) ŵ = 1.76 mm1
c = 14.2480 (2) ÅT = 173 K
α = 88.740 (1)°0.51 × 0.30 × 0.22 mm
β = 74.021 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6238 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5401 reflections with I > 2σ(I)
Tmin = 0.468, Tmax = 0.698Rint = 0.027
21157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0476 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.05Δρmax = 1.54 e Å3
6238 reflectionsΔρmin = 1.42 e Å3
363 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.08278 (4)0.62842 (3)0.46097 (3)0.01972 (11)
O10.0166 (3)0.7519 (2)0.3682 (2)0.0336 (6)
N10.2171 (4)1.0031 (3)0.3320 (3)0.0435 (8)
H1D0.31301.00690.34520.065*
H1E0.21991.08390.33620.065*
H1C0.17280.95710.37630.065*
C10.0355 (4)0.9276 (3)0.2009 (3)0.0281 (7)
Zn20.22789 (4)0.47355 (4)0.30465 (3)0.02482 (12)
H6D0.34940.72870.55120.15 (4)*
H7C0.16250.82490.58910.058 (15)*
H7D0.00660.75130.58680.08 (2)*
H5C0.19960.53820.46260.062 (16)*
H6C0.38950.82540.47910.13 (3)*
O20.2232 (3)0.6464 (2)0.2767 (2)0.0358 (6)
N20.4080 (3)0.6146 (3)0.3453 (2)0.0302 (6)
H2C0.49940.62620.38790.045*
H2D0.40410.69230.33270.045*
H2E0.33330.56860.37220.045*
C20.0420 (5)1.0591 (3)0.1794 (3)0.0394 (9)
H2A0.02251.09970.13640.047*
H2B0.00041.11480.24180.047*
O30.1127 (3)0.5294 (2)0.34852 (18)0.0287 (5)
C30.2008 (6)1.0517 (4)0.1306 (4)0.0465 (11)
H3A0.26311.02040.17620.056*
H3B0.19621.13850.11560.056*
O40.1073 (3)0.4364 (3)0.23377 (19)0.0341 (6)
C40.2743 (6)0.9621 (4)0.0362 (3)0.0498 (11)
H4A0.37990.95420.00830.060*
H4B0.21890.99870.01240.060*
O50.1376 (2)0.5004 (2)0.44675 (17)0.0212 (4)
C50.2734 (5)0.8296 (4)0.0554 (3)0.0411 (9)
H5A0.31520.77510.00760.049*
H5B0.33910.78880.09760.049*
O60.3136 (3)0.7413 (2)0.48426 (19)0.0302 (5)
C60.1145 (5)0.8373 (4)0.1050 (3)0.0334 (8)
H6A0.11990.75020.11980.040*
H6B0.05270.86770.05900.040*
O70.0932 (3)0.7376 (2)0.5826 (2)0.0321 (6)
C70.1148 (4)0.8735 (3)0.2808 (3)0.0295 (7)
H7A0.22220.86140.25590.035*
H7B0.06710.93700.33910.035*
C80.1070 (4)0.7472 (3)0.3114 (3)0.0278 (7)
C90.1283 (4)0.9397 (3)0.2312 (3)0.0353 (8)
H9A0.17910.98930.18400.042*
H9B0.12860.85290.22700.042*
C100.2366 (4)0.5177 (3)0.1742 (2)0.0237 (6)
C110.2081 (4)0.6402 (3)0.1505 (3)0.0290 (7)
H11A0.21570.68440.21210.035*
H11B0.10400.61610.10690.035*
C120.3194 (5)0.7331 (4)0.1010 (3)0.0396 (9)
H12A0.42260.76530.14730.048*
H12B0.29190.80750.08420.048*
C130.3179 (5)0.6677 (4)0.0082 (3)0.0435 (10)
H13A0.39440.72850.02030.052*
H13B0.21750.64320.04060.052*
C140.3516 (5)0.5490 (4)0.0299 (3)0.0389 (9)
H14A0.34270.50510.03220.047*
H14B0.45680.57460.07240.047*
C150.2431 (4)0.4568 (4)0.0807 (3)0.0326 (8)
H15A0.14040.42180.03390.039*
H15B0.27360.38410.09820.039*
C160.1039 (4)0.4168 (3)0.2054 (3)0.0312 (8)
H16A0.14080.35480.24180.037*
H16B0.02400.36890.14510.037*
C170.0319 (4)0.4651 (3)0.2677 (2)0.0256 (7)
C180.3875 (4)0.5441 (4)0.2524 (3)0.0297 (7)
H18A0.47090.59410.22480.036*
H18B0.39570.46110.26750.036*
O1A0.3312 (7)0.6003 (6)0.5027 (5)0.0231 (14)*0.487 (10)
O2A0.1479 (8)0.7922 (7)0.5821 (6)0.0357 (16)*0.487 (10)
O3A0.3675 (8)0.7772 (7)0.5194 (5)0.053 (2)*0.487 (10)
N3A0.2773 (8)0.7269 (8)0.5350 (6)0.0244 (17)*0.487 (10)
O1D0.3120 (7)0.6272 (7)0.4840 (5)0.0316 (16)*0.513 (10)
O2D0.1653 (7)0.7624 (6)0.6064 (5)0.0304 (14)*0.513 (10)
O3D0.3889 (8)0.7207 (7)0.5785 (6)0.060 (2)*0.513 (10)
N3D0.2932 (8)0.7002 (7)0.5536 (6)0.0251 (17)*0.513 (10)
O1B0.6378 (5)0.2233 (5)0.2221 (4)0.0333 (13)*0.537 (7)
O2B0.4562 (6)0.3503 (6)0.1739 (4)0.0597 (19)*0.537 (7)
O3B0.4324 (6)0.3401 (6)0.3257 (3)0.0548 (19)*0.537 (7)
N5B0.5111 (8)0.2971 (7)0.2415 (5)0.0284 (15)*0.537 (7)
O1E0.6232 (7)0.1961 (7)0.1990 (6)0.0391 (17)*0.463 (7)
O2E0.4354 (7)0.3790 (6)0.2182 (5)0.0358 (16)*0.463 (7)
O3E0.4128 (8)0.2302 (7)0.3050 (6)0.052 (2)*0.463 (7)
N5E0.4917 (9)0.2665 (9)0.2375 (6)0.0333 (19)*0.463 (7)
O1C0.5177 (11)0.1170 (9)0.3201 (7)0.072 (2)*0.548 (7)
O2C0.4870 (8)0.0027 (6)0.4501 (5)0.0575 (19)*0.548 (7)
O3C0.2965 (9)0.0137 (9)0.3980 (6)0.072 (2)*0.548 (7)
N4C0.4311 (8)0.0360 (6)0.3883 (6)0.0334 (15)*0.548 (7)
O1F0.5650 (7)0.1201 (6)0.3312 (5)0.0359 (16)*0.452 (7)
O2F0.3302 (8)0.0551 (10)0.4016 (8)0.090*0.452 (7)
O3F0.4270 (10)0.0782 (5)0.3488 (8)0.090*0.452 (7)
N4F0.4427 (11)0.0271 (10)0.3500 (9)0.048 (2)*0.452 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01629 (18)0.01734 (18)0.0228 (2)0.00489 (14)0.00405 (14)0.00329 (13)
O10.0291 (13)0.0243 (12)0.0391 (15)0.0072 (10)0.0029 (11)0.0110 (11)
N10.0398 (19)0.0292 (17)0.046 (2)0.0079 (15)0.0030 (16)0.0007 (15)
C10.0355 (19)0.0163 (15)0.0281 (17)0.0071 (14)0.0070 (15)0.0030 (13)
Zn20.01772 (19)0.0238 (2)0.0265 (2)0.00436 (15)0.00230 (15)0.00454 (15)
O20.0307 (13)0.0254 (13)0.0400 (15)0.0058 (11)0.0013 (11)0.0105 (11)
N20.0205 (14)0.0341 (16)0.0308 (16)0.0091 (12)0.0016 (12)0.0033 (12)
C20.053 (2)0.0182 (16)0.036 (2)0.0098 (16)0.0021 (18)0.0067 (14)
O30.0200 (11)0.0299 (13)0.0305 (13)0.0043 (10)0.0061 (10)0.0058 (10)
C30.060 (3)0.0240 (19)0.051 (3)0.0201 (19)0.003 (2)0.0099 (17)
O40.0217 (12)0.0445 (15)0.0274 (13)0.0060 (11)0.0035 (10)0.0036 (11)
C40.055 (3)0.043 (2)0.039 (2)0.018 (2)0.002 (2)0.0120 (19)
O50.0187 (10)0.0199 (10)0.0265 (12)0.0089 (9)0.0071 (9)0.0052 (9)
C50.046 (2)0.033 (2)0.032 (2)0.0099 (18)0.0000 (17)0.0019 (16)
O60.0212 (12)0.0278 (13)0.0323 (14)0.0002 (10)0.0071 (10)0.0027 (10)
C60.040 (2)0.0271 (17)0.0289 (18)0.0081 (15)0.0104 (16)0.0003 (14)
O70.0291 (13)0.0258 (12)0.0380 (14)0.0072 (10)0.0093 (11)0.0040 (10)
C70.0379 (19)0.0247 (16)0.0286 (18)0.0152 (15)0.0099 (15)0.0066 (13)
C80.0304 (18)0.0249 (16)0.0272 (17)0.0104 (14)0.0080 (14)0.0087 (13)
C90.0336 (19)0.0225 (17)0.042 (2)0.0030 (15)0.0105 (17)0.0019 (15)
C100.0219 (15)0.0231 (15)0.0271 (16)0.0104 (13)0.0058 (13)0.0022 (12)
C110.0295 (17)0.0307 (18)0.0304 (18)0.0179 (15)0.0054 (14)0.0019 (14)
C120.051 (2)0.033 (2)0.040 (2)0.0197 (18)0.0175 (19)0.0102 (16)
C130.051 (3)0.050 (2)0.032 (2)0.022 (2)0.0153 (19)0.0107 (18)
C140.041 (2)0.049 (2)0.034 (2)0.0224 (19)0.0156 (17)0.0004 (17)
C150.0343 (19)0.0344 (19)0.0306 (18)0.0160 (16)0.0073 (15)0.0064 (15)
C160.0285 (18)0.0251 (17)0.0325 (19)0.0025 (14)0.0084 (15)0.0083 (14)
C170.0217 (16)0.0234 (16)0.0250 (16)0.0023 (13)0.0060 (13)0.0014 (13)
C180.0262 (17)0.0346 (18)0.0312 (18)0.0165 (15)0.0056 (14)0.0015 (14)
Geometric parameters (Å, º) top
Zn1—O12.075 (2)O7—H7C0.9540
Zn1—O5i2.075 (2)O7—H7D0.9559
Zn1—O52.077 (2)C7—C81.513 (5)
Zn1—O62.099 (2)C7—H7A0.9900
Zn1—O72.109 (3)C7—H7B0.9900
Zn1—O32.127 (2)C9—H9A0.9900
Zn1—Zn1i3.1029 (7)C9—H9B0.9900
Zn1—Zn23.1412 (5)C10—C181.534 (5)
O1—C81.262 (4)C10—C111.537 (5)
N1—C91.490 (5)C10—C151.542 (5)
N1—H1D0.9100C10—C161.550 (5)
N1—H1E0.9100C11—C121.531 (5)
N1—H1C0.9100C11—H11A0.9900
C1—C91.528 (5)C11—H11B0.9900
C1—C21.540 (5)C12—C131.525 (6)
C1—C61.544 (5)C12—H12A0.9900
C1—C71.548 (5)C12—H12B0.9900
Zn2—O41.933 (3)C13—C141.516 (6)
Zn2—O51.954 (2)C13—H13A0.9900
Zn2—O21.979 (3)C13—H13B0.9900
Zn2—O2E1.979 (7)C14—C151.524 (6)
Zn2—O3B2.122 (5)C14—H14A0.9900
Zn2—O2B2.440 (6)C14—H14B0.9900
O2—C81.260 (4)C15—H15A0.9900
N2—C181.485 (4)C15—H15B0.9900
N2—H2C0.9100C16—C171.513 (5)
N2—H2D0.9100C16—H16A0.9900
N2—H2E0.9100C16—H16B0.9900
C2—C31.520 (6)C18—H18A0.9900
C2—H2A0.9900C18—H18B0.9900
C2—H2B0.9900O1A—N3A1.365 (10)
O3—C171.258 (4)O2A—N3A1.217 (10)
C3—C41.524 (6)O3A—N3A1.214 (10)
C3—H3A0.9900O1D—N3D1.233 (9)
C3—H3B0.9900O2D—N3D1.224 (9)
O4—C171.253 (4)O3D—N3D1.210 (10)
C4—C51.526 (6)O1B—N5B1.177 (7)
C4—H4A0.9900O2B—N5B1.266 (7)
C4—H4B0.9900O3B—N5B1.228 (7)
O5—Zn1i2.075 (2)O1E—N5E1.218 (10)
O5—H5C0.9537O2E—N5E1.240 (11)
C5—C61.522 (6)O3E—N5E1.239 (11)
C5—H5A0.9900O1C—N4C1.225 (11)
C5—H5B0.9900O2C—N4C1.297 (9)
O6—H6D0.9503O3C—N4C1.212 (10)
O6—H6C0.9812O1F—N4F1.233 (12)
C6—H6A0.9900O2F—N4F1.312 (12)
C6—H6B0.9900O3F—N4F1.144 (12)
O1—Zn1—O5i177.11 (9)H5A—C5—H5B108.0
O1—Zn1—O593.85 (9)Zn1—O6—H6D98.6
O5i—Zn1—O583.28 (9)Zn1—O6—H6C146.2
O1—Zn1—O692.92 (10)H6D—O6—H6C102.2
O5i—Zn1—O689.95 (10)C5—C6—C1113.2 (3)
O5—Zn1—O6173.15 (10)C5—C6—H6A108.9
O1—Zn1—O789.88 (11)C1—C6—H6A108.9
O5i—Zn1—O789.98 (10)C5—C6—H6B108.9
O5—Zn1—O793.55 (9)C1—C6—H6B108.9
O6—Zn1—O787.50 (10)H6A—C6—H6B107.8
O1—Zn1—O393.96 (11)Zn1—O7—H7C113.3
O5i—Zn1—O386.62 (10)Zn1—O7—H7D120.8
O5—Zn1—O395.10 (9)H7C—O7—H7D98.9
O6—Zn1—O383.38 (9)C8—C7—C1113.2 (3)
O7—Zn1—O3170.27 (10)C8—C7—H7A108.9
O1—Zn1—Zn1i135.46 (7)C1—C7—H7A108.9
O5i—Zn1—Zn1i41.67 (6)C8—C7—H7B108.9
O5—Zn1—Zn1i41.61 (6)C1—C7—H7B108.9
O6—Zn1—Zn1i131.61 (8)H7A—C7—H7B107.8
O7—Zn1—Zn1i92.37 (7)O2—C8—O1125.5 (3)
O3—Zn1—Zn1i91.15 (7)O2—C8—C7117.5 (3)
O1—Zn1—Zn270.09 (7)O1—C8—C7117.0 (3)
O5i—Zn1—Zn2107.55 (6)N1—C9—C1114.2 (3)
O5—Zn1—Zn237.41 (6)N1—C9—H9A108.7
O6—Zn1—Zn2145.77 (7)C1—C9—H9A108.7
O7—Zn1—Zn2120.73 (7)N1—C9—H9B108.7
O3—Zn1—Zn269.00 (6)C1—C9—H9B108.7
Zn1i—Zn1—Zn270.725 (14)H9A—C9—H9B107.6
C8—O1—Zn1135.0 (2)C18—C10—C11112.7 (3)
C9—N1—H1D109.5C18—C10—C15106.9 (3)
C9—N1—H1E109.5C11—C10—C15109.1 (3)
H1D—N1—H1E109.5C18—C10—C16110.6 (3)
C9—N1—H1C109.5C11—C10—C16110.7 (3)
H1D—N1—H1C109.5C15—C10—C16106.5 (3)
H1E—N1—H1C109.5C12—C11—C10113.1 (3)
C9—C1—C2110.3 (3)C12—C11—H11A109.0
C9—C1—C6105.8 (3)C10—C11—H11A109.0
C2—C1—C6108.6 (3)C12—C11—H11B109.0
C9—C1—C7112.0 (3)C10—C11—H11B109.0
C2—C1—C7109.0 (3)H11A—C11—H11B107.8
C6—C1—C7111.0 (3)C13—C12—C11111.1 (3)
O4—Zn2—O5113.77 (10)C13—C12—H12A109.4
O4—Zn2—O2107.78 (12)C11—C12—H12A109.4
O5—Zn2—O2100.42 (10)C13—C12—H12B109.4
O4—Zn2—O2E101.9 (2)C11—C12—H12B109.4
O5—Zn2—O2E133.7 (2)H12A—C12—H12B108.0
O2—Zn2—O2E95.5 (2)C14—C13—C12111.1 (3)
O4—Zn2—O3B125.86 (18)C14—C13—H13A109.4
O5—Zn2—O3B89.12 (13)C12—C13—H13A109.4
O2—Zn2—O3B115.6 (2)C14—C13—H13B109.4
O2E—Zn2—O3B45.1 (2)C12—C13—H13B109.4
O4—Zn2—O2B89.76 (16)H13A—C13—H13B108.0
O5—Zn2—O2B143.75 (11)C13—C14—C15111.2 (3)
O2—Zn2—O2B97.72 (18)C13—C14—H14A109.4
O2E—Zn2—O2B12.2 (2)C15—C14—H14A109.4
O3B—Zn2—O2B54.68 (10)C13—C14—H14B109.4
O4—Zn2—Zn185.10 (7)C15—C14—H14B109.4
O5—Zn2—Zn140.23 (6)H14A—C14—H14B108.0
O2—Zn2—Zn183.40 (8)C14—C15—C10114.3 (3)
O2E—Zn2—Zn1172.9 (2)C14—C15—H15A108.7
O3B—Zn2—Zn1129.32 (11)C10—C15—H15A108.7
O2B—Zn2—Zn1174.83 (13)C14—C15—H15B108.7
C8—O2—Zn2122.3 (2)C10—C15—H15B108.7
C18—N2—H2C109.5H15A—C15—H15B107.6
C18—N2—H2D109.5C17—C16—C10117.5 (3)
H2C—N2—H2D109.5C17—C16—H16A107.9
C18—N2—H2E109.5C10—C16—H16A107.9
H2C—N2—H2E109.5C17—C16—H16B107.9
H2D—N2—H2E109.5C10—C16—H16B107.9
C3—C2—C1113.6 (3)H16A—C16—H16B107.2
C3—C2—H2A108.8O4—C17—O3124.6 (3)
C1—C2—H2A108.8O4—C17—C16116.2 (3)
C3—C2—H2B108.8O3—C17—C16119.2 (3)
C1—C2—H2B108.8N2—C18—C10114.6 (3)
H2A—C2—H2B107.7N2—C18—H18A108.6
C17—O3—Zn1136.7 (2)C10—C18—H18A108.6
C2—C3—C4111.1 (4)N2—C18—H18B108.6
C2—C3—H3A109.4C10—C18—H18B108.6
C4—C3—H3A109.4H18A—C18—H18B107.6
C2—C3—H3B109.4O3A—N3A—O2A117.1 (8)
C4—C3—H3B109.4O3A—N3A—O1A117.3 (7)
H3A—C3—H3B108.0O2A—N3A—O1A125.5 (7)
C17—O4—Zn2123.8 (2)O3D—N3D—O2D112.5 (7)
C3—C4—C5110.9 (3)O3D—N3D—O1D127.6 (7)
C3—C4—H4A109.5O2D—N3D—O1D119.9 (7)
C5—C4—H4A109.5N5B—O2B—Zn286.3 (4)
C3—C4—H4B109.5N5B—O3B—Zn2102.7 (4)
C5—C4—H4B109.5O1B—N5B—O3B123.3 (6)
H4A—C4—H4B108.1O1B—N5B—O2B120.0 (6)
Zn2—O5—Zn1i127.54 (11)O3B—N5B—O2B115.9 (6)
Zn2—O5—Zn1102.36 (10)N5E—O2E—Zn2112.5 (6)
Zn1i—O5—Zn196.72 (9)O1E—N5E—O2E122.7 (9)
Zn2—O5—H5C98.0O1E—N5E—O3E119.7 (8)
Zn1i—O5—H5C117.7O2E—N5E—O3E117.3 (8)
Zn1—O5—H5C114.2O3C—N4C—O1C121.6 (9)
C6—C5—C4111.6 (4)O3C—N4C—O2C120.0 (8)
C6—C5—H5A109.3O1C—N4C—O2C118.4 (8)
C4—C5—H5A109.3O3F—N4F—O1F125.7 (10)
C6—C5—H5B109.3O3F—N4F—O2F118.7 (10)
C4—C5—H5B109.3O1F—N4F—O2F112.4 (9)
O5—Zn1—O1—C89.3 (4)O7—Zn1—O5—Zn2139.60 (11)
O6—Zn1—O1—C8169.7 (4)O3—Zn1—O5—Zn244.86 (11)
O7—Zn1—O1—C8102.8 (4)Zn1i—Zn1—O5—Zn2130.84 (13)
O3—Zn1—O1—C886.1 (4)O1—Zn1—O5—Zn1i179.69 (10)
Zn1i—Zn1—O1—C89.6 (4)O5i—Zn1—O5—Zn1i0.0
Zn2—Zn1—O1—C820.1 (3)O7—Zn1—O5—Zn1i89.57 (10)
O1—Zn1—Zn2—O497.08 (12)O3—Zn1—O5—Zn1i85.98 (10)
O5i—Zn1—Zn2—O484.68 (11)Zn2—Zn1—O5—Zn1i130.84 (13)
O5—Zn1—Zn2—O4136.68 (13)C3—C4—C5—C655.1 (5)
O6—Zn1—Zn2—O432.92 (16)C4—C5—C6—C155.2 (5)
O7—Zn1—Zn2—O4174.51 (12)C9—C1—C6—C5171.4 (3)
O3—Zn1—Zn2—O45.49 (11)C2—C1—C6—C552.9 (4)
Zn1i—Zn1—Zn2—O4104.53 (9)C7—C1—C6—C566.9 (4)
O1—Zn1—Zn2—O5126.23 (13)C9—C1—C7—C854.5 (4)
O5i—Zn1—Zn2—O552.01 (14)C2—C1—C7—C8176.8 (3)
O6—Zn1—Zn2—O5169.60 (16)C6—C1—C7—C863.5 (4)
O7—Zn1—Zn2—O548.81 (13)Zn2—O2—C8—O11.5 (5)
O3—Zn1—Zn2—O5131.19 (12)Zn2—O2—C8—C7177.1 (2)
Zn1i—Zn1—Zn2—O532.16 (10)Zn1—O1—C8—O219.9 (6)
O1—Zn1—Zn2—O211.49 (12)Zn1—O1—C8—C7161.4 (3)
O5i—Zn1—Zn2—O2166.75 (11)C1—C7—C8—O2101.5 (4)
O5—Zn1—Zn2—O2114.75 (13)C1—C7—C8—O177.2 (4)
O6—Zn1—Zn2—O275.65 (16)C2—C1—C9—N173.7 (4)
O7—Zn1—Zn2—O265.94 (12)C6—C1—C9—N1169.0 (3)
O3—Zn1—Zn2—O2114.06 (12)C7—C1—C9—N147.9 (4)
Zn1i—Zn1—Zn2—O2146.91 (9)C18—C10—C11—C1266.4 (4)
O1—Zn1—Zn2—O3B129.3 (2)C15—C10—C11—C1252.2 (4)
O5i—Zn1—Zn2—O3B48.9 (2)C16—C10—C11—C12169.1 (3)
O5—Zn1—Zn2—O3B3.1 (2)C10—C11—C12—C1355.9 (4)
O6—Zn1—Zn2—O3B166.5 (3)C11—C12—C13—C1456.2 (5)
O7—Zn1—Zn2—O3B51.9 (2)C12—C13—C14—C1555.0 (5)
O3—Zn1—Zn2—O3B128.1 (2)C13—C14—C15—C1054.1 (5)
Zn1i—Zn1—Zn2—O3B29.1 (2)C18—C10—C15—C1470.5 (4)
O4—Zn2—O2—C872.0 (3)C11—C10—C15—C1451.7 (4)
O5—Zn2—O2—C847.3 (3)C16—C10—C15—C14171.2 (3)
O2E—Zn2—O2—C8176.3 (3)C18—C10—C16—C1787.8 (4)
O3B—Zn2—O2—C8141.4 (3)C11—C10—C16—C1737.9 (4)
O2B—Zn2—O2—C8164.2 (3)C15—C10—C16—C17156.4 (3)
Zn1—Zn2—O2—C810.7 (3)Zn2—O4—C17—O35.5 (5)
C9—C1—C2—C3169.1 (4)Zn2—O4—C17—C16174.2 (2)
C6—C1—C2—C353.6 (5)Zn1—O3—C17—O44.3 (6)
C7—C1—C2—C367.5 (4)Zn1—O3—C17—C16176.0 (2)
O1—Zn1—O3—C1759.8 (3)C10—C16—C17—O4122.7 (4)
O5i—Zn1—O3—C17117.4 (3)C10—C16—C17—O357.6 (5)
O5—Zn1—O3—C1734.5 (3)C11—C10—C18—N254.5 (4)
O6—Zn1—O3—C17152.2 (3)C15—C10—C18—N2174.4 (3)
Zn1i—Zn1—O3—C1776.0 (3)C16—C10—C18—N270.0 (4)
Zn2—Zn1—O3—C177.2 (3)O4—Zn2—O2B—N5B132.7 (5)
C1—C2—C3—C456.0 (5)O5—Zn2—O2B—N5B0.2 (7)
O5—Zn2—O4—C1721.5 (3)O2—Zn2—O2B—N5B119.4 (5)
O2—Zn2—O4—C1788.9 (3)O2E—Zn2—O2B—N5B39.1 (11)
O2E—Zn2—O4—C17171.3 (3)O3B—Zn2—O2B—N5B3.5 (5)
O3B—Zn2—O4—C17128.8 (3)O4—Zn2—O3B—N5B55.1 (6)
O2B—Zn2—O4—C17173.0 (3)O5—Zn2—O3B—N5B174.2 (5)
Zn1—Zn2—O4—C177.5 (3)O2—Zn2—O3B—N5B84.6 (5)
C2—C3—C4—C555.2 (5)O2E—Zn2—O3B—N5B13.7 (5)
O4—Zn2—O5—Zn1i60.31 (17)O2B—Zn2—O3B—N5B3.6 (5)
O2—Zn2—O5—Zn1i175.16 (14)Zn1—Zn2—O3B—N5B172.2 (4)
O2E—Zn2—O5—Zn1i76.7 (3)Zn2—O3B—N5B—O1B176.3 (7)
O3B—Zn2—O5—Zn1i69.0 (2)Zn2—O3B—N5B—O2B6.4 (9)
O2B—Zn2—O5—Zn1i66.0 (4)Zn2—O2B—N5B—O1B175.7 (8)
Zn1—Zn2—O5—Zn1i108.63 (16)Zn2—O2B—N5B—O3B5.4 (8)
O4—Zn2—O5—Zn148.32 (13)O4—Zn2—O2E—N5E88.7 (7)
O2—Zn2—O5—Zn166.53 (12)O5—Zn2—O2E—N5E51.7 (7)
O2E—Zn2—O5—Zn1174.6 (3)O2—Zn2—O2E—N5E161.8 (7)
O3B—Zn2—O5—Zn1177.62 (19)O3B—Zn2—O2E—N5E40.8 (6)
O2B—Zn2—O5—Zn1174.7 (3)O2B—Zn2—O2E—N5E97.1 (14)
O1—Zn1—O5—Zn249.48 (12)Zn2—O2E—N5E—O1E172.9 (7)
O5i—Zn1—O5—Zn2130.84 (13)Zn2—O2E—N5E—O3E0.5 (11)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.912.232.918 (4)132
N1—H1D···O2Cii0.912.183.003 (9)149
N1—H1E···O1Bii0.912.573.015 (6)111
N1—H1E···O2Diii0.912.253.090 (8)153
N1—H1E···O3Diii0.912.313.037 (8)136
N2—H2C···O1Div0.912.002.906 (8)172
N2—H2D···O1Cii0.912.022.884 (9)158
N2—H2E···O30.912.012.748 (5)138
O5—H5C···O1D0.951.862.809 (8)173
O6—H6C···O2Cii0.981.972.944 (7)170
O6—H6C···O2Ci0.982.012.819 (7)138
O6—H6D···O3Div0.952.583.010 (9)108
O6—H6D···O3Bi0.952.002.927 (5)163
O7—H7C···O3Ci0.951.782.735 (9)178
O7—H7D···O2D0.961.872.819 (8)173
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+1, z; (iii) x, y+2, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn4(OH)2(NO3)2(C9H17NO2)4(H2O)4](NO3)4
Mr1424.64
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.0160 (2), 11.3524 (2), 14.2480 (2)
α, β, γ (°)88.740 (1), 74.021 (1), 67.295 (1)
V3)1430.28 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.51 × 0.30 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.468, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
21157, 6238, 5401
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.05
No. of reflections6238
No. of parameters363
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.54, 1.42

Computer programs: APEX2 (Bruker, 2005), SAINT-NT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Selected bond lengths (Å) top
Zn1—O12.075 (2)Zn2—O41.933 (3)
Zn1—O5i2.075 (2)Zn2—O51.954 (2)
Zn1—O52.077 (2)Zn2—O21.979 (3)
Zn1—O62.099 (2)Zn2—O2E1.979 (7)
Zn1—O72.109 (3)Zn2—O3B2.122 (5)
Zn1—O32.127 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.912.232.918 (4)132
N1—H1D···O2Cii0.912.183.003 (9)149
N1—H1E···O1Bii0.912.573.015 (6)111
N1—H1E···O2Diii0.912.253.090 (8)153
N1—H1E···O3Diii0.912.313.037 (8)136
N2—H2C···O1Div0.912.002.906 (8)172
N2—H2D···O1Cii0.912.022.884 (9)158
N2—H2E···O30.912.012.748 (5)138
O5—H5C···O1D0.951.862.809 (8)173
O6—H6C···O2Cii0.981.972.944 (7)170
O6—H6C···O2Ci0.982.012.819 (7)138
O6—H6D···O3Div0.952.583.010 (9)108
O6—H6D···O3Bi0.952.002.927 (5)163
O7—H7C···O3Ci0.951.782.735 (9)178
O7—H7D···O2D0.961.872.819 (8)173
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+1, z; (iii) x, y+2, z+1; (iv) x1, y, z.
 

Acknowledgements

The authors thank the National Research Foundation of South Africa and the University of the Witwatersrand for financial support.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBraga, D., Grepioni, F., Maini, L., Brescello, R. & Cotarca, L. (2008). CrystEngComm, 10, 469–471.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W., Harbron, D., Holman, C., Hunt, P., Little, I. & Straughan, B. (1991). Inorg. Chim. Acta, 186, 51–60.  CrossRef CAS Google Scholar
First citationKarmakar, A. & Baruah, J. B. (2008). Polyhedron, 27, 3409–3416.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVries, E. J. C. de, Gamble, C. & Shaikjee, A. (2011). Acta Cryst. E67, o513.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m573-m574
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds