organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1042

2-Benzyl-6-benz­yloxypyridazin-3(2H)-one

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province, 461000, People's Republic of China, and bDepartment of Electromechanical Engineering, Xuchang Institute of Technology, Xuchang, Henan Province, 461000, People's Republic of China
*Correspondence e-mail: 374107445@qq.com

(Received 4 March 2011; accepted 29 March 2011; online 7 April 2011)

In the title compound, C18H16N2O2, the central pyridazine ring forms dihedral angles of 77.08 (5)° and 84.62 (5)° with the two benzene rings. The dihedral angle between the two benzene rings is 68.18 (4)°. A very weak intra­molecular C—H⋯N hydrogen bond and an intra­molecular C—H⋯π inter­action occur. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds and weak C—H⋯π and ππ stacking inter­actions [centroid–centroid distance = 3.6867 (10) Å].

Related literature

For applications of pyridazinone analogues as highly selective anti-HIV agents, see: Loksha et al. (2007[Loksha, Y. M., Pedersen, E. B., Colla, P. L. & Loddo, R. (2007). J. Heterocycl. Chem. , 44, 1351-1356.]). For applications as pesticide agents, see: Li et al. (2005[Li, H. S., Ling, Y., Guo, Y. L., Yang, X. L. & Chen, F. H. (2005). Chin. J. Org. Chem. 25, 204-207.]); Selby et al. (2002[Selby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. & Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800 (Synthesis and Chemistry of Agrochemicals VI), pp. 74-84.]). For applications as herbicides, see: Xu et al. (2006[Xu, H., Zou, X. M. & Yang, H. Z. (2006). Pest Manag. Sci. 62, 522-530.]). For related structures, see: Liu et al. (2005[Liu, W. D., Li, Z. W., Li, Z. Y., Wang, X. G. & Gao, B. D. (2005). Chin. J. Org. Chem. 25, 445-448.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O2

  • Mr = 292.33

  • Monoclinic, C 2/c

  • a = 32.741 (4) Å

  • b = 10.9198 (14) Å

  • c = 8.1228 (10) Å

  • β = 95.92 (2)°

  • V = 2888.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.982, Tmax = 0.989

  • 18031 measured reflections

  • 3448 independent reflections

  • 2142 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.116

  • S = 0.95

  • 3448 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.38 3.2906 (19) 161 (19)
C11—H11⋯N2 0.95 2.49 3.126 (2) 124
C11—H11⋯Cg3 0.95 2.98 3.7103 (17) 135
C17—H17⋯Cg3ii 0.95 2.98 3.6991 (17) 133
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Pyridazinone analogues have been reported to have a variety of biological activities, such as highly-selective anti-HIV agents (Loksha et al., 2007), pesticide(Li et al., 2005), highly herbicidal activity (Xu et al., 2006). In order to discover further biologically active Pyridazinone analogues, the title compound, (I), was synthesized and its crystal structure determined (Fig. 1).

In a continuation of our studies on the crystal structures of Pyridazinone analogues (Liu et al., 2005), we report here the synthesis and crystal structure of the title molecule, the central pyridazine ring forms dihedral angles of 77.08 (5)° and 84.62 (5)° with the two benzene rings, The dihedral angle between two benzene rings is 68.18 (4)°. The Crystal structure is stabilized by a weak intramolecular C—H···N hydrogen bond (Table 1), a weak intermolecular C—H···O hydrogen bond (Table 1), C—H···Cg π—ring (Table 1) and π-π stacking interactions where Cg(1)—Cg(1) (1/2 - x, 1/2 - y, 1 - z) is 3.6867 (10) Å [Cg(1) is the centroid of the N1,N2, C1—C4 ring] (Table 2).

Related literature top

For applications of pyridazinone analogues as highly selective anti-HIV agents, see: Loksha et al. (2007). For applications as pesticide agents, see: Li et al. (2005); Selby et al. (2002). For applications as herbicides, see: Xu et al. (2006). For related structures, see: Liu et al. (2005).

Experimental top

Maleic hydrazide(0.56 g, 5 mmol), Benzyl chloride(1.52 g, 12 mmol) and K2CO3 (1.66 g, 12 mmol) were added to absolute ethanol(30 ml). The mixture was stirred in the room temperature for 6 h. The suspension was filtered and the residue was washed with absolute ethanol. The title compound was recrystallized from the mother solution and single crystals of (I) were obtained by slow evaporation.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.95 Å and C—H = 0.99 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2009); cell refinement: CrystalClear (Rigaku/MSC, 2009); data reduction: CrystalClear (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, (I), with displacement ellipsoids drawn at the 30% probability level.
2-Benzyl-6-benzyloxypyridazin-3(2H)-one top
Crystal data top
C18H16N2O2F(000) = 1232
Mr = 292.33Dx = 1.344 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4881 reflections
a = 32.741 (4) Åθ = 1.3–28.0°
b = 10.9198 (14) ŵ = 0.09 mm1
c = 8.1228 (10) ÅT = 113 K
β = 95.92 (2)°Prism, colorless
V = 2888.6 (6) Å30.20 × 0.18 × 0.12 mm
Z = 8
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3448 independent reflections
Radiation source: rotating anode2142 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.063
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 1.3°
ω and ϕ scansh = 4341
Absorption correction: multi-scan
CrystalClear
k = 1414
Tmin = 0.982, Tmax = 0.989l = 1010
18031 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0548P)2]
where P = (Fo2 + 2Fc2)/3
3448 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H16N2O2V = 2888.6 (6) Å3
Mr = 292.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.741 (4) ŵ = 0.09 mm1
b = 10.9198 (14) ÅT = 113 K
c = 8.1228 (10) Å0.20 × 0.18 × 0.12 mm
β = 95.92 (2)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3448 independent reflections
Absorption correction: multi-scan
CrystalClear
2142 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.989Rint = 0.063
18031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 0.95Δρmax = 0.23 e Å3
3448 reflectionsΔρmin = 0.23 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20711 (3)0.14159 (10)0.06099 (12)0.0315 (3)
O20.20245 (3)0.38939 (9)0.62925 (12)0.0282 (3)
N10.18498 (4)0.16470 (11)0.31678 (14)0.0221 (3)
N20.18241 (4)0.22441 (11)0.46481 (14)0.0229 (3)
C10.20713 (5)0.20250 (14)0.19094 (18)0.0241 (3)
C20.22975 (5)0.31536 (14)0.22369 (18)0.0257 (4)
H20.24600.34700.14320.031*
C30.22792 (5)0.37578 (14)0.36727 (18)0.0253 (4)
H30.24270.44990.38940.030*
C40.20319 (5)0.32523 (14)0.48542 (17)0.0231 (3)
C50.15786 (4)0.05874 (13)0.29089 (17)0.0232 (3)
H5A0.15590.01730.39820.028*
H5B0.16980.00000.21640.028*
C60.11536 (5)0.09390 (13)0.21683 (17)0.0222 (3)
C70.09415 (5)0.01638 (14)0.10195 (17)0.0257 (4)
H70.10680.05700.07010.031*
C80.05468 (5)0.04490 (15)0.03337 (18)0.0298 (4)
H80.04060.00820.04610.036*
C90.03585 (5)0.15088 (15)0.08102 (19)0.0304 (4)
H90.00880.17060.03470.036*
C100.05657 (5)0.22800 (14)0.19643 (19)0.0289 (4)
H100.04360.30040.22990.035*
C110.09614 (5)0.20016 (14)0.26341 (18)0.0261 (4)
H110.11020.25400.34170.031*
C120.17631 (5)0.34314 (15)0.74918 (18)0.0281 (4)
H12A0.18350.38520.85620.034*
H12B0.18180.25460.76650.034*
C130.13136 (5)0.36113 (13)0.69709 (17)0.0246 (4)
C140.10296 (5)0.28071 (14)0.75401 (18)0.0274 (4)
H140.11220.21560.82600.033*
C150.06137 (5)0.29469 (14)0.70671 (19)0.0301 (4)
H150.04220.23890.74540.036*
C160.04764 (5)0.39007 (14)0.60290 (19)0.0317 (4)
H160.01910.39960.56980.038*
C170.07560 (5)0.47139 (15)0.54761 (19)0.0317 (4)
H170.06630.53710.47680.038*
C180.11706 (5)0.45739 (14)0.59503 (18)0.0293 (4)
H180.13600.51420.55750.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0356 (7)0.0367 (7)0.0229 (6)0.0022 (5)0.0066 (5)0.0036 (5)
O20.0292 (6)0.0304 (6)0.0252 (6)0.0038 (5)0.0037 (5)0.0070 (5)
N10.0246 (7)0.0239 (7)0.0177 (6)0.0016 (5)0.0020 (5)0.0007 (5)
N20.0239 (7)0.0255 (7)0.0191 (6)0.0017 (5)0.0009 (5)0.0020 (5)
C10.0244 (8)0.0282 (9)0.0194 (7)0.0034 (6)0.0016 (6)0.0022 (6)
C20.0243 (8)0.0280 (9)0.0247 (8)0.0005 (7)0.0026 (6)0.0038 (7)
C30.0223 (8)0.0243 (8)0.0288 (8)0.0007 (6)0.0003 (7)0.0015 (7)
C40.0221 (8)0.0253 (8)0.0213 (8)0.0022 (6)0.0008 (6)0.0018 (6)
C50.0266 (8)0.0211 (8)0.0220 (7)0.0021 (6)0.0029 (6)0.0001 (6)
C60.0248 (8)0.0228 (8)0.0193 (7)0.0019 (6)0.0032 (6)0.0028 (6)
C70.0300 (9)0.0251 (8)0.0225 (8)0.0044 (7)0.0059 (7)0.0006 (6)
C80.0301 (9)0.0333 (9)0.0256 (8)0.0082 (7)0.0006 (7)0.0015 (7)
C90.0274 (9)0.0332 (9)0.0298 (9)0.0029 (7)0.0008 (7)0.0063 (7)
C100.0304 (9)0.0259 (9)0.0304 (9)0.0019 (7)0.0028 (7)0.0021 (7)
C110.0283 (8)0.0245 (8)0.0247 (8)0.0005 (7)0.0011 (6)0.0018 (7)
C120.0322 (9)0.0329 (9)0.0194 (8)0.0013 (7)0.0034 (7)0.0020 (7)
C130.0336 (9)0.0216 (8)0.0190 (7)0.0002 (7)0.0047 (6)0.0041 (6)
C140.0357 (9)0.0240 (8)0.0222 (8)0.0001 (7)0.0023 (7)0.0001 (6)
C150.0327 (9)0.0292 (9)0.0289 (8)0.0041 (7)0.0057 (7)0.0016 (7)
C160.0314 (9)0.0340 (10)0.0294 (9)0.0024 (7)0.0020 (7)0.0030 (7)
C170.0385 (10)0.0275 (9)0.0293 (9)0.0056 (7)0.0036 (7)0.0030 (7)
C180.0345 (9)0.0259 (9)0.0283 (8)0.0012 (7)0.0071 (7)0.0034 (7)
Geometric parameters (Å, º) top
O1—C11.2476 (17)C8—H80.9500
O2—C41.3647 (17)C9—C101.385 (2)
O2—C121.4522 (18)C9—H90.9500
N1—C11.3763 (19)C10—C111.386 (2)
N1—N21.3780 (15)C10—H100.9500
N1—C51.4605 (18)C11—H110.9500
N2—C41.2959 (18)C12—C131.502 (2)
C1—C21.448 (2)C12—H12A0.9900
C2—C31.347 (2)C12—H12B0.9900
C2—H20.9500C13—C181.390 (2)
C3—C41.429 (2)C13—C141.392 (2)
C3—H30.9500C14—C151.385 (2)
C5—C61.507 (2)C14—H140.9500
C5—H5A0.9900C15—C161.385 (2)
C5—H5B0.9900C15—H150.9500
C6—C111.391 (2)C16—C171.383 (2)
C6—C71.392 (2)C16—H160.9500
C7—C81.389 (2)C17—C181.381 (2)
C7—H70.9500C17—H170.9500
C8—C91.385 (2)C18—H180.9500
C4—O2—C12117.36 (12)C10—C9—H9120.1
C1—N1—N2126.19 (12)C8—C9—H9120.1
C1—N1—C5119.33 (12)C9—C10—C11120.34 (15)
N2—N1—C5114.18 (11)C9—C10—H10119.8
C4—N2—N1115.86 (12)C11—C10—H10119.8
O1—C1—N1120.95 (14)C10—C11—C6120.47 (15)
O1—C1—C2124.38 (14)C10—C11—H11119.8
N1—C1—C2114.67 (13)C6—C11—H11119.8
C3—C2—C1120.56 (14)O2—C12—C13113.20 (12)
C3—C2—H2119.7O2—C12—H12A108.9
C1—C2—H2119.7C13—C12—H12A108.9
C2—C3—C4118.12 (14)O2—C12—H12B108.9
C2—C3—H3120.9C13—C12—H12B108.9
C4—C3—H3120.9H12A—C12—H12B107.8
N2—C4—O2119.42 (13)C18—C13—C14118.68 (15)
N2—C4—C3124.59 (13)C18—C13—C12121.80 (14)
O2—C4—C3115.98 (13)C14—C13—C12119.51 (14)
N1—C5—C6112.22 (12)C15—C14—C13120.64 (15)
N1—C5—H5A109.2C15—C14—H14119.7
C6—C5—H5A109.2C13—C14—H14119.7
N1—C5—H5B109.2C14—C15—C16119.97 (16)
C6—C5—H5B109.2C14—C15—H15120.0
H5A—C5—H5B107.9C16—C15—H15120.0
C11—C6—C7118.77 (14)C17—C16—C15119.76 (16)
C11—C6—C5121.93 (14)C17—C16—H16120.1
C7—C6—C5119.28 (14)C15—C16—H16120.1
C8—C7—C6120.80 (15)C18—C17—C16120.19 (15)
C8—C7—H7119.6C18—C17—H17119.9
C6—C7—H7119.6C16—C17—H17119.9
C9—C8—C7119.86 (15)C17—C18—C13120.74 (15)
C9—C8—H8120.1C17—C18—H18119.6
C7—C8—H8120.1C13—C18—H18119.6
C10—C9—C8119.75 (15)
C1—N1—N2—C40.3 (2)C11—C6—C7—C80.7 (2)
C5—N1—N2—C4173.91 (12)C5—C6—C7—C8178.90 (13)
N2—N1—C1—O1179.53 (13)C6—C7—C8—C90.9 (2)
C5—N1—C1—O16.3 (2)C7—C8—C9—C100.2 (2)
N2—N1—C1—C20.8 (2)C8—C9—C10—C110.5 (2)
C5—N1—C1—C2174.04 (12)C9—C10—C11—C60.6 (2)
O1—C1—C2—C3179.70 (14)C7—C6—C11—C100.0 (2)
N1—C1—C2—C30.6 (2)C5—C6—C11—C10178.11 (14)
C1—C2—C3—C40.1 (2)C4—O2—C12—C1372.05 (17)
N1—N2—C4—O2179.59 (11)O2—C12—C13—C1828.7 (2)
N1—N2—C4—C30.3 (2)O2—C12—C13—C14152.30 (13)
C12—O2—C4—N23.1 (2)C18—C13—C14—C151.5 (2)
C12—O2—C4—C3177.58 (12)C12—C13—C14—C15179.46 (14)
C2—C3—C4—N20.4 (2)C13—C14—C15—C160.6 (2)
C2—C3—C4—O2179.72 (13)C14—C15—C16—C170.3 (2)
C1—N1—C5—C688.39 (16)C15—C16—C17—C180.3 (2)
N2—N1—C5—C685.65 (14)C16—C17—C18—C130.7 (2)
N1—C5—C6—C1138.55 (18)C14—C13—C18—C171.6 (2)
N1—C5—C6—C7143.33 (13)C12—C13—C18—C17179.41 (14)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.383.2906 (19)161 (19)
C11—H11···N20.952.493.126 (2)124
C11—H11···Cg30.952.983.7103 (17)135
C17—H17···Cg3ii0.952.983.6991 (17)133
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC18H16N2O2
Mr292.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)32.741 (4), 10.9198 (14), 8.1228 (10)
β (°) 95.92 (2)
V3)2888.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
CrystalClear
Tmin, Tmax0.982, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
18031, 3448, 2142
Rint0.063
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.116, 0.95
No. of reflections3448
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: CrystalClear (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.383.2906 (19)161 (19)
C11—H11···N20.952.493.126 (2)124
C11—H11···Cg30.952.983.7103 (17)135
C17—H17···Cg3ii0.952.983.6991 (17)133
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z1/2.
Comparative geometrical parameters (Å) for selected Cg—Cg Π stacking interaction, Cg1 is the centroid of the N1,N2,C1-C4 ring (Symmetry codes: 1/2-X,1/2-Y,1-Z). top
CgI—CgJCg—Cg(Å)CgIPerp(Å)CgjPerp(Å)Slippage(Å)
Cg1—Cg13.6867 (10)3.2243.2241.789
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20972143), the Natural Science Foundation of Henan Province Educational Committee, China (grant Nos. 2010 A150021 and 2007150036) and the High-level Talents Foundation of Xuchang University (grant No. 2010 GC033).

References

First citationLi, H. S., Ling, Y., Guo, Y. L., Yang, X. L. & Chen, F. H. (2005). Chin. J. Org. Chem. 25, 204–207.  CAS Google Scholar
First citationLiu, W. D., Li, Z. W., Li, Z. Y., Wang, X. G. & Gao, B. D. (2005). Chin. J. Org. Chem. 25, 445–448.  CAS Google Scholar
First citationLoksha, Y. M., Pedersen, E. B., Colla, P. L. & Loddo, R. (2007). J. Heterocycl. Chem. , 44, 1351–1356.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSelby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. & Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800 (Synthesis and Chemistry of Agrochemicals VI), pp. 74–84.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Zou, X. M. & Yang, H. Z. (2006). Pest Manag. Sci. 62, 522–530.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1042
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds