metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m581-m582

(2-Methyl-4-oxo-4H-pyran-3-olato-κ2O3,O4)bis­­(tri­phenyl­phosphane-κP)copper(I)–tri­phenyl­phosphane–methanol (1/1/1)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: geds12@yahoo.com

(Received 28 February 2011; accepted 28 March 2011; online 13 April 2011)

In the title compound, [Cu(C6H5O3)(C18H15P)2]·C18H15P·CH3OH, the pyran-4-one ring is appromimately planar (r.m.s deviation = 0.0138 Å), with the CuI atom 0.451 (5) Å out of the plane. The CuI atom has a distorted tetra­hedral coordination. The O—Cu—O angle is 80.07 (8)° and the P—Cu—P angle is 123.49 (3)°. The crystal packing is stablized by intra­molecular C—H⋯O inter­actions and inter­molecular C—H⋯O and O—H⋯O inter­actions.

Related literature

The title compound is structurally related to the flavonolato, nitro­sophenyl­hydroxy­laminato and tropolonato derivatives, see: Spier et al. (1990[Spier, G., Fulop, V. & Parkanyi, L. (1990). J. Chem. Soc. Chem. Commun. pp. 512-513.]); Charalambous et al. (1984[Charalambous, J., Haines, L. I. B., Harris, N. J., Henrick, K. & Taylor, F. B. (1984). J. Chem. Res. 220, 2101-2109.]); Steyl (2009[Steyl, G. (2009). Acta Cryst. E65, m448.]). For related diketonato complexes, see: Odoko et al. (2002[Odoko, M., Yamamoto, K. & Okabe, N. (2002). Acta Cryst. C58, m506-m508.], 2003[Odoko, M., Yamamoto, K., Hosen, M. & Okabe, N. (2003). Acta Cryst. C59, m121-m123.]). For general background to pyran­one ligands, see: Hider et al. (1984a[Hider, R. C., Kontoghiorghes, G., Silver, J. & Stockman, M. A. (1984a). UK Patent Appl. GB 2 136 806A.],b[Hider, R. C., Kontoghiorghes, G., Silver, J. & Stockman, M. A. (1984b). Eur. Patent Appl. 0 107 458.]); Kontoghiorghes et al. (1990[Kontoghiorghes, G. J., Bartlett, A. N., Hoffbrand, A. V., Goddard, J. G., Sheppard, L., Barr, J. & Nortey, P. (1990). Br. J. Haematol. 76, 295-300.]); Kontoghiorghes (1995[Kontoghiorghes, G. J. (1995). Analyst, 120, 845-851.]); Hedlund & Öhman (1988[Hedlund, T. & Öhman, L.-O. (1988). Acta Chem. Scand. Ser. A, 42, 702-709.]); Creeth et al. (2000[Creeth, J., Molloy, K. C. & Wright, P. (2000). Oral Cove Compositions. International Patent WO 00/16736.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H5O3)(C18H15P)2]·C18H15P·CH4O

  • Mr = 1007.49

  • Monoclinic, P 21 /c

  • a = 20.5253 (7) Å

  • b = 13.5716 (4) Å

  • c = 20.3129 (7) Å

  • β = 119.205 (1)°

  • V = 4939.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 150 K

  • 0.19 × 0.19 × 0.06 mm

Data collection
  • Bruker X8 APEXII 4K diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.894, Tmax = 0.965

  • 58551 measured reflections

  • 10787 independent reflections

  • 8326 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.127

  • S = 1.06

  • 10787 reflections

  • 625 parameters

  • H-atom parameters constrained

  • Δρmax = 1.51 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 2.046 (2)
Cu1—O2 2.175 (2)
Cu1—P1 2.2014 (7)
Cu1—P2 2.2692 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1 0.84 1.8 2.637 (3) 174
C2—H2⋯O2 0.95 2.46 3.370 (3) 162
C12—H12⋯O2 0.95 2.54 3.412 (4) 153
C22—H22⋯O4i 0.95 2.51 3.144 (4) 125
C32—H32⋯O1 0.95 2.6 3.495 (3) 158
C53—H53⋯O4 0.95 2.52 3.398 (5) 154
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2007[Brandenburg, K. & Putz, H. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyranone ligands have remarkable properties for clinical purposes (Odoko et al. 2003). These ligands are relevant to the control of metal levels in the body and have been tested for administration for the amelioration of anaemia (Hider et al. 1984a,b) and the removal of iron (Kontoghiorghes et al. 1990) and aluminium (Kontoghiorghes, 1995). 3-hydroxy-2-methyl-4H- pyran-4-one is a naturally occurring non-toxic compound typically added as a food flavour enhancer. It has the ability to be deprotonated readily (pKa = 8.38; Hedlund & Öhman, 1988) and can act as an anionic chelating O,O'-bidentate ligand towards a number of biologically active metal ions (Odoko et al. 2002). The efficacy of the CuII and SnII complexes in oral-care formations (Creeth et al. 2000) has also been reported. Only three other examples of copper triphenylphosphine complexes are known to date, which containes a five-membered O,O'-bidentate chelating ring system, i.e., the flavonolato, nitrosophenylhydroxylaminato and tropolonato derivatives (Spier et al., 1990; Charalambous et al. 1984; Steyl, 2009). In this paper, the structure of (2-methyl-4-oxo-4H-pyran-3-olato- κ2O3,O4) Copper(I) complex is reported (Fig. 1). The pyran-4-one ring is essentially planar (r.m.s = 0.0138 fitted atoms C55, C56, C57, C58, C59 and O3). The Cu atom is situated 0.4508 (48) Å above the pyran-4-one ring plane. The Cu—O1 and Cu—O2 bond lengths are 2.046 (2) Å and 2.175 Å, respectively, this correlates well with literature (Steyl, 2009). The bidentate bite angle O1—Cu—O2 is 80.07 (8) ° which correlates with the observed literature values (Odoko et al. 2003). The Cu—P1 and Cu—P2 bond length is 2.2014 (7) and 2.2692 (8) Å, respectively, this is within normal range (Spier et al. 1990; Charalambous et al. 1984). The P1—Cu—P2 bond angle is 123.49 (3) °. O4–H4A···O1 hydrogen interactions between the solvent molecule and the complex and C53—H53···O1 hydrogen interaction between the free phosphie and complex stabilze the crystal packing. The crystal is further stabilized by inter- and intramolecular C—H···O hydrogen interactions (Table 2).

Related literature top

The title compound is structurally related to the flavonolato, nitrosophenylhydroxylaminato and tropolonato derivatives, see: Spier et al. (1990); Charalambous et al. (1984); Steyl (2009). For related diketonato complexes, see: Odoko et al. (2002, 2003). For general background to pyranone ligands, see: Hider et al. (1984a,b); Kontoghiorghes et al. (1990); Kontoghiorghes (1995); Hedlund & Öhman (1988); Creeth et al. (2000)

Experimental top

A solution of [Cu(NO3)(PPh3)2] (0.6502 g, 0.001 mol) in methanol (10 ml) was slowly added to a solution of 3-hydroxy-2-methyl-4H-pyran-4-one (0.1387 g, 0.0011 mol) in methanol (10 ml) and stirred for 30 minutes. Recrystallization from methanol gave X-Ray quality crystals. Yield 78%.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent) of the parent atom with a C—H distance of 0.93.The methyl H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.5Ueq(C) and at a distance of 0.96 Å. The highest peak in the Fourier map (1.51 e.Å–3) is located 0.83Å from Cu1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2007); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Thermal ellipsoids at 50% probability.
(2-Methyl-4-oxo-4H-pyran-3-olato- κ2O3,O4)bis(triphenylphosphane- κP)copper(I)–triphenylphosphane–methanol (1/1/1) top
Crystal data top
[Cu(C6H5O3)(C18H15P)2]·C18H15P·CH4OF(000) = 2104
Mr = 1007.49Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 8938 reflections
a = 20.5253 (7) Åθ = 2.3–26.4°
b = 13.5716 (4) ŵ = 0.59 mm1
c = 20.3129 (7) ÅT = 150 K
β = 119.205 (1)°Plate, colourless
V = 4939.1 (3) Å30.19 × 0.19 × 0.06 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K
diffractometer
10787 independent reflections
Radiation source: fine-focus sealed tube8326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 27°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2626
Tmin = 0.894, Tmax = 0.965k = 1717
58551 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0475P)2 + 7.9566P]
where P = (Fo2 + 2Fc2)/3
10787 reflections(Δ/σ)max = 0.001
625 parametersΔρmax = 1.51 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Cu(C6H5O3)(C18H15P)2]·C18H15P·CH4OV = 4939.1 (3) Å3
Mr = 1007.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.5253 (7) ŵ = 0.59 mm1
b = 13.5716 (4) ÅT = 150 K
c = 20.3129 (7) Å0.19 × 0.19 × 0.06 mm
β = 119.205 (1)°
Data collection top
Bruker X8 APEXII 4K
diffractometer
10787 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
8326 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.965Rint = 0.058
58551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 1.51 e Å3
10787 reflectionsΔρmin = 0.86 e Å3
625 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 688 frames were collected with a frame width of 0.5° covering up to θ = 28.24° with 99.1% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.214103 (18)0.00326 (2)0.261886 (19)0.01908 (9)
P10.10439 (4)0.06950 (5)0.22835 (4)0.01542 (14)
P20.23466 (4)0.16169 (5)0.26969 (4)0.01741 (15)
P30.38902 (4)0.48977 (6)0.31013 (4)0.02500 (17)
O10.29079 (11)0.06514 (16)0.23758 (11)0.0265 (5)
O20.29997 (11)0.04399 (15)0.37487 (11)0.0245 (4)
C10.08207 (15)0.08316 (18)0.30441 (15)0.0164 (5)
C20.14009 (15)0.08692 (19)0.37862 (16)0.0199 (6)
H20.19030.08190.38880.024*
C60.00836 (15)0.09007 (18)0.29104 (15)0.0170 (5)
H60.03190.08610.24090.02*
C50.00614 (15)0.10258 (19)0.35027 (16)0.0186 (5)
H50.05620.10910.34050.022*
C30.12498 (16)0.0979 (2)0.43784 (16)0.0217 (6)
H30.16490.10010.48830.026*
C40.05204 (16)0.1056 (2)0.42358 (16)0.0210 (6)
H40.04190.1130.46420.025*
C70.20878 (15)0.2199 (2)0.33478 (16)0.0202 (6)
C80.18613 (16)0.3169 (2)0.33070 (17)0.0261 (6)
H80.18240.3580.29110.031*
C100.17415 (17)0.2963 (2)0.44152 (18)0.0298 (7)
H100.16160.32190.47740.036*
C90.16883 (16)0.3550 (2)0.38402 (17)0.0291 (7)
H90.15330.42160.38060.035*
C120.21461 (19)0.1614 (2)0.39378 (19)0.0316 (7)
H120.23020.09470.39760.038*
C110.1978 (2)0.2001 (3)0.4469 (2)0.0361 (8)
H110.20260.160.48740.043*
C140.22245 (15)0.3304 (2)0.18224 (16)0.0206 (6)
H140.26830.35190.22340.025*
C130.19240 (15)0.2392 (2)0.18613 (15)0.0185 (5)
C180.12553 (15)0.2083 (2)0.12403 (16)0.0193 (6)
H180.10480.14620.12540.023*
C170.08922 (15)0.2673 (2)0.06064 (16)0.0215 (6)
H170.0440.24550.01870.026*
C150.18590 (16)0.3892 (2)0.11902 (16)0.0217 (6)
H150.20670.4510.11710.026*
C160.11908 (16)0.3586 (2)0.05846 (16)0.0216 (6)
H160.09370.39980.01550.026*
C230.05007 (16)0.1488 (2)0.13305 (17)0.0223 (6)
H230.06240.20750.150.027*
C190.02499 (14)0.00172 (19)0.15983 (15)0.0159 (5)
C240.00684 (15)0.08956 (19)0.18378 (16)0.0196 (6)
H240.0340.10830.23530.023*
C200.01466 (16)0.0231 (2)0.08419 (16)0.0219 (6)
H200.00290.0820.0670.026*
C220.08934 (17)0.1231 (2)0.05755 (18)0.0265 (6)
H220.12840.16430.02260.032*
C210.07135 (17)0.0373 (2)0.03344 (17)0.0262 (6)
H210.09810.01950.01830.031*
C270.37303 (16)0.2392 (2)0.37962 (17)0.0264 (6)
H270.34750.26270.40490.032*
C250.33395 (14)0.19082 (19)0.31180 (15)0.0183 (5)
C260.37255 (17)0.1562 (2)0.27614 (19)0.0308 (7)
H260.34660.12170.22970.037*
C280.44955 (17)0.2538 (3)0.41136 (18)0.0333 (7)
H280.47590.28750.45810.04*
C290.48730 (17)0.2200 (2)0.3756 (2)0.0333 (7)
H290.53960.230.39740.04*
C300.44870 (18)0.1718 (3)0.3081 (2)0.0364 (8)
H300.47440.14880.28290.044*
C310.08839 (15)0.19196 (18)0.18591 (15)0.0165 (5)
C340.07028 (16)0.3770 (2)0.11999 (15)0.0208 (6)
H340.06450.44040.0980.025*
C350.02073 (15)0.34515 (19)0.14352 (15)0.0187 (5)
H350.01920.38650.13740.022*
C360.02951 (15)0.25301 (19)0.17593 (15)0.0181 (5)
H360.00480.23110.19150.022*
C320.13759 (15)0.2245 (2)0.16215 (16)0.0211 (6)
H320.1780.18370.16890.025*
C330.12819 (16)0.3166 (2)0.12855 (17)0.0233 (6)
H330.16150.33790.11150.028*
C420.33225 (16)0.4130 (2)0.33699 (16)0.0214 (6)
C410.25678 (17)0.4336 (2)0.30419 (18)0.0285 (7)
H410.23550.48150.26520.034*
C400.21165 (17)0.3860 (2)0.32715 (19)0.0314 (7)
H400.15980.40040.30330.038*
C390.24148 (18)0.3180 (2)0.3842 (2)0.0328 (7)
H390.21070.28570.40040.039*
C380.3168 (2)0.2969 (3)0.4180 (2)0.0418 (9)
H380.33810.25050.4580.05*
C370.36142 (19)0.3430 (3)0.3936 (2)0.0378 (8)
H370.41280.32630.41620.045*
C440.50530 (17)0.3496 (2)0.34617 (19)0.0327 (7)
H440.4720.31550.30140.039*
C430.48189 (16)0.4346 (2)0.36526 (17)0.0263 (6)
C450.57669 (18)0.3128 (3)0.3913 (2)0.0374 (8)
H450.59240.25510.37650.045*
C460.62451 (18)0.3596 (3)0.45730 (19)0.0388 (8)
H460.6730.33370.48880.047*
C470.60193 (19)0.4443 (3)0.4778 (2)0.0451 (9)
H470.63480.47660.52370.054*
C480.53168 (18)0.4823 (3)0.43178 (19)0.0371 (8)
H480.51710.54170.44560.045*
C490.36127 (16)0.4483 (2)0.21457 (17)0.0283 (7)
C540.33106 (17)0.3582 (3)0.18496 (18)0.0318 (7)
H540.32350.31120.21530.038*
C510.35207 (18)0.4942 (3)0.0952 (2)0.0396 (8)
H510.35910.54090.06440.048*
C500.37123 (17)0.5176 (3)0.16850 (19)0.0337 (7)
H500.39130.58070.18810.04*
C520.32287 (18)0.4032 (3)0.06709 (19)0.0362 (8)
H520.31050.3870.01680.043*
C530.31113 (18)0.3348 (3)0.1100 (2)0.0373 (8)
H530.28980.27260.08930.045*
C550.35473 (16)0.0786 (2)0.29884 (17)0.0236 (6)
C590.41971 (16)0.0984 (2)0.29795 (18)0.0282 (7)
C600.42869 (18)0.1052 (3)0.2299 (2)0.0363 (8)
H60A0.43960.03980.21740.054*
H60B0.46990.15010.23990.054*
H60C0.38250.13030.18750.054*
C570.42829 (17)0.0856 (2)0.43665 (19)0.0304 (7)
H570.43270.08330.48540.036*
C580.48828 (18)0.1051 (3)0.42923 (19)0.0348 (7)
H580.53470.11560.47360.042*
C560.35775 (16)0.0683 (2)0.37156 (17)0.0236 (6)
O30.48634 (12)0.11061 (17)0.36300 (13)0.0350 (5)
O40.24131 (15)0.1036 (2)0.09364 (14)0.0463 (6)
H4A0.25820.09560.14020.069*
C610.2624 (3)0.0252 (4)0.0650 (3)0.0755 (16)
H61A0.31640.02740.08430.113*
H61B0.23650.02930.00980.113*
H61C0.24910.03670.08040.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01644 (17)0.01898 (17)0.02494 (18)0.00279 (13)0.01253 (14)0.00323 (14)
P10.0157 (3)0.0140 (3)0.0198 (3)0.0010 (2)0.0112 (3)0.0015 (3)
P20.0167 (3)0.0182 (3)0.0201 (3)0.0038 (3)0.0112 (3)0.0026 (3)
P30.0204 (4)0.0275 (4)0.0260 (4)0.0003 (3)0.0105 (3)0.0044 (3)
O10.0213 (10)0.0334 (12)0.0270 (11)0.0004 (9)0.0134 (9)0.0037 (9)
O20.0221 (10)0.0272 (11)0.0258 (11)0.0037 (8)0.0129 (9)0.0025 (9)
C10.0201 (13)0.0111 (12)0.0216 (13)0.0005 (10)0.0131 (11)0.0012 (10)
C20.0180 (13)0.0181 (13)0.0265 (15)0.0014 (10)0.0131 (12)0.0004 (11)
C60.0196 (13)0.0133 (12)0.0194 (13)0.0004 (10)0.0105 (11)0.0008 (10)
C50.0191 (13)0.0151 (12)0.0276 (15)0.0004 (10)0.0161 (12)0.0009 (11)
C30.0229 (14)0.0207 (14)0.0206 (14)0.0004 (11)0.0097 (12)0.0002 (11)
C40.0278 (15)0.0182 (13)0.0218 (14)0.0001 (11)0.0156 (12)0.0000 (11)
C70.0176 (13)0.0250 (14)0.0218 (14)0.0058 (11)0.0127 (12)0.0042 (11)
C80.0233 (15)0.0327 (16)0.0210 (14)0.0047 (12)0.0097 (12)0.0004 (12)
C100.0239 (15)0.0439 (19)0.0311 (16)0.0084 (13)0.0209 (14)0.0124 (14)
C90.0211 (15)0.0374 (17)0.0240 (15)0.0066 (13)0.0073 (13)0.0074 (13)
C120.046 (2)0.0251 (16)0.0373 (18)0.0088 (14)0.0313 (16)0.0043 (13)
C110.053 (2)0.0339 (18)0.0385 (19)0.0141 (16)0.0352 (18)0.0070 (15)
C140.0190 (13)0.0220 (14)0.0227 (14)0.0033 (11)0.0117 (12)0.0042 (11)
C130.0207 (13)0.0191 (13)0.0219 (14)0.0013 (11)0.0152 (12)0.0027 (11)
C180.0209 (14)0.0193 (13)0.0239 (14)0.0045 (11)0.0156 (12)0.0040 (11)
C170.0194 (14)0.0277 (15)0.0202 (14)0.0020 (11)0.0118 (12)0.0076 (12)
C150.0239 (14)0.0205 (14)0.0273 (15)0.0035 (11)0.0176 (13)0.0024 (11)
C160.0247 (14)0.0251 (14)0.0215 (14)0.0044 (11)0.0164 (12)0.0002 (11)
C230.0267 (15)0.0149 (13)0.0330 (16)0.0005 (11)0.0206 (13)0.0002 (11)
C190.0163 (12)0.0144 (12)0.0211 (13)0.0026 (10)0.0122 (11)0.0004 (10)
C240.0189 (13)0.0165 (13)0.0262 (15)0.0038 (10)0.0133 (12)0.0036 (11)
C200.0268 (15)0.0184 (14)0.0265 (15)0.0004 (11)0.0177 (13)0.0006 (11)
C220.0266 (15)0.0243 (15)0.0323 (16)0.0077 (12)0.0172 (14)0.0091 (13)
C210.0278 (16)0.0285 (15)0.0227 (15)0.0039 (12)0.0125 (13)0.0027 (12)
C270.0226 (15)0.0313 (16)0.0244 (15)0.0017 (12)0.0108 (13)0.0001 (12)
C250.0151 (13)0.0179 (13)0.0214 (14)0.0022 (10)0.0084 (11)0.0032 (11)
C260.0248 (16)0.0393 (18)0.0341 (17)0.0093 (13)0.0188 (14)0.0096 (14)
C280.0227 (16)0.0403 (19)0.0270 (17)0.0069 (13)0.0045 (13)0.0024 (14)
C290.0170 (14)0.0339 (17)0.047 (2)0.0009 (13)0.0140 (15)0.0096 (15)
C300.0271 (17)0.0401 (19)0.052 (2)0.0040 (14)0.0270 (17)0.0041 (16)
C310.0200 (13)0.0132 (12)0.0176 (13)0.0001 (10)0.0102 (11)0.0004 (10)
C340.0287 (15)0.0138 (13)0.0209 (14)0.0004 (11)0.0129 (12)0.0026 (11)
C350.0228 (14)0.0158 (13)0.0195 (13)0.0020 (10)0.0119 (12)0.0012 (10)
C360.0171 (13)0.0188 (13)0.0200 (13)0.0031 (10)0.0104 (11)0.0008 (10)
C320.0213 (14)0.0207 (14)0.0258 (15)0.0030 (11)0.0149 (12)0.0023 (11)
C330.0256 (15)0.0234 (14)0.0279 (15)0.0000 (11)0.0187 (13)0.0041 (12)
C420.0208 (14)0.0193 (13)0.0249 (15)0.0013 (11)0.0118 (12)0.0015 (11)
C410.0269 (16)0.0296 (16)0.0320 (17)0.0054 (12)0.0168 (14)0.0059 (13)
C400.0204 (15)0.0381 (18)0.0352 (18)0.0008 (13)0.0132 (14)0.0007 (14)
C390.0324 (17)0.0281 (16)0.047 (2)0.0045 (13)0.0262 (16)0.0013 (14)
C380.039 (2)0.041 (2)0.052 (2)0.0076 (16)0.0277 (18)0.0205 (17)
C370.0256 (17)0.0418 (19)0.046 (2)0.0063 (14)0.0171 (16)0.0167 (16)
C440.0226 (15)0.0343 (17)0.0345 (18)0.0013 (13)0.0087 (14)0.0051 (14)
C430.0192 (14)0.0346 (17)0.0265 (15)0.0016 (12)0.0123 (13)0.0073 (13)
C450.0253 (17)0.0384 (19)0.048 (2)0.0052 (14)0.0170 (16)0.0120 (16)
C460.0211 (16)0.063 (2)0.0319 (18)0.0039 (15)0.0125 (14)0.0146 (17)
C470.0267 (18)0.077 (3)0.0277 (18)0.0047 (18)0.0105 (15)0.0073 (18)
C480.0290 (17)0.055 (2)0.0305 (17)0.0007 (15)0.0173 (15)0.0044 (16)
C490.0170 (14)0.0427 (18)0.0238 (15)0.0050 (13)0.0089 (12)0.0031 (13)
C540.0213 (15)0.0408 (19)0.0314 (17)0.0077 (13)0.0112 (14)0.0040 (14)
C510.0275 (17)0.059 (2)0.0343 (18)0.0030 (16)0.0166 (15)0.0109 (17)
C500.0218 (15)0.045 (2)0.0343 (18)0.0018 (14)0.0134 (14)0.0056 (15)
C520.0234 (16)0.059 (2)0.0291 (17)0.0069 (15)0.0150 (14)0.0015 (16)
C530.0230 (16)0.043 (2)0.0386 (19)0.0034 (14)0.0091 (15)0.0041 (16)
C550.0186 (14)0.0236 (14)0.0289 (16)0.0030 (11)0.0119 (13)0.0042 (12)
C590.0202 (15)0.0299 (16)0.0331 (17)0.0007 (12)0.0118 (13)0.0032 (13)
C600.0259 (16)0.045 (2)0.046 (2)0.0012 (14)0.0237 (16)0.0066 (16)
C570.0250 (16)0.0336 (17)0.0290 (17)0.0007 (13)0.0103 (14)0.0004 (13)
C580.0262 (16)0.0382 (18)0.0331 (18)0.0009 (14)0.0090 (14)0.0012 (15)
C560.0227 (15)0.0191 (14)0.0294 (16)0.0008 (11)0.0130 (13)0.0001 (12)
O30.0185 (11)0.0428 (13)0.0398 (13)0.0019 (9)0.0111 (10)0.0018 (11)
O40.0463 (16)0.0579 (17)0.0320 (13)0.0056 (13)0.0170 (13)0.0006 (12)
C610.064 (3)0.093 (4)0.052 (3)0.024 (3)0.015 (2)0.028 (3)
Geometric parameters (Å, º) top
Cu1—O12.046 (2)C28—H280.95
Cu1—O22.175 (2)C29—C301.370 (5)
Cu1—P12.2014 (7)C29—H290.95
Cu1—P22.2692 (8)C30—H300.95
P1—C191.820 (3)C31—C321.387 (4)
P1—C11.823 (3)C31—C361.396 (4)
P1—C311.827 (3)C34—C331.384 (4)
P2—C131.817 (3)C34—C351.387 (4)
P2—C71.827 (3)C34—H340.95
P2—C251.828 (3)C35—C361.383 (4)
P3—C491.825 (3)C35—H350.95
P3—C421.833 (3)C36—H360.95
P3—C431.834 (3)C32—C331.391 (4)
O1—C551.308 (4)C32—H320.95
O2—C561.264 (3)C33—H330.95
C1—C21.393 (4)C42—C371.383 (4)
C1—C61.404 (4)C42—C411.384 (4)
C2—C31.389 (4)C41—C401.384 (4)
C2—H20.95C41—H410.95
C6—C51.384 (4)C40—C391.370 (5)
C6—H60.95C40—H400.95
C5—C41.382 (4)C39—C381.382 (5)
C5—H50.95C39—H390.95
C3—C41.383 (4)C38—C371.384 (5)
C3—H30.95C38—H380.95
C4—H40.95C37—H370.95
C7—C81.386 (4)C44—C431.377 (5)
C7—C121.393 (4)C44—C451.388 (4)
C8—C91.393 (4)C44—H440.95
C8—H80.95C43—C481.393 (5)
C10—C91.373 (5)C45—C461.372 (5)
C10—C111.379 (5)C45—H450.95
C10—H100.95C46—C471.378 (5)
C9—H90.95C46—H460.95
C12—C111.387 (4)C47—C481.379 (5)
C12—H120.95C47—H470.95
C11—H110.95C48—H480.95
C14—C151.382 (4)C49—C541.370 (5)
C14—C131.402 (4)C49—C501.410 (5)
C14—H140.95C54—C531.407 (5)
C13—C181.400 (4)C54—H540.95
C18—C171.385 (4)C51—C521.371 (5)
C18—H180.95C51—C501.379 (5)
C17—C161.392 (4)C51—H510.95
C17—H170.95C50—H500.95
C15—C161.386 (4)C52—C531.372 (5)
C15—H150.95C52—H520.95
C16—H160.95C53—H530.95
C23—C241.378 (4)C55—C591.369 (4)
C23—C221.384 (4)C55—C561.455 (4)
C23—H230.95C59—O31.371 (4)
C19—C201.384 (4)C59—C601.483 (5)
C19—C241.405 (4)C60—H60A0.98
C24—H240.95C60—H60B0.98
C20—C211.384 (4)C60—H60C0.98
C20—H200.95C57—C581.338 (5)
C22—C211.383 (4)C57—C561.425 (4)
C22—H220.95C57—H570.95
C21—H210.95C58—O31.328 (4)
C27—C251.376 (4)C58—H580.95
C27—C281.391 (4)O4—C611.379 (5)
C27—H270.95O4—H4A0.84
C25—C261.390 (4)C61—H61A0.98
C26—C301.386 (4)C61—H61B0.98
C26—H260.95C61—H61C0.98
C28—C291.374 (5)
O1—Cu1—O280.07 (8)C30—C29—C28119.3 (3)
O1—Cu1—P1123.30 (6)C30—C29—H29120.4
O2—Cu1—P1113.74 (6)C28—C29—H29120.4
O1—Cu1—P2106.44 (6)C29—C30—C26120.7 (3)
O2—Cu1—P298.61 (6)C29—C30—H30119.6
P1—Cu1—P2123.49 (3)C26—C30—H30119.6
C19—P1—C1101.57 (12)C32—C31—C36119.1 (2)
C19—P1—C31103.56 (12)C32—C31—P1117.4 (2)
C1—P1—C31104.23 (12)C36—C31—P1123.5 (2)
C19—P1—Cu1114.75 (8)C33—C34—C35120.1 (2)
C1—P1—Cu1114.93 (9)C33—C34—H34120
C31—P1—Cu1116.03 (9)C35—C34—H34120
C13—P2—C7104.53 (13)C36—C35—C34119.9 (3)
C13—P2—C25103.13 (12)C36—C35—H35120
C7—P2—C25102.67 (12)C34—C35—H35120
C13—P2—Cu1121.19 (9)C35—C36—C31120.5 (2)
C7—P2—Cu1111.53 (9)C35—C36—H36119.7
C25—P2—Cu1111.90 (9)C31—C36—H36119.7
C49—P3—C42103.15 (14)C31—C32—C33120.4 (3)
C49—P3—C43102.45 (14)C31—C32—H32119.8
C42—P3—C43102.04 (13)C33—C32—H32119.8
C55—O1—Cu1111.17 (18)C34—C33—C32120.0 (3)
C56—O2—Cu1107.97 (18)C34—C33—H33120
C2—C1—C6118.6 (2)C32—C33—H33120
C2—C1—P1119.0 (2)C37—C42—C41117.9 (3)
C6—C1—P1122.4 (2)C37—C42—P3123.9 (2)
C3—C2—C1120.4 (3)C41—C42—P3117.8 (2)
C3—C2—H2119.8C42—C41—C40121.3 (3)
C1—C2—H2119.8C42—C41—H41119.4
C5—C6—C1120.6 (3)C40—C41—H41119.4
C5—C6—H6119.7C39—C40—C41120.2 (3)
C1—C6—H6119.7C39—C40—H40119.9
C4—C5—C6120.1 (3)C41—C40—H40119.9
C4—C5—H5120C40—C39—C38119.3 (3)
C6—C5—H5120C40—C39—H39120.3
C4—C3—C2120.2 (3)C38—C39—H39120.3
C4—C3—H3119.9C39—C38—C37120.3 (3)
C2—C3—H3119.9C39—C38—H38119.9
C5—C4—C3120.1 (3)C37—C38—H38119.9
C5—C4—H4120C42—C37—C38121.0 (3)
C3—C4—H4120C42—C37—H37119.5
C8—C7—C12118.6 (3)C38—C37—H37119.5
C8—C7—P2125.1 (2)C43—C44—C45121.1 (3)
C12—C7—P2116.3 (2)C43—C44—H44119.4
C7—C8—C9120.7 (3)C45—C44—H44119.4
C7—C8—H8119.6C44—C43—C48118.1 (3)
C9—C8—H8119.6C44—C43—P3124.9 (2)
C9—C10—C11119.7 (3)C48—C43—P3117.1 (2)
C9—C10—H10120.1C46—C45—C44120.0 (3)
C11—C10—H10120.1C46—C45—H45120
C10—C9—C8120.1 (3)C44—C45—H45120
C10—C9—H9119.9C45—C46—C47119.8 (3)
C8—C9—H9119.9C45—C46—H46120.1
C11—C12—C7120.3 (3)C47—C46—H46120.1
C11—C12—H12119.9C46—C47—C48120.0 (3)
C7—C12—H12119.9C46—C47—H47120
C10—C11—C12120.6 (3)C48—C47—H47120
C10—C11—H11119.7C47—C48—C43120.9 (3)
C12—C11—H11119.7C47—C48—H48119.5
C15—C14—C13120.5 (3)C43—C48—H48119.5
C15—C14—H14119.7C54—C49—C50119.0 (3)
C13—C14—H14119.7C54—C49—P3125.6 (3)
C18—C13—C14118.5 (3)C50—C49—P3115.4 (3)
C18—C13—P2118.7 (2)C49—C54—C53120.4 (3)
C14—C13—P2122.7 (2)C49—C54—H54119.8
C17—C18—C13120.7 (3)C53—C54—H54119.8
C17—C18—H18119.6C52—C51—C50119.5 (3)
C13—C18—H18119.6C52—C51—H51120.2
C18—C17—C16119.9 (3)C50—C51—H51120.2
C18—C17—H17120.1C51—C50—C49120.4 (3)
C16—C17—H17120.1C51—C50—H50119.8
C14—C15—C16120.3 (3)C49—C50—H50119.8
C14—C15—H15119.8C51—C52—C53121.4 (3)
C16—C15—H15119.8C51—C52—H52119.3
C15—C16—C17119.9 (3)C53—C52—H52119.3
C15—C16—H16120C52—C53—C54119.1 (3)
C17—C16—H16120C52—C53—H53120.4
C24—C23—C22120.3 (3)C54—C53—H53120.4
C24—C23—H23119.8O1—C55—C59123.1 (3)
C22—C23—H23119.8O1—C55—C56118.6 (2)
C20—C19—C24118.6 (3)C59—C55—C56118.2 (3)
C20—C19—P1122.8 (2)C55—C59—O3122.1 (3)
C24—C19—P1118.4 (2)C55—C59—C60126.1 (3)
C23—C24—C19120.5 (3)O3—C59—C60111.8 (3)
C23—C24—H24119.8C59—C60—H60A109.5
C19—C24—H24119.8C59—C60—H60B109.5
C19—C20—C21120.5 (3)H60A—C60—H60B109.5
C19—C20—H20119.7C59—C60—H60C109.5
C21—C20—H20119.7H60A—C60—H60C109.5
C21—C22—C23119.5 (3)H60B—C60—H60C109.5
C21—C22—H22120.2C58—C57—C56120.2 (3)
C23—C22—H22120.2C58—C57—H57119.9
C22—C21—C20120.5 (3)C56—C57—H57119.9
C22—C21—H21119.7O3—C58—C57123.4 (3)
C20—C21—H21119.7O3—C58—H58118.3
C25—C27—C28120.5 (3)C57—C58—H58118.3
C25—C27—H27119.8O2—C56—C57123.3 (3)
C28—C27—H27119.8O2—C56—C55120.2 (3)
C27—C25—C26118.7 (3)C57—C56—C55116.5 (3)
C27—C25—P2123.0 (2)C58—O3—C59119.5 (3)
C26—C25—P2118.2 (2)C61—O4—H4A109.5
C30—C26—C25120.3 (3)O4—C61—H61A109.5
C30—C26—H26119.9O4—C61—H61B109.5
C25—C26—H26119.9H61A—C61—H61B109.5
C29—C28—C27120.5 (3)O4—C61—H61C109.5
C29—C28—H28119.7H61A—C61—H61C109.5
C27—C28—H28119.7H61B—C61—H61C109.5
O1—Cu1—P1—C19114.17 (12)C28—C27—C25—P2175.9 (2)
O2—Cu1—P1—C19152.19 (11)C13—P2—C25—C27112.7 (3)
P2—Cu1—P1—C1933.04 (10)C7—P2—C25—C274.2 (3)
O1—Cu1—P1—C1128.58 (12)Cu1—P2—C25—C27115.5 (2)
O2—Cu1—P1—C134.94 (11)C13—P2—C25—C2672.0 (3)
P2—Cu1—P1—C184.21 (10)C7—P2—C25—C26179.5 (2)
O1—Cu1—P1—C316.66 (13)Cu1—P2—C25—C2659.8 (2)
O2—Cu1—P1—C3186.98 (11)C27—C25—C26—C301.0 (5)
P2—Cu1—P1—C31153.88 (10)P2—C25—C26—C30176.5 (3)
O1—Cu1—P2—C1385.70 (12)C25—C27—C28—C290.2 (5)
O2—Cu1—P2—C13167.81 (11)C27—C28—C29—C300.2 (5)
P1—Cu1—P2—C1366.15 (11)C28—C29—C30—C260.6 (5)
O1—Cu1—P2—C7150.65 (11)C25—C26—C30—C291.0 (5)
O2—Cu1—P2—C768.54 (11)C19—P1—C31—C32112.3 (2)
P1—Cu1—P2—C757.51 (10)C1—P1—C31—C32141.8 (2)
O1—Cu1—P2—C2536.28 (12)Cu1—P1—C31—C3214.4 (2)
O2—Cu1—P2—C2545.84 (11)C19—P1—C31—C3667.2 (2)
P1—Cu1—P2—C25171.88 (10)C1—P1—C31—C3638.7 (3)
O2—Cu1—O1—C5512.32 (19)Cu1—P1—C31—C36166.1 (2)
P1—Cu1—O1—C55124.29 (17)C33—C34—C35—C360.3 (4)
P2—Cu1—O1—C5583.80 (19)C34—C35—C36—C310.6 (4)
O1—Cu1—O2—C5611.20 (18)C32—C31—C36—C350.7 (4)
P1—Cu1—O2—C56133.33 (17)P1—C31—C36—C35179.8 (2)
P2—Cu1—O2—C5694.12 (18)C36—C31—C32—C330.3 (4)
C19—P1—C1—C2147.6 (2)P1—C31—C32—C33179.2 (2)
C31—P1—C1—C2105.0 (2)C35—C34—C33—C321.3 (4)
Cu1—P1—C1—C223.1 (2)C31—C32—C33—C341.3 (4)
C19—P1—C1—C632.4 (2)C49—P3—C42—C37114.1 (3)
C31—P1—C1—C675.0 (2)C43—P3—C42—C378.1 (3)
Cu1—P1—C1—C6156.94 (18)C49—P3—C42—C4173.1 (3)
C6—C1—C2—C30.4 (4)C43—P3—C42—C41179.1 (2)
P1—C1—C2—C3179.6 (2)C37—C42—C41—C400.0 (5)
C2—C1—C6—C51.4 (4)P3—C42—C41—C40173.2 (3)
P1—C1—C6—C5178.6 (2)C42—C41—C40—C391.1 (5)
C1—C6—C5—C41.8 (4)C41—C40—C39—C380.6 (5)
C1—C2—C3—C40.3 (4)C40—C39—C38—C370.9 (6)
C6—C5—C4—C31.1 (4)C41—C42—C37—C381.5 (5)
C2—C3—C4—C50.1 (4)P3—C42—C37—C38171.3 (3)
C13—P2—C7—C820.2 (3)C39—C38—C37—C422.0 (6)
C25—P2—C7—C887.2 (3)C45—C44—C43—C480.8 (5)
Cu1—P2—C7—C8152.8 (2)C45—C44—C43—P3179.9 (2)
C13—P2—C7—C12161.6 (2)C49—P3—C43—C4427.5 (3)
C25—P2—C7—C1291.0 (2)C42—P3—C43—C4479.1 (3)
Cu1—P2—C7—C1229.0 (2)C49—P3—C43—C48153.4 (3)
C12—C7—C8—C90.6 (4)C42—P3—C43—C48100.1 (3)
P2—C7—C8—C9178.8 (2)C43—C44—C45—C462.0 (5)
C11—C10—C9—C81.0 (5)C44—C45—C46—C471.3 (5)
C7—C8—C9—C100.1 (4)C45—C46—C47—C480.5 (5)
C8—C7—C12—C110.2 (5)C46—C47—C48—C431.8 (6)
P2—C7—C12—C11178.5 (3)C44—C43—C48—C471.1 (5)
C9—C10—C11—C121.5 (5)P3—C43—C48—C47178.1 (3)
C7—C12—C11—C100.9 (5)C42—P3—C49—C5423.6 (3)
C15—C14—C13—C181.3 (4)C43—P3—C49—C5482.1 (3)
C15—C14—C13—P2176.2 (2)C42—P3—C49—C50155.1 (2)
C7—P2—C13—C18100.7 (2)C43—P3—C49—C5099.2 (2)
C25—P2—C13—C18152.3 (2)C50—C49—C54—C530.8 (4)
Cu1—P2—C13—C1826.2 (2)P3—C49—C54—C53179.4 (2)
C7—P2—C13—C1476.8 (2)C52—C51—C50—C490.3 (5)
C25—P2—C13—C1430.2 (3)C54—C49—C50—C511.2 (5)
Cu1—P2—C13—C14156.28 (19)P3—C49—C50—C51179.9 (2)
C14—C13—C18—C171.0 (4)C50—C51—C52—C531.0 (5)
P2—C13—C18—C17176.6 (2)C51—C52—C53—C541.4 (5)
C13—C18—C17—C160.3 (4)C49—C54—C53—C520.5 (5)
C13—C14—C15—C160.2 (4)Cu1—O1—C55—C59165.3 (2)
C14—C15—C16—C171.2 (4)Cu1—O1—C55—C5612.1 (3)
C18—C17—C16—C151.4 (4)O1—C55—C59—O3178.9 (3)
C1—P1—C19—C20132.2 (2)C56—C55—C59—O31.4 (4)
C31—P1—C19—C2024.3 (3)O1—C55—C59—C601.5 (5)
Cu1—P1—C19—C20103.2 (2)C56—C55—C59—C60175.9 (3)
C1—P1—C19—C2452.8 (2)C56—C57—C58—O30.7 (5)
C31—P1—C19—C24160.7 (2)Cu1—O2—C56—C57170.7 (2)
Cu1—P1—C19—C2471.9 (2)Cu1—O2—C56—C558.5 (3)
C22—C23—C24—C191.0 (4)C58—C57—C56—O2175.8 (3)
C20—C19—C24—C231.0 (4)C58—C57—C56—C553.4 (4)
P1—C19—C24—C23176.3 (2)O1—C55—C56—O22.0 (4)
C24—C19—C20—C210.5 (4)C59—C55—C56—O2175.6 (3)
P1—C19—C20—C21175.5 (2)O1—C55—C56—C57178.8 (3)
C24—C23—C22—C210.4 (4)C59—C55—C56—C573.7 (4)
C23—C22—C21—C200.2 (4)C57—C58—O3—C591.8 (5)
C19—C20—C21—C220.1 (4)C55—C59—O3—C581.3 (4)
C28—C27—C25—C260.6 (4)C60—C59—O3—C58179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O10.841.82.637 (3)174
C2—H2···O20.952.463.370 (3)162
C12—H12···O20.952.543.412 (4)153
C22—H22···O4i0.952.513.144 (4)125
C32—H32···O10.952.63.495 (3)158
C53—H53···O40.952.523.398 (5)154
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C6H5O3)(C18H15P)2]·C18H15P·CH4O
Mr1007.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)20.5253 (7), 13.5716 (4), 20.3129 (7)
β (°) 119.205 (1)
V3)4939.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.19 × 0.19 × 0.06
Data collection
DiffractometerBruker X8 APEXII 4K
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.894, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
58551, 10787, 8326
Rint0.058
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.06
No. of reflections10787
No. of parameters625
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.51, 0.86

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2007), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu1—O12.046 (2)Cu1—P22.2692 (8)
Cu1—O22.175 (2)O1—C551.308 (4)
Cu1—P12.2014 (7)O2—C561.264 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O10.841.82.637 (3)174
C2—H2···O20.952.463.370 (3)162
C12—H12···O20.952.543.412 (4)153
C22—H22···O4i0.952.513.144 (4)125
C32—H32···O10.952.63.495 (3)158
C53—H53···O40.952.523.398 (5)154
Symmetry code: (i) x, y, z.
 

Acknowledgements

The University of the Free State is gratefully acknowledged for financial support and Leo Kirsten for the data collection.

References

First citationBrandenburg, K. & Putz, H. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharalambous, J., Haines, L. I. B., Harris, N. J., Henrick, K. & Taylor, F. B. (1984). J. Chem. Res. 220, 2101–2109.  Google Scholar
First citationCreeth, J., Molloy, K. C. & Wright, P. (2000). Oral Cove Compositions. International Patent WO 00/16736.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHedlund, T. & Öhman, L.-O. (1988). Acta Chem. Scand. Ser. A, 42, 702–709.  CrossRef Web of Science Google Scholar
First citationHider, R. C., Kontoghiorghes, G., Silver, J. & Stockman, M. A. (1984a). UK Patent Appl. GB 2 136 806A.  Google Scholar
First citationHider, R. C., Kontoghiorghes, G., Silver, J. & Stockman, M. A. (1984b). Eur. Patent Appl. 0 107 458.  Google Scholar
First citationKontoghiorghes, G. J. (1995). Analyst, 120, 845–851.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKontoghiorghes, G. J., Bartlett, A. N., Hoffbrand, A. V., Goddard, J. G., Sheppard, L., Barr, J. & Nortey, P. (1990). Br. J. Haematol. 76, 295–300.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOdoko, M., Yamamoto, K., Hosen, M. & Okabe, N. (2003). Acta Cryst. C59, m121–m123.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOdoko, M., Yamamoto, K. & Okabe, N. (2002). Acta Cryst. C58, m506–m508.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpier, G., Fulop, V. & Parkanyi, L. (1990). J. Chem. Soc. Chem. Commun. pp. 512–513.  Google Scholar
First citationSteyl, G. (2009). Acta Cryst. E65, m448.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m581-m582
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds