metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m642-m643

catena-Poly[[[[2-(2-pyridyl-κN)-1H-benzimidazole-κN3]copper(II)]-μ-L-me­thio­ninato-κ3N,O:O′] perchlorate]

aDepartment of Applied Chemistry, South China Agricultural University, 510642 Guangzhou, Guangdong, People's Republic of China, and bInstitue of Biomaterial, South China Agricultural University, 510642 Guangzhou, Guangdong, People's Republic of China
*Correspondence e-mail: lexyfu@163.com

(Received 18 March 2011; accepted 13 April 2011; online 29 April 2011)

The structure of the title compound, {[Cu(C5H10NO2S)(C12H9N3)]ClO4}n, has ortho­rhom­bic symmetry. The chain structure is constructed from square-pyramidally coordinated CuII atoms linked through L-methio­nate ligands. The chains propagate along the a-axis direction and are linked to perchlorate anions via N—H⋯O hydrogen bonds.

Related literature

For the biological activity of benzimidazole derivatives and their metal complexes, see: Devereux et al. (2004[Devereux, M., McCann, M. O., Shea, D., Kelly, R., Egan, D., Deegan, C., Kavanagh, K., McKee, V. & Finn, G. (2004). J. Inorg. Biochem. 98, 1023-1031.], 2007[Devereux, M. O., Shea, D., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kedziora, K., Rosair, G. & Mueller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881-892.]); El-Sherif & Jeragh (2007[El-Sherif, A. A. & Jeragh, B. J. A. (2007). Spectrochim. Acta Part A, 68, 877-882.]). For metal complexes of L-α-amino acids, see: Lin et al. (2006[Lin, Q. B., Le, X. Y., Xiong, Y. H. & Feng, X. L. (2006). Chin. J. Inorg. Chem. 22, 2080-2084.]), Yamauchi et al. (1992[Yamauchi, O., Odani, A. & Masuda, H. (1992). Inorg. Chim. Acta, 198-200, 749-761.]); Zhou et al. (2005[Zhou, X. H., Le, X. Y. & Chen, S. (2005). J. Coord. Chem. 58, 993-1001.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H10NO2S)(C12H9N3)]ClO4

  • Mr = 506.41

  • Orthorhombic, P 21 21 21

  • a = 6.9718 (4) Å

  • b = 11.8902 (6) Å

  • c = 24.7024 (13) Å

  • V = 2047.73 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 293 K

  • 0.45 × 0.35 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.583, Tmax = 0.845

  • 12781 measured reflections

  • 4464 independent reflections

  • 3557 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.05

  • 4464 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1874 Friedel pairs

  • Flack parameter: −0.001 (17)

Table 1
Selected bond lengths (Å)

Cu1—O2i 2.272 (3)
Cu1—O1 1.929 (3)
Cu1—N1 1.996 (2)
Cu1—N3 2.023 (3)
Cu1—N4 1.985 (3)
O2—Cu1ii 2.272 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2a⋯O3iii 0.86 2.06 2.904 (6) 168
N4—H4a⋯O5iv 0.90 2.53 3.370 (7) 155
N4—H4b⋯O4 0.90 2.31 3.064 (7) 141
Symmetry codes: (iii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+2]; (iv) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, structure investigations of benzimidazole derivatives and their metal complexes have attracted an interest due to their antioxidant, antimycobacterium, antiparasitic activity and cytotoxicity (Devereux et al., 2004, 2007; El-Sherif & Jeragh, 2007). Furthermore, L-α-amino acids are important biological ligands, taking flexible coordination modes with metal ions (Lin et al.., 2006, Yamauchi et al., 1992, Zhou et al., 2005). With L-α-amino acids being involved, the biological activities of complexes can be improved. We report herein the synthesis and crystal structure of the title complex.

The crystal structure of the title complex consists of [Cu(C12H9N3)(C5H10NO2S)]n polymeric chains (Fig. 2). The Cu(II) atom is in a slightly distorted square–pyramidal geometry (Fig. 1). The equatorial plane is occupied by two nitrogen atoms of 2-(2-pyridyl)benzimidazole ligand and one nitrogen atom and one oxygen atom of L-methionate ligand, while the apical position is occupied by another carboxylate oxygen atom from a symmetry-related neighboring L-methioninate ligand. The chains are connected by N—H···O hydrogen bonds to the perchlorate anions.

Related literature top

For the biological activity of benzimidazole derivatives and their metal complexes, see: Devereux et al. (2004, 2007); El-Sherif & Jeragh (2007). For metal complexes of L-α-amino acids, see Lin et al. (2006), Yamauchi et al. (1992); Zhou et al. (2005).

Experimental top

To a stirred ethanol solution (20 ml) containing 2-(2-pyridyl) benzimidazole (HPB) (0.098 g, 0.5 mmol) was added an aqueous solution(1 ml) of Cu(ClO4)2 6H2O (0.188 g,0.5 mmol). An aqueous solution of L-Met(0.075 g, 0.5 mmol) and NaOH (0.020 g, 0.5 mmol) was then added to the mixture. After stirring continuously at 333 K for 1 h, the resulting green solution was filtered. The single crystals were obtained from the filtrate after two weeks (yield 67% based on Cu).

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 \%A, N—H = 0.86–0.9 \%A and with Uiso(H) = 1.5 Ueq (C) for methyl- H atoms, and 1.2 Ueq (C,N) for the other hydrogen atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, drawn with 30% probability displacement ellipsoids. Symmetry codes: (i) -0.5+x, 1.5-y, 2-z.
[Figure 2] Fig. 2. The crystal packing viewed along the b axis. Hydrogen bonds are drawn as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
catena-Poly[[[[2-(2-pyridyl-κN)-1H-benzimidazole- κN3]copper(II)]-µ-L-methioninato-κ3N,O:O'] perchlorate] top
Crystal data top
[Cu(C5H10NO2S)(C12H9N3)]ClO4F(000) = 1036
Mr = 506.41Dx = 1.643 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5099 reflections
a = 6.9718 (4) Åθ = 2.4–26.5°
b = 11.8902 (6) ŵ = 1.34 mm1
c = 24.7024 (13) ÅT = 293 K
V = 2047.73 (19) Å3Block, blue
Z = 40.45 × 0.35 × 0.13 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4464 independent reflections
Radiation source: fine-focus sealed tube3557 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 68
Tmin = 0.583, Tmax = 0.845k = 1514
12781 measured reflectionsl = 3031
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0626P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4464 reflectionsΔρmax = 0.45 e Å3
272 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 1874 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (17)
Crystal data top
[Cu(C5H10NO2S)(C12H9N3)]ClO4V = 2047.73 (19) Å3
Mr = 506.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.9718 (4) ŵ = 1.34 mm1
b = 11.8902 (6) ÅT = 293 K
c = 24.7024 (13) Å0.45 × 0.35 × 0.13 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4464 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3557 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.845Rint = 0.035
12781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.111Δρmax = 0.45 e Å3
S = 1.05Δρmin = 0.28 e Å3
4464 reflectionsAbsolute structure: Flack (1983), 1874 Friedel pairs
272 parametersAbsolute structure parameter: 0.001 (17)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.03097 (7)0.92990 (4)1.007152 (16)0.03414 (14)
S10.1487 (2)0.72711 (14)0.75829 (5)0.0695 (4)
C10.0206 (6)1.1839 (3)0.96479 (14)0.0319 (8)
C20.0198 (7)1.1840 (3)0.90774 (15)0.0422 (10)
H20.01611.11760.88790.051*
C30.0246 (7)1.2888 (4)0.88271 (16)0.0517 (11)
H30.02441.29230.84510.062*
C40.0297 (7)1.3874 (4)0.91190 (17)0.0496 (11)
H40.03111.45520.89320.060*
C50.0329 (7)1.3900 (3)0.96696 (16)0.0444 (10)
H50.03901.45730.98610.053*
C60.0265 (5)1.2874 (3)0.99268 (14)0.0348 (8)
C70.0303 (6)1.1451 (3)1.04985 (14)0.0324 (8)
C80.0452 (6)1.0774 (3)1.09845 (13)0.0334 (8)
C90.0441 (7)1.1167 (4)1.15117 (15)0.0463 (10)
H90.03341.19331.15840.056*
C100.0590 (8)1.0405 (4)1.19261 (16)0.0557 (13)
H100.05741.06461.22840.067*
C110.0767 (6)0.9258 (4)1.18046 (17)0.0496 (11)
H110.08780.87291.20800.059*
C120.0774 (6)0.8931 (4)1.12754 (16)0.0416 (10)
H120.08850.81691.11960.050*
C140.1548 (5)0.7221 (3)0.97297 (14)0.0312 (8)
C150.0420 (6)0.7667 (3)0.92357 (13)0.0318 (8)
H150.08440.73070.92400.038*
C160.1402 (6)0.7342 (3)0.87040 (15)0.0374 (9)
H16A0.26770.76670.86970.045*
H16B0.15430.65300.86920.045*
C170.0311 (7)0.7726 (4)0.81999 (15)0.0542 (11)
H17A0.02170.85400.82010.065*
H17B0.09800.74230.82100.065*
C180.0818 (9)0.5877 (5)0.7533 (2)0.088 (2)
H18A0.09840.55160.78780.132*
H18B0.16020.55080.72680.132*
H18C0.05040.58310.74270.132*
N10.0205 (4)1.0973 (2)1.00175 (11)0.0331 (7)
N20.0307 (5)1.2578 (2)1.04683 (12)0.0381 (8)
H2A0.03301.30351.07380.046*
N30.0626 (5)0.9665 (3)1.08662 (12)0.0359 (8)
N40.0118 (5)0.8879 (2)0.92955 (11)0.0348 (7)
H4A0.10480.90660.91670.042*
H4B0.10050.92570.91030.042*
O10.1548 (4)0.7856 (2)1.01441 (10)0.0413 (6)
O20.2326 (4)0.6305 (2)0.96999 (10)0.0381 (6)
Cl10.50122 (15)0.99416 (8)0.86259 (4)0.0468 (3)
O30.5967 (8)1.0975 (4)0.8603 (2)0.122 (2)
O40.4179 (8)0.9815 (5)0.91477 (17)0.1137 (18)
O50.6217 (8)0.9044 (4)0.8494 (3)0.129 (2)
O60.3501 (8)0.9903 (5)0.8275 (2)0.131 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0428 (3)0.0279 (2)0.0317 (2)0.0028 (2)0.00370 (19)0.00388 (17)
S10.0851 (10)0.0913 (10)0.0322 (6)0.0032 (8)0.0089 (6)0.0012 (6)
C10.027 (2)0.0314 (18)0.0379 (19)0.0007 (17)0.0005 (16)0.0032 (14)
C20.054 (3)0.039 (2)0.0336 (18)0.000 (2)0.003 (2)0.0036 (15)
C30.059 (3)0.059 (3)0.038 (2)0.001 (3)0.000 (2)0.0104 (19)
C40.058 (3)0.037 (2)0.054 (2)0.005 (2)0.005 (2)0.0116 (18)
C50.051 (3)0.034 (2)0.049 (2)0.000 (2)0.003 (2)0.0010 (17)
C60.0326 (19)0.0346 (18)0.0371 (18)0.0026 (16)0.0004 (18)0.0024 (15)
C70.036 (2)0.0275 (18)0.0336 (17)0.0022 (17)0.0004 (17)0.0055 (14)
C80.038 (2)0.0324 (19)0.0299 (17)0.0007 (19)0.0018 (15)0.0003 (15)
C90.063 (3)0.043 (2)0.033 (2)0.006 (2)0.001 (2)0.0032 (16)
C100.070 (3)0.071 (3)0.0260 (19)0.005 (3)0.004 (2)0.0060 (19)
C110.052 (3)0.061 (3)0.036 (2)0.005 (2)0.0026 (18)0.012 (2)
C120.046 (3)0.037 (2)0.042 (2)0.0045 (18)0.0055 (18)0.0031 (17)
C140.029 (2)0.033 (2)0.0317 (18)0.0037 (17)0.0008 (15)0.0006 (16)
C150.030 (2)0.0342 (19)0.0311 (17)0.0000 (17)0.0007 (16)0.0035 (14)
C160.044 (2)0.035 (2)0.0331 (19)0.0027 (18)0.0022 (18)0.0028 (16)
C170.058 (3)0.069 (3)0.035 (2)0.009 (3)0.003 (2)0.003 (2)
C180.085 (4)0.101 (5)0.079 (4)0.011 (4)0.012 (3)0.048 (4)
N10.0377 (17)0.0278 (14)0.0338 (15)0.0007 (12)0.0022 (15)0.0062 (11)
N20.047 (2)0.0325 (17)0.0349 (15)0.0035 (16)0.0007 (16)0.0084 (12)
N30.0364 (19)0.0374 (18)0.0337 (16)0.0019 (14)0.0039 (14)0.0003 (13)
N40.041 (2)0.0294 (15)0.0340 (15)0.0083 (15)0.0022 (15)0.0002 (12)
O10.0508 (17)0.0385 (15)0.0347 (14)0.0131 (13)0.0099 (13)0.0016 (12)
O20.0432 (16)0.0257 (14)0.0453 (16)0.0071 (12)0.0008 (12)0.0022 (12)
Cl10.0479 (6)0.0444 (5)0.0481 (5)0.0055 (5)0.0044 (5)0.0133 (4)
O30.154 (5)0.079 (3)0.132 (4)0.063 (3)0.073 (3)0.055 (3)
O40.129 (4)0.148 (4)0.064 (3)0.044 (4)0.026 (3)0.013 (3)
O50.120 (4)0.074 (3)0.192 (6)0.029 (3)0.052 (4)0.022 (3)
O60.104 (4)0.176 (5)0.114 (4)0.002 (4)0.042 (3)0.016 (4)
Geometric parameters (Å, º) top
Cu1—O2i2.272 (3)C10—H100.9300
Cu1—O11.929 (3)C11—C121.364 (6)
Cu1—N11.996 (2)C11—H110.9300
Cu1—N32.023 (3)C12—N31.339 (5)
Cu1—N41.985 (3)C12—H120.9300
S1—C181.727 (6)C14—O21.220 (4)
S1—C171.813 (4)C14—O11.272 (4)
C1—N11.377 (4)C14—C151.546 (5)
C1—C21.409 (5)C15—N41.464 (4)
C1—C61.410 (5)C15—C161.531 (5)
C2—C31.391 (6)C15—H150.9800
C2—H20.9300C16—C171.529 (6)
C3—C41.377 (6)C16—H16A0.9700
C3—H30.9300C16—H16B0.9700
C4—C51.360 (6)C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
C5—C61.377 (5)C18—H18A0.9600
C5—H50.9300C18—H18B0.9600
C6—N21.383 (4)C18—H18C0.9600
C7—N11.319 (4)N2—H2A0.8600
C7—N21.341 (4)N4—H4A0.9000
C7—C81.449 (5)N4—H4B0.9000
C8—N31.356 (5)O2—Cu1ii2.272 (3)
C8—C91.384 (5)Cl1—O61.365 (5)
C9—C101.372 (6)Cl1—O51.397 (4)
C9—H90.9300Cl1—O31.399 (4)
C10—C111.401 (6)Cl1—O41.422 (4)
O1—Cu1—N484.05 (11)O1—C14—C15115.6 (3)
O1—Cu1—N1155.45 (13)N4—C15—C16113.6 (3)
N4—Cu1—N1100.58 (11)N4—C15—C14109.4 (3)
O1—Cu1—N392.99 (12)C16—C15—C14111.3 (3)
N4—Cu1—N3176.82 (14)N4—C15—H15107.4
N1—Cu1—N381.63 (12)C16—C15—H15107.4
O1—Cu1—O2i96.06 (11)C14—C15—H15107.4
N4—Cu1—O2i95.67 (12)C17—C16—C15113.6 (4)
N1—Cu1—O2i107.33 (11)C17—C16—H16A108.8
N3—Cu1—O2i85.79 (11)C15—C16—H16A108.8
C18—S1—C17102.9 (3)C17—C16—H16B108.8
N1—C1—C2131.6 (3)C15—C16—H16B108.8
N1—C1—C6109.2 (3)H16A—C16—H16B107.7
C2—C1—C6119.2 (3)C16—C17—S1111.8 (3)
C3—C2—C1116.4 (4)C16—C17—H17A109.3
C3—C2—H2121.8S1—C17—H17A109.3
C1—C2—H2121.8C16—C17—H17B109.3
C4—C3—C2122.0 (4)S1—C17—H17B109.3
C4—C3—H3119.0H17A—C17—H17B107.9
C2—C3—H3119.0S1—C18—H18A109.5
C5—C4—C3122.9 (4)S1—C18—H18B109.5
C5—C4—H4118.5H18A—C18—H18B109.5
C3—C4—H4118.5S1—C18—H18C109.5
C4—C5—C6116.1 (4)H18A—C18—H18C109.5
C4—C5—H5121.9H18B—C18—H18C109.5
C6—C5—H5121.9C7—N1—C1105.9 (3)
C5—C6—N2132.1 (3)C7—N1—Cu1111.6 (2)
C5—C6—C1123.3 (3)C1—N1—Cu1142.2 (2)
N2—C6—C1104.6 (3)C7—N2—C6107.9 (3)
N1—C7—N2112.4 (3)C7—N2—H2A126.0
N1—C7—C8120.7 (3)C6—N2—H2A126.0
N2—C7—C8126.9 (3)C12—N3—C8118.5 (3)
N3—C8—C9122.1 (3)C12—N3—Cu1126.9 (3)
N3—C8—C7111.6 (3)C8—N3—Cu1114.1 (2)
C9—C8—C7126.3 (3)C15—N4—Cu1109.6 (2)
C10—C9—C8118.6 (4)C15—N4—H4A109.8
C10—C9—H9120.7Cu1—N4—H4A109.8
C8—C9—H9120.7C15—N4—H4B109.8
C9—C10—C11119.3 (4)Cu1—N4—H4B109.8
C9—C10—H10120.3H4A—N4—H4B108.2
C11—C10—H10120.3C14—O1—Cu1116.9 (2)
C12—C11—C10118.9 (4)C14—O2—Cu1ii132.4 (2)
C12—C11—H11120.6O6—Cl1—O5106.9 (4)
C10—C11—H11120.6O6—Cl1—O3111.8 (4)
N3—C12—C11122.5 (4)O5—Cl1—O3112.1 (3)
N3—C12—H12118.8O6—Cl1—O4104.9 (3)
C11—C12—H12118.8O5—Cl1—O4112.1 (4)
O2—C14—O1125.4 (3)O3—Cl1—O4108.9 (3)
O2—C14—C15119.0 (3)
N1—C1—C2—C3178.6 (4)N4—Cu1—N1—C7179.7 (3)
C6—C1—C2—C30.1 (6)N3—Cu1—N1—C72.6 (3)
C1—C2—C3—C40.1 (7)O2i—Cu1—N1—C780.3 (3)
C2—C3—C4—C50.9 (8)O1—Cu1—N1—C191.8 (5)
C3—C4—C5—C61.4 (8)N4—Cu1—N1—C17.1 (5)
C4—C5—C6—N2178.6 (5)N3—Cu1—N1—C1170.6 (4)
C4—C5—C6—C11.2 (6)O2i—Cu1—N1—C1106.6 (4)
N1—C1—C6—C5178.3 (4)N1—C7—N2—C61.9 (5)
C2—C1—C6—C50.5 (6)C8—C7—N2—C6176.1 (4)
N1—C1—C6—N20.3 (4)C5—C6—N2—C7176.9 (5)
C2—C1—C6—N2178.5 (4)C1—C6—N2—C70.9 (5)
N1—C7—C8—N34.9 (6)C11—C12—N3—C80.4 (6)
N2—C7—C8—N3172.9 (4)C11—C12—N3—Cu1172.4 (3)
N1—C7—C8—C9175.5 (4)C9—C8—N3—C120.6 (6)
N2—C7—C8—C96.7 (7)C7—C8—N3—C12179.8 (4)
N3—C8—C9—C100.7 (7)C9—C8—N3—Cu1173.6 (3)
C7—C8—C9—C10179.8 (4)C7—C8—N3—Cu16.8 (4)
C8—C9—C10—C110.6 (7)O1—Cu1—N3—C1226.3 (4)
C9—C10—C11—C120.4 (7)N1—Cu1—N3—C12177.7 (4)
C10—C11—C12—N30.3 (7)O2i—Cu1—N3—C1269.5 (3)
O2—C14—C15—N4163.0 (3)O1—Cu1—N3—C8161.3 (3)
O1—C14—C15—N418.2 (5)N1—Cu1—N3—C85.4 (3)
O2—C14—C15—C1636.7 (5)O2i—Cu1—N3—C8102.8 (3)
O1—C14—C15—C16144.5 (3)C16—C15—N4—Cu1147.4 (3)
N4—C15—C16—C1758.1 (5)C14—C15—N4—Cu122.4 (4)
C14—C15—C16—C17178.0 (3)O1—Cu1—N4—C1517.0 (3)
C15—C16—C17—S1177.8 (3)N1—Cu1—N4—C15172.6 (3)
C18—S1—C17—C1678.7 (4)O2i—Cu1—N4—C1578.5 (3)
N2—C7—N1—C12.0 (5)O2—C14—O1—Cu1177.1 (3)
C8—C7—N1—C1176.1 (4)C15—C14—O1—Cu14.2 (4)
N2—C7—N1—Cu1177.7 (3)N4—Cu1—O1—C147.3 (3)
C8—C7—N1—Cu10.5 (5)N1—Cu1—O1—C14109.8 (3)
C2—C1—N1—C7177.2 (5)N3—Cu1—O1—C14173.8 (3)
C6—C1—N1—C71.4 (4)O2i—Cu1—O1—C1487.8 (3)
C2—C1—N1—Cu13.9 (8)O1—C14—O2—Cu1ii48.0 (5)
C6—C1—N1—Cu1174.8 (3)C15—C14—O2—Cu1ii133.4 (3)
O1—Cu1—N1—C781.3 (4)
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+1/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2a···O3iii0.862.062.904 (6)168
N4—H4a···O5iv0.902.533.370 (7)155
N4—H4b···O40.902.313.064 (7)141
Symmetry codes: (iii) x1/2, y+5/2, z+2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C5H10NO2S)(C12H9N3)]ClO4
Mr506.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.9718 (4), 11.8902 (6), 24.7024 (13)
V3)2047.73 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.45 × 0.35 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.583, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
12781, 4464, 3557
Rint0.035
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.05
No. of reflections4464
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.28
Absolute structureFlack (1983), 1874 Friedel pairs
Absolute structure parameter0.001 (17)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Cu1—O2i2.272 (3)Cu1—N32.023 (3)
Cu1—O11.929 (3)Cu1—N41.985 (3)
Cu1—N11.996 (2)O2—Cu1ii2.272 (3)
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+1/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2a···O3iii0.862.062.904 (6)168
N4—H4a···O5iv0.902.533.370 (7)155
N4—H4b···O40.902.313.064 (7)141
Symmetry codes: (iii) x1/2, y+5/2, z+2; (iv) x1, y, z.
 

Acknowledgements

This work was supported by the Science and Technology Plan Project of Guangdong (No. 2009B020312010), the Natural Science Foundation of Guangdong (No. 10151064201000016) and the 211 Project Program Foundation of South China Agricultural University (No. 2009B010100001).

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevereux, M., McCann, M. O., Shea, D., Kelly, R., Egan, D., Deegan, C., Kavanagh, K., McKee, V. & Finn, G. (2004). J. Inorg. Biochem. 98, 1023–1031.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDevereux, M. O., Shea, D., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kedziora, K., Rosair, G. & Mueller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881–892.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Sherif, A. A. & Jeragh, B. J. A. (2007). Spectrochim. Acta Part A, 68, 877–882.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLin, Q. B., Le, X. Y., Xiong, Y. H. & Feng, X. L. (2006). Chin. J. Inorg. Chem. 22, 2080–2084.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamauchi, O., Odani, A. & Masuda, H. (1992). Inorg. Chim. Acta, 198–200, 749–761.  CrossRef CAS Google Scholar
First citationZhou, X. H., Le, X. Y. & Chen, S. (2005). J. Coord. Chem. 58, 993–1001.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m642-m643
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds