metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­chloridocopper(II)]-μ-4,4′-bis­­(benzimidazol-1-yl)biphen­yl]

aKey Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China, and bThe College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China
*Correspondence e-mail: nwuchem@126.com

(Received 14 March 2011; accepted 28 March 2011; online 7 April 2011)

In the title compound, [CuCl2(C26H18N4)]n, the Cu(II) ion is four-coordinated by two N atoms from two 4,4′-bis­(benzo­imidazol-1-yl)biphenyl ligands and two chloride anions, in a slightly distorted tetra­hedral environment. The biphenyl ligand acts as a linear bidentate ligand, connecting the metal atoms into an infinite chain parallel to [101]. In the biphenyl ligand, the two benzene rings make a dihedral angle of 33.19 (7)°.

Related literature

For background to benzimidazole-based ligands in crystal engineering, see: Jin et al. (2006[Jin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039-5041.]); Li et al. (2009[Li, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904-3909.]); Su et al. (2003[Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595-8613.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C26H18N4)]

  • Mr = 520.88

  • Monoclinic, C 2/c

  • a = 12.599 (4) Å

  • b = 15.280 (4) Å

  • c = 11.233 (3) Å

  • β = 91.936 (4)°

  • V = 2161.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 293 K

  • 0.04 × 0.03 × 0.02 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.955, Tmax = 0.975

  • 6675 measured reflections

  • 1903 independent reflections

  • 1761 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 1.06

  • 1903 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzoimidazole has been well used in crystal engineering, and a large number of benzoimidazole-containing flexible ligands have been extensively studied (Su et al.,2003; Jin et al.,2006). However, to our knowledge, the research on benzoimidazole ligands bearing rigid spacers is still less developed (Li et al.,2009).

Single-crystal X-ray diffraction analysis reveals that the title compound (I) crystallizes in the monoclinic space group C2/c. The geometry of the Cu(II) ion is surrounded by two benzoiimidazole rings of distinct L ligands and two chlorine anions, which illustrates a slightly distorted tetrahedral coordination environment (Fig. 1). Notably, as shown in Fig. 2, the four-coordinated Cu(II) center is bridged by the linear ligand L to form an infinite one-dimensional architecture.

Related literature top

For a background to benzimidazole-based ligands in crystal engineering, see: Jin et al. (2006); Li et al. (2009); Su et al. (2003).

Experimental top

A mixture of CH3OH and CHCl3 (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of 4,4'-Bis(benzoimidazol-1-yl)terphenyl (L, 0.06 mmol) in CHCl3 (6 ml). Then a solution of CuCl2 (0.06 mmol) in CH3OH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After ca three weeks, purple block single crystals appeared at the boundary. Yield: ~35% (based on L).

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing for (I).
catena-Poly[[dichloridocopper(II)]-µ-4,4'- bis(benzimidazol-1-yl)biphenyl] top
Crystal data top
[CuCl2(C26H18N4)]F(000) = 1060
Mr = 520.88Dx = 1.601 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2903 reflections
a = 12.599 (4) Åθ = 2.1–27.9°
b = 15.280 (4) ŵ = 1.28 mm1
c = 11.233 (3) ÅT = 293 K
β = 91.936 (4)°Block, brown
V = 2161.3 (10) Å30.04 × 0.03 × 0.02 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
1903 independent reflections
Radiation source: fine-focus sealed tube1761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1818
Tmin = 0.955, Tmax = 0.975l = 1313
6675 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0296P)2 + 3.937P]
where P = (Fo2 + 2Fc2)/3
1903 reflections(Δ/σ)max = 0.002
151 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[CuCl2(C26H18N4)]V = 2161.3 (10) Å3
Mr = 520.88Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.599 (4) ŵ = 1.28 mm1
b = 15.280 (4) ÅT = 293 K
c = 11.233 (3) Å0.04 × 0.03 × 0.02 mm
β = 91.936 (4)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
1903 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1761 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.975Rint = 0.027
6675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
1903 reflectionsΔρmin = 0.27 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00001.09184 (2)0.75000.01275 (12)
Cl10.98903 (4)1.18252 (3)0.59365 (5)0.02221 (15)
N10.89293 (14)1.01051 (11)0.81368 (14)0.0136 (4)
N20.75910 (13)0.96997 (11)0.92601 (15)0.0128 (4)
C10.83320 (16)1.03097 (13)0.90401 (18)0.0138 (4)
H10.84141.08220.94800.017*
C20.85403 (16)0.92994 (13)0.77153 (18)0.0121 (4)
C30.88572 (16)0.87841 (13)0.67670 (17)0.0133 (4)
H30.94220.89490.63040.016*
C40.83018 (17)0.80212 (13)0.65424 (19)0.0158 (4)
H40.84930.76660.59130.019*
C50.74523 (17)0.77700 (13)0.72469 (19)0.0168 (5)
H50.70890.72550.70640.020*
C60.71401 (17)0.82661 (13)0.82038 (19)0.0142 (4)
H60.65840.80950.86760.017*
C70.77056 (16)0.90357 (13)0.84203 (17)0.0125 (4)
C80.68519 (16)0.97360 (13)1.02045 (18)0.0132 (4)
C90.66932 (17)0.89992 (14)1.08940 (19)0.0177 (5)
H90.70710.84881.07560.021*
C100.59681 (17)0.90309 (14)1.17892 (19)0.0177 (5)
H100.58570.85331.22450.021*
C110.53980 (16)0.97924 (13)1.20262 (17)0.0129 (4)
C120.55967 (16)1.05353 (13)1.13412 (18)0.0129 (4)
H120.52471.10561.15020.015*
C130.63069 (16)1.05066 (13)1.04257 (18)0.0137 (4)
H130.64181.10000.99620.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0123 (2)0.01272 (19)0.01364 (19)0.0000.00700 (14)0.000
Cl10.0252 (3)0.0219 (3)0.0202 (3)0.0108 (2)0.0105 (2)0.0070 (2)
N10.0132 (9)0.0158 (9)0.0121 (9)0.0018 (7)0.0043 (7)0.0008 (7)
N20.0121 (9)0.0151 (8)0.0114 (8)0.0016 (7)0.0052 (7)0.0000 (7)
C10.0118 (11)0.0166 (10)0.0131 (10)0.0021 (8)0.0037 (8)0.0004 (8)
C20.0110 (10)0.0138 (10)0.0114 (10)0.0011 (8)0.0011 (8)0.0014 (8)
C30.0119 (11)0.0172 (10)0.0108 (10)0.0016 (8)0.0022 (8)0.0018 (8)
C40.0178 (11)0.0155 (10)0.0141 (10)0.0043 (8)0.0010 (9)0.0024 (8)
C50.0164 (11)0.0115 (10)0.0226 (11)0.0030 (8)0.0003 (9)0.0013 (9)
C60.0112 (10)0.0140 (10)0.0177 (11)0.0012 (8)0.0035 (8)0.0036 (8)
C70.0106 (10)0.0155 (10)0.0114 (10)0.0011 (8)0.0031 (8)0.0018 (8)
C80.0100 (10)0.0198 (11)0.0099 (10)0.0020 (8)0.0033 (8)0.0003 (8)
C90.0183 (12)0.0173 (11)0.0181 (11)0.0054 (9)0.0082 (9)0.0019 (9)
C100.0197 (12)0.0180 (11)0.0160 (11)0.0011 (9)0.0082 (9)0.0055 (9)
C110.0101 (11)0.0175 (11)0.0112 (10)0.0003 (8)0.0018 (8)0.0009 (8)
C120.0103 (10)0.0141 (10)0.0142 (10)0.0003 (8)0.0015 (8)0.0028 (8)
C130.0146 (11)0.0135 (10)0.0130 (10)0.0045 (8)0.0018 (8)0.0016 (8)
Geometric parameters (Å, º) top
Cu1—N1i1.9851 (17)C5—C61.383 (3)
Cu1—N11.9851 (17)C5—H50.9300
Cu1—Cl1i2.2378 (7)C6—C71.392 (3)
Cu1—Cl12.2378 (7)C6—H60.9300
N1—C11.321 (3)C8—C91.385 (3)
N1—C21.402 (3)C8—C131.390 (3)
N2—C11.348 (3)C9—C101.382 (3)
N2—C71.396 (3)C9—H90.9300
N2—C81.436 (3)C10—C111.398 (3)
C1—H10.9300C10—H100.9300
C2—C31.394 (3)C11—C121.399 (3)
C2—C71.397 (3)C11—C11ii1.487 (4)
C3—C41.379 (3)C12—C131.387 (3)
C3—H30.9300C12—H120.9300
C4—C51.406 (3)C13—H130.9300
C4—H40.9300
N1i—Cu1—N1102.49 (10)C4—C5—H5119.0
N1i—Cu1—Cl1i130.22 (5)C5—C6—C7116.19 (19)
N1—Cu1—Cl1i97.44 (5)C5—C6—H6121.9
N1i—Cu1—Cl197.44 (5)C7—C6—H6121.9
N1—Cu1—Cl1130.22 (5)C6—C7—N2131.90 (19)
Cl1i—Cu1—Cl1103.48 (4)C6—C7—C2122.36 (19)
C1—N1—C2105.40 (17)N2—C7—C2105.69 (17)
C1—N1—Cu1122.71 (14)C9—C8—C13120.48 (19)
C2—N1—Cu1131.47 (14)C9—C8—N2119.42 (18)
C1—N2—C7106.89 (17)C13—C8—N2120.10 (18)
C1—N2—C8125.39 (17)C10—C9—C8119.3 (2)
C7—N2—C8127.71 (17)C10—C9—H9120.3
N1—C1—N2113.16 (18)C8—C9—H9120.3
N1—C1—H1123.4C9—C10—C11121.6 (2)
N2—C1—H1123.4C9—C10—H10119.2
C3—C2—C7120.72 (18)C11—C10—H10119.2
C3—C2—N1130.42 (19)C10—C11—C12117.91 (19)
C7—C2—N1108.85 (18)C10—C11—C11ii119.99 (13)
C4—C3—C2117.44 (19)C12—C11—C11ii122.10 (13)
C4—C3—H3121.3C13—C12—C11120.95 (19)
C2—C3—H3121.3C13—C12—H12119.5
C3—C4—C5121.28 (19)C11—C12—H12119.5
C3—C4—H4119.4C12—C13—C8119.64 (19)
C5—C4—H4119.4C12—C13—H13120.2
C6—C5—C4121.99 (19)C8—C13—H13120.2
C6—C5—H5119.0
N1i—Cu1—N1—C1151.17 (19)C8—N2—C7—C63.6 (3)
Cl1i—Cu1—N1—C117.06 (16)C1—N2—C7—C20.2 (2)
Cl1—Cu1—N1—C197.67 (16)C8—N2—C7—C2178.85 (18)
N1i—Cu1—N1—C237.46 (15)C3—C2—C7—C61.3 (3)
Cl1i—Cu1—N1—C2171.56 (17)N1—C2—C7—C6178.54 (18)
Cl1—Cu1—N1—C273.71 (19)C3—C2—C7—N2179.11 (18)
C2—N1—C1—N20.9 (2)N1—C2—C7—N20.7 (2)
Cu1—N1—C1—N2174.20 (13)C1—N2—C8—C9134.1 (2)
C7—N2—C1—N10.4 (2)C7—N2—C8—C944.3 (3)
C8—N2—C1—N1178.25 (18)C1—N2—C8—C1345.5 (3)
C1—N1—C2—C3178.8 (2)C7—N2—C8—C13136.1 (2)
Cu1—N1—C2—C36.4 (3)C13—C8—C9—C101.5 (3)
C1—N1—C2—C71.0 (2)N2—C8—C9—C10178.90 (19)
Cu1—N1—C2—C7173.47 (14)C8—C9—C10—C110.7 (3)
C7—C2—C3—C41.4 (3)C9—C10—C11—C121.2 (3)
N1—C2—C3—C4178.4 (2)C9—C10—C11—C11ii178.2 (2)
C2—C3—C4—C50.4 (3)C10—C11—C12—C132.4 (3)
C3—C4—C5—C60.8 (3)C11ii—C11—C12—C13176.9 (2)
C4—C5—C6—C70.9 (3)C11—C12—C13—C81.8 (3)
C5—C6—C7—N2177.3 (2)C9—C8—C13—C120.2 (3)
C5—C6—C7—C20.2 (3)N2—C8—C13—C12179.86 (18)
C1—N2—C7—C6177.7 (2)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+1, y, z+5/2.

Experimental details

Crystal data
Chemical formula[CuCl2(C26H18N4)]
Mr520.88
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.599 (4), 15.280 (4), 11.233 (3)
β (°) 91.936 (4)
V3)2161.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.04 × 0.03 × 0.02
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.955, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
6675, 1903, 1761
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.06
No. of reflections1903
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.27

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support from the Key Laboratory Foundation of the Education Committee of Shaanxi Province (grant No. 09JS089).

References

First citationJin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039–5041.  Web of Science CSD CrossRef Google Scholar
First citationLi, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595–8613.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds