organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1207

2-Bromo-1-phenyl­ethanone

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 5 April 2011; accepted 19 April 2011; online 22 April 2011)

The title compound, C8H7BrO, is a halogenated derivative of acetophenone. The mol­ecule shows noncrystallographic Cs symmetry. The intra­cyclic C—C—C angles cover the range 118.8 (2)–120.4 (3)°. In the crystal structure, C—H⋯O contacts connect the mol­ecules into undulating sheets perpendicular to the crystallographic c axis.

Related literature

For the crystal structure of α-chloro-acetophenone, see: Barrans & Maisseu (1966[Barrans, Y. & Maisseu, J. (1966). C. R. Acad. Sci. Ser. C, 262, 91-92.]); Grossert et al. (1984[Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem. 62, 798-807.]). For the crystal structure of α-iodo-acetophenone, see: Lere-Porte et al. (1982[Lere-Porte, J.-P., Bonniol, A., Petrissans, J. & Brianso, M.-C. (1982). Acta Cryst. B38, 1035-1037.]). For the crystal structures of coordination compounds using the title compound as a ligand, see: Laube et al. (1991[Laube, T., Weidenhaupt, A. & Hunziker, R. (1991). J. Am. Chem. Soc. 113, 2561-2567.]). For details of graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7BrO

  • Mr = 199.05

  • Orthorhombic, P 21 21 21

  • a = 4.1459 (2) Å

  • b = 9.6731 (5) Å

  • c = 18.8178 (9) Å

  • V = 754.66 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.37 mm−1

  • T = 200 K

  • 0.54 × 0.43 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.]) Tmin = 0.588, Tmax = 1.000

  • 7436 measured reflections

  • 1867 independent reflections

  • 1692 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.072

  • S = 1.08

  • 1867 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 736 Friedel pairs

  • Flack parameter: 0.015 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H21⋯O1i 0.99 2.46 3.317 (4) 145
C2—H22⋯O1ii 0.99 2.44 3.268 (4) 141
C8—H8⋯O1i 0.95 2.60 3.442 (3) 148
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of acetophenone are widely used in preparative organic chemistry. At the beginning of a comprehensive study about the effects of various substituents on benzo-annulated seven-membered ring systems, the molecular structure of the title compound was determined to enable comparisons with acetophenone-derived target compounds.

Intracyclic C—C—C angles span a range from 118–120°. The smallest angle is found on the C atom bearing the carbonylic substituent while the second smallest one is found on the C atom in para-position. The atoms of the aliphatic substituent are nearly coplanar with the aromatic system and its conjugated carbonyl group, the least-squares planes defined by their respective atoms intersect at an angle of only 4.18 (15)°.

In the crystal structure, C—H···O contacts can be observed which stem from both H atoms of the methylene group as well as one of the H atoms in ortho-position to the substituent on the phenyl ring. The carbonylic O atom serves as threefold acceptor (Fig. 2). Describing these contacts in terms of graph-set analysis necessitates a C(4)C(4)C(5) descriptor on the unitary level. In total, the molecules are connected to waved sheets perpendicular to the crystallographic c axis. The shortest distance between the centroids of two π-systems was measured at 5.8289 (17) Å.

The packing of the compound in the crystal is shown in Fig. 3.

Related literature top

For the crystal structure of α-chloro-acetophenone, see: Barrans & Maisseu (1966); Grossert et al. (1984). For the crystal structure of α-iodo-acetophenone, see: Lere-Porte et al. (1982). For the crystal structures of coordination compounds using the title compound as a ligand, see: Laube et al. (1991). For details of graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The compound was obtained commercially (Schuchardt). Crystals suitable for the X-ray diffraction study were taken directly from the provided batch.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.99 Å for the methylene group and C—H 0.95 Å for aromatic C atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [00\=1]. Symmetry operators: i -x + 1, y + 1/2, -z + 1/2; ii -x + 2, y + 1/2, -z + 1/2; iii -x + 1, y - 1/2, -z + 1/2; iv -x + 2, y - 1/2, -z + 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [\=100] (anisotropic displacement ellipsoids drawn at 50% probability level).
2-Bromo-1-phenylethanone top
Crystal data top
C8H7BrOF(000) = 392
Mr = 199.05Dx = 1.752 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5571 reflections
a = 4.1459 (2) Åθ = 2.4–28.2°
b = 9.6731 (5) ŵ = 5.37 mm1
c = 18.8178 (9) ÅT = 200 K
V = 754.66 (6) Å3Platelet, colourless
Z = 40.54 × 0.43 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
1867 independent reflections
Radiation source: fine-focus sealed tube1692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.3°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 45
Tmin = 0.588, Tmax = 1.000k = 1212
7436 measured reflectionsl = 2524
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.0956P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1867 reflectionsΔρmax = 0.42 e Å3
91 parametersΔρmin = 0.66 e Å3
0 restraintsAbsolute structure: Flack (1983), with 736 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (14)
Crystal data top
C8H7BrOV = 754.66 (6) Å3
Mr = 199.05Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.1459 (2) ŵ = 5.37 mm1
b = 9.6731 (5) ÅT = 200 K
c = 18.8178 (9) Å0.54 × 0.43 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
1867 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
1692 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 1.000Rint = 0.037
7436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.42 e Å3
S = 1.08Δρmin = 0.66 e Å3
1867 reflectionsAbsolute structure: Flack (1983), with 736 Friedel pairs
91 parametersAbsolute structure parameter: 0.015 (14)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.94179 (9)0.02569 (3)0.353315 (15)0.04357 (12)
O10.7669 (6)0.1520 (2)0.22942 (12)0.0462 (6)
C10.6825 (7)0.0344 (3)0.21549 (14)0.0288 (5)
C20.7424 (7)0.0837 (3)0.26609 (14)0.0302 (6)
H210.53450.12920.27710.036*
H220.88280.15270.24260.036*
C30.5113 (6)0.0030 (2)0.14809 (12)0.0269 (5)
C40.4564 (9)0.1109 (3)0.10021 (14)0.0361 (6)
H40.53030.20140.11110.043*
C50.2955 (9)0.0866 (3)0.03729 (16)0.0416 (7)
H50.26090.16040.00490.050*
C60.1839 (9)0.0449 (4)0.02105 (16)0.0400 (7)
H60.07120.06100.02210.048*
C70.2374 (8)0.1525 (3)0.06797 (14)0.0355 (7)
H70.16210.24260.05690.043*
C80.4002 (7)0.1294 (3)0.13102 (14)0.0303 (6)
H80.43660.20390.16290.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04576 (18)0.04907 (17)0.03589 (16)0.00752 (13)0.01195 (14)0.01138 (12)
O10.0662 (17)0.0267 (9)0.0455 (12)0.0095 (11)0.0047 (13)0.0036 (8)
C10.0309 (13)0.0263 (11)0.0293 (13)0.0013 (11)0.0051 (11)0.0042 (10)
C20.0328 (15)0.0308 (12)0.0270 (12)0.0025 (12)0.0040 (12)0.0023 (11)
C30.0288 (13)0.0273 (12)0.0246 (11)0.0022 (8)0.0046 (12)0.0001 (9)
C40.0474 (17)0.0269 (11)0.0341 (14)0.0029 (13)0.0083 (15)0.0029 (9)
C50.052 (2)0.0408 (15)0.0325 (15)0.0080 (16)0.0017 (16)0.0121 (13)
C60.0385 (16)0.0567 (19)0.0247 (13)0.0042 (14)0.0012 (13)0.0008 (12)
C70.0393 (18)0.0386 (14)0.0286 (14)0.0046 (13)0.0011 (14)0.0028 (11)
C80.0360 (16)0.0288 (12)0.0262 (13)0.0008 (11)0.0026 (12)0.0005 (9)
Geometric parameters (Å, º) top
Br1—C21.922 (3)C4—H40.9500
O1—C11.219 (3)C5—C61.388 (5)
C1—C31.485 (4)C5—H50.9500
C1—C21.508 (4)C6—C71.382 (4)
C2—H210.9900C6—H60.9500
C2—H220.9900C7—C81.383 (4)
C3—C41.397 (3)C7—H70.9500
C3—C81.399 (3)C8—H80.9500
C4—C51.379 (4)
O1—C1—C3120.8 (2)C3—C4—H4119.8
O1—C1—C2121.6 (3)C4—C5—C6120.4 (3)
C3—C1—C2117.6 (2)C4—C5—H5119.8
C1—C2—Br1112.88 (19)C6—C5—H5119.8
C1—C2—H21109.0C7—C6—C5119.7 (3)
Br1—C2—H21109.0C7—C6—H6120.1
C1—C2—H22109.0C5—C6—H6120.1
Br1—C2—H22109.0C6—C7—C8120.3 (3)
H21—C2—H22107.8C6—C7—H7119.8
C4—C3—C8118.8 (2)C8—C7—H7119.8
C4—C3—C1118.4 (2)C7—C8—C3120.4 (2)
C8—C3—C1122.8 (2)C7—C8—H8119.8
C5—C4—C3120.4 (3)C3—C8—H8119.8
C5—C4—H4119.8
O1—C1—C2—Br12.6 (4)C1—C3—C4—C5179.4 (3)
C3—C1—C2—Br1176.40 (19)C3—C4—C5—C60.5 (5)
O1—C1—C3—C41.6 (4)C4—C5—C6—C70.7 (5)
C2—C1—C3—C4179.4 (3)C5—C6—C7—C80.3 (5)
O1—C1—C3—C8177.7 (3)C6—C7—C8—C30.2 (4)
C2—C1—C3—C81.3 (4)C4—C3—C8—C70.3 (4)
C8—C3—C4—C50.0 (4)C1—C3—C8—C7179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H21···O1i0.992.463.317 (4)145
C2—H22···O1ii0.992.443.268 (4)141
C8—H8···O1i0.952.603.442 (3)148
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H7BrO
Mr199.05
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)4.1459 (2), 9.6731 (5), 18.8178 (9)
V3)754.66 (6)
Z4
Radiation typeMo Kα
µ (mm1)5.37
Crystal size (mm)0.54 × 0.43 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.588, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7436, 1867, 1692
Rint0.037
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 1.08
No. of reflections1867
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.66
Absolute structureFlack (1983), with 736 Friedel pairs
Absolute structure parameter0.015 (14)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H21···O1i0.992.463.317 (4)145
C2—H22···O1ii0.992.443.268 (4)141
C8—H8···O1i0.952.603.442 (3)148
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Mr Benjamin Wilson for helpful discussions.

References

First citationBarrans, Y. & Maisseu, J. (1966). C. R. Acad. Sci. Ser. C, 262, 91–92.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem. 62, 798–807.  CrossRef CAS Web of Science Google Scholar
First citationLaube, T., Weidenhaupt, A. & Hunziker, R. (1991). J. Am. Chem. Soc. 113, 2561–2567.  CrossRef CAS Google Scholar
First citationLere-Porte, J.-P., Bonniol, A., Petrissans, J. & Brianso, M.-C. (1982). Acta Cryst. B38, 1035–1037.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1207
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds