metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(aceto­nitrile)­lithium(I)]-μ3-tetra­fluoridoborato]

aDepartment of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA, and bDepartment of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
*Correspondence e-mail: wesley_henderson@ncsu.edu

(Received 21 March 2011; accepted 31 March 2011; online 7 April 2011)

The structure of the title compound, [Li(BF4)(CH3CN)]n, consists of a layered arrangement parallel to (100) in which the Li+ cations are coordinated by three F atoms from three tetra­fluoridoborate (BF4) anions and an N atom from an acetonitrile mol­ecule. The BF4 anion is coordinated to three different Li+ cations though three F atoms. The structure can be described as being built from vertex-shared BF4 and LiF3(NCCH3) tetra­hedra. These tetra­hedra reside around a crystallographic inversion center and form 8-membered rings.

Related literature

For related compounds containing Li(BF4), see: Andreev et al. (2005[Andreev, Y. G., Seneviratne, V., Khan, M., Henderson, W. A., Frech, R. E. & Bruce, P. G. (2005). Chem. Mater. 17, 767-772.]); Henderson et al. (2003a[Henderson, W. A., Brooks, N. R., Brennessel, W. W. & Young, V. G. Jr (2003a). Chem. Mater. 15, 4679-4684.],b[Henderson, W. A., Brooks, N. R., Brennessel, W. W. & Young, V. G. Jr (2003b). Chem. Mater. 15, 4685-4690.]); Ramirez et al. (2003[Ramirez, A., Lobkovosky, E. & Collum, D. B. (2003). J. Am. Chem. Soc. 125, 15376-15387.]); Francisco & Williams (1990[Francisco, J. S. & Williams, I. H. (1990). J. Phys. Chem. 94, 8522-8529.]). For the structures of related Li salts with CH3CN , see: Klapötke et al. (2006[Klapötke, T. M., Krumm, B., Mayer, P., Scherr, M. & Schwab, I. (2006). Acta Cryst. E62, m2666-m2667.]); Brooks et al. (2002[Brooks, N. R., Henderson, W. A. & Smyrl, W. H. (2002). Acta Cryst. E58, m176-m177.]); Yokota et al. (1999[Yokota, Y., Young, V. G. & Verkade, J. G. (1999). Acta Cryst. C55, 196-198.]); Raston et al. (1989[Raston, C. L., Whitaker, C. R. & White, A. H. (1989). Aust. J. Chem. 42, 201-207.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(BF4)(C2H3N)]

  • Mr = 134.80

  • Monoclinic, P 21 /c

  • a = 7.8248 (6) Å

  • b = 8.8187 (7) Å

  • c = 8.2932 (6) Å

  • β = 95.5708 (18)°

  • V = 569.57 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 110 K

  • 0.34 × 0.26 × 0.16 mm

Data collection
  • Bruker–Nonius Kappa X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.971

  • 13920 measured reflections

  • 2650 independent reflections

  • 2001 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 1.05

  • 2650 reflections

  • 94 parameters

  • All H-atom parameters refined

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: cif2tables.py (Boyle, 2008[Boyle, P. D. (2008). http://www.xray.ncsu .edu/PyCIFUtils/]).

Supporting information


Comment top

In this structure, atoms F1 and F2 are endocyclic linking the boron atom to the lithium atom while F3 and F4 are exocyclic. Neighboring rings are linked through a Li1—F3 bond to form an infinite two dimensional network which orients parallel to (1 0 0). The interface between the two dimensional networks is occupied by the aliphatic ends of the acetonitrile molecules and the F4 atoms and is largely at van der Waal contact distances. There is, however, a close intermolecular contact of 3.1601 (11) Å between the nitrile carbon atom, C1, and F4 (1 - x, 1 - y, 2 - z).

Solvate structures provide significant insight into the species which may exist in electrolytes solutions. Solvates based upon acetonitrile and lithium salts are particularly noteworthy as dinitrile solvents gain increasing interest as high-voltage solvents for lithium battery electrolytes. The phase diagram for (CH3CN)n—LiBF4 mixtures indicates that at least three different solvates may form with 4/1 (Tm = -12°C), 2/1 (Tm = 25°C) and 1/1 (Tm = 63°C) AN/Li compositions. The 4/1 solvate may resemble that for LiClO4 in which the Li+ cations are fully solvated by four acetonitrile molecules and the anions are uncoordinated. The 2/1 solvate, in turn, may resemble that for LiBr in which the Li+ cations are solvated by two acetonitrile molecules and two anions to form aggregated dimer solvates. The 1/1 solvate structure is reported here.

Related literature top

For related structures of LiBF4, see: Andreev et al. (2005); Henderson et al. (2003a,b); Ramirez et al. (2003); Francisco & Williams (1990). For the structure of CH3CN with lithium salts, see: Klapötke et al. (2006); Brooks et al. (2002); Yokota et al. (1999); Raston et al. (1989).

Experimental top

LiBF4 (99.998%) was purchased from Sigma-Aldrich and used as-received. Anhydrous acetonitrile (Sigma Aldrich, 99.8%) was used as-received. In a Vacuum Atmospheres inert atmosphere (N2) glove box (< 5 p.p.m. H2O), LiBF4 (1 mmol) and acetonitrile (1.5 mmol) were sealed in a vial and the mixture heated on a hot plate to form a homogeneous solution. Upon standing at ambient temperature, colorless plate single crystals suitable for analysis formed.

Refinement top

The structure was solved by direct methods using the XS program. All non-hydrogen atoms were obtained from the initial solution. The hydrogen atoms were introduced at idealized positions and were allowed to refine isotropically. The structural model was fit to the data using full matrix least-squares based on F2. The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The structure was refined using the XL program from SHELXTL, and graphic plots were produced using the ORTEP-3 program.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: cif2tables.py (Boyle, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. The thermal ellipsoids are shown at a 50% probability level. (Symmetric codes: (i) x, -y + 3/2, z - 1/2; (ii) -x, -y + 1, -z + 2; (iii) x, -y + 3/2, z + 1/2.)
[Figure 2] Fig. 2. Packing diagram for the title compound.
Poly[[(acetonitrile)lithium(I)]-µ3-tetrafluoridoborato] top
Crystal data top
[Li(BF4)(C2H3N)]F(000) = 264
Mr = 134.80Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2729 reflections
a = 7.8248 (6) Åθ = 2.6–29.5°
b = 8.8187 (7) ŵ = 0.18 mm1
c = 8.2932 (6) ÅT = 110 K
β = 95.5708 (18)°Prism, colourless
V = 569.57 (8) Å30.34 × 0.26 × 0.16 mm
Z = 4
Data collection top
Bruker–Nonius Kappa X8 APEXII
diffractometer
2650 independent reflections
Radiation source: fine-focus sealed tube2001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ scansθmax = 36.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1312
Tmin = 0.941, Tmax = 0.971k = 1414
13920 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.0555P]
where P = (Fo2 + 2Fc2)/3
2650 reflections(Δ/σ)max = 0.001
94 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Li(BF4)(C2H3N)]V = 569.57 (8) Å3
Mr = 134.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8248 (6) ŵ = 0.18 mm1
b = 8.8187 (7) ÅT = 110 K
c = 8.2932 (6) Å0.34 × 0.26 × 0.16 mm
β = 95.5708 (18)°
Data collection top
Bruker–Nonius Kappa X8 APEXII
diffractometer
2650 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2001 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.971Rint = 0.037
13920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.118All H-atom parameters refined
S = 1.05Δρmax = 0.43 e Å3
2650 reflectionsΔρmin = 0.18 e Å3
94 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.0962 (2)0.60760 (19)0.7753 (2)0.0207 (3)
N10.21544 (11)0.47042 (10)0.62923 (10)0.02471 (18)
C10.28947 (11)0.38756 (11)0.55611 (11)0.01953 (17)
C20.38544 (13)0.28199 (12)0.46485 (13)0.02381 (19)
H2A0.447 (3)0.336 (2)0.392 (2)0.058 (5)*
H2B0.309 (2)0.211 (2)0.408 (2)0.049 (5)*
H2C0.461 (3)0.223 (2)0.533 (2)0.059 (5)*
B10.19662 (13)0.58984 (12)1.14638 (12)0.01831 (18)
F10.21991 (8)0.59642 (7)0.98110 (7)0.02477 (14)
F20.12648 (7)0.44806 (6)1.17989 (8)0.02285 (14)
F30.07681 (9)0.70149 (7)1.17969 (9)0.03087 (16)
F40.34930 (8)0.61145 (9)1.23724 (8)0.03467 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0227 (7)0.0198 (7)0.0202 (8)0.0011 (6)0.0048 (6)0.0011 (6)
N10.0279 (4)0.0250 (4)0.0220 (4)0.0037 (3)0.0060 (3)0.0003 (3)
C10.0205 (4)0.0204 (4)0.0176 (4)0.0002 (3)0.0016 (3)0.0005 (3)
C20.0252 (4)0.0239 (4)0.0227 (4)0.0038 (3)0.0045 (3)0.0062 (4)
B10.0195 (4)0.0181 (4)0.0175 (4)0.0047 (3)0.0030 (3)0.0010 (3)
F10.0258 (3)0.0324 (3)0.0164 (3)0.0019 (2)0.0035 (2)0.0009 (2)
F20.0219 (3)0.0168 (3)0.0304 (3)0.00237 (19)0.0056 (2)0.0023 (2)
F30.0368 (3)0.0182 (3)0.0399 (4)0.0010 (2)0.0154 (3)0.0065 (2)
F40.0272 (3)0.0515 (4)0.0238 (3)0.0175 (3)0.0052 (2)0.0047 (3)
Geometric parameters (Å, º) top
Li1—F3i1.8609 (18)C2—H2B0.956 (18)
Li1—F11.8810 (18)C2—H2C0.935 (19)
Li1—F2ii1.8820 (18)B1—F41.3626 (11)
Li1—N12.0051 (19)B1—F11.4013 (12)
N1—C11.1426 (12)B1—F21.4041 (11)
C1—C21.4539 (13)B1—F31.4053 (12)
C2—H2A0.94 (2)
F3i—Li1—F1116.59 (9)H2A—C2—H2C109.8 (16)
F3i—Li1—F2ii106.33 (9)H2B—C2—H2C105.1 (16)
F1—Li1—F2ii102.23 (8)F4—B1—F1110.18 (8)
F3i—Li1—N1108.18 (9)F4—B1—F2110.71 (8)
F1—Li1—N1106.74 (8)F1—B1—F2108.72 (8)
F2ii—Li1—N1117.12 (9)F4—B1—F3111.05 (8)
C1—N1—Li1174.92 (10)F1—B1—F3108.41 (8)
N1—C1—C2179.24 (10)F2—B1—F3107.69 (7)
C1—C2—H2A109.4 (12)B1—F1—Li1141.75 (8)
C1—C2—H2B110.4 (11)B1—F2—Li1ii131.19 (7)
H2A—C2—H2B110.3 (16)B1—F3—Li1iii133.56 (8)
C1—C2—H2C111.7 (11)
F4—B1—F1—Li1168.69 (11)F4—B1—F2—Li1ii132.27 (10)
F2—B1—F1—Li169.82 (15)F1—B1—F2—Li1ii106.58 (11)
F3—B1—F1—Li146.99 (15)F3—B1—F2—Li1ii10.69 (13)
F3i—Li1—F1—B199.32 (14)F4—B1—F3—Li1iii18.68 (14)
F2ii—Li1—F1—B116.17 (16)F1—B1—F3—Li1iii102.49 (12)
N1—Li1—F1—B1139.69 (11)F2—B1—F3—Li1iii140.04 (10)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z+2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Li(BF4)(C2H3N)]
Mr134.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)7.8248 (6), 8.8187 (7), 8.2932 (6)
β (°) 95.5708 (18)
V3)569.57 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.34 × 0.26 × 0.16
Data collection
DiffractometerBruker–Nonius Kappa X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.941, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
13920, 2650, 2001
Rint0.037
(sin θ/λ)max1)0.837
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 1.05
No. of reflections2650
No. of parameters94
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.43, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), cif2tables.py (Boyle, 2008).

 

Acknowledgements

The authors wish to express their gratitude to the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering which fully supported this research (Award DE-SC0002169).

References

First citationAndreev, Y. G., Seneviratne, V., Khan, M., Henderson, W. A., Frech, R. E. & Bruce, P. G. (2005). Chem. Mater. 17, 767–772.  CrossRef CAS Google Scholar
First citationBoyle, P. D. (2008). http://www.xray.ncsu .edu/PyCIFUtils/  Google Scholar
First citationBrooks, N. R., Henderson, W. A. & Smyrl, W. H. (2002). Acta Cryst. E58, m176–m177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFrancisco, J. S. & Williams, I. H. (1990). J. Phys. Chem. 94, 8522–8529.  CrossRef CAS Google Scholar
First citationHenderson, W. A., Brooks, N. R., Brennessel, W. W. & Young, V. G. Jr (2003a). Chem. Mater. 15, 4679–4684.  CrossRef CAS Google Scholar
First citationHenderson, W. A., Brooks, N. R., Brennessel, W. W. & Young, V. G. Jr (2003b). Chem. Mater. 15, 4685–4690.  CrossRef CAS Google Scholar
First citationKlapötke, T. M., Krumm, B., Mayer, P., Scherr, M. & Schwab, I. (2006). Acta Cryst. E62, m2666–m2667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamirez, A., Lobkovosky, E. & Collum, D. B. (2003). J. Am. Chem. Soc. 125, 15376–15387.  Web of Science PubMed CAS Google Scholar
First citationRaston, C. L., Whitaker, C. R. & White, A. H. (1989). Aust. J. Chem. 42, 201–207.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYokota, Y., Young, V. G. & Verkade, J. G. (1999). Acta Cryst. C55, 196–198.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds