metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N′-[(E)-1-(5-Bromo-2-oxidophen­yl)ethyl­­idene]-4-hy­dr­oxy­benzohydrazidato}pyridine­copper(II)

aCollege of Environment and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an, Shaanxi, People's Republic of China
*Correspondence e-mail: wllily315668256@yahoo.com.cn

(Received 6 March 2011; accepted 31 March 2011; online 7 April 2011)

In the title complex, [Cu(C15H11BrN2O3)(C5H5N)], the central CuII atom is in a square-planar CuN2O2 coordination environment formed by the tridentate hydrazone and the monodentate pyridine ligands with N atoms in a trans-arrangement about the CuII atom.

Related literature

For the coordination properties of aroylhydrazones, see: Ali et al. (2004[Ali, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708-m1709.]); Zheng et al. (2008[Zheng, C.-Z., Ji, C.-Y., Chang, X.-L. & Zhang, L. (2008). Acta Cryst. E64, o2487.]) and for their biological activity, see: Carcelli et al. (1995[Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43-62.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C15H11BrN2O3)(C5H5N)]

  • Mr = 489.81

  • Monoclinic, P 21 /n

  • a = 12.514 (3) Å

  • b = 7.6539 (15) Å

  • c = 19.467 (4) Å

  • β = 93.276 (3)°

  • V = 1861.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.35 mm−1

  • T = 298 K

  • 0.21 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.540, Tmax = 0.710

  • 9243 measured reflections

  • 3293 independent reflections

  • 2742 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.02

  • 3293 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability towards metal ions (Zheng et al., 2008; Ali et al., 2004) and their biological activity (Carcelli et al., 1995). As an extension of work on the structural characterization of aroylhydrazone derivatives, the title compound, C20H16BrCuN3O3, was synthesized and its crystal structure is reported here (Fig.1).

Related literature top

For the coordination properties of aroylhydrazones, see: Ali et al. (2004); Zheng et al. (2008) and for their biological activity, see: Carcelli et al. (1995).

Experimental top

Ethyl 4-hydroxybenzoate (8.31 g, 0.05 mol) was dissolved in ethanol (30 ml) at room temperature and heated at 363 K, followed by the addition of hydrazine hydrate (3.25 g, 0.065 mol). Subsequently, the mixture was refluxed for 8 h, and then cooled to room temperature. The crystals were precipitated and collected by filtration. The product was recrystallized from ethanol and dried under reduced pressure to give (4-hydroxybenzoyl)hydrazine. (2-Hydroxybenzoyl) hydrazine (3.50 g, 0.023 mol) was dissolved in ethanol (30 ml) at room temperature and heated at 363 K, followed by the addition of 5-bromo-2-hydroxyphenyl ethyl ketone (4.95 g, 0.023 mol). Subsequently, the mixture was refluxed for 8 h, and then cooled to room temperature. The crystals were precipitated and collected by filtration. The product was recrystallized from ethanol and dried under reduced pressure to give N'-[( E)-(5-bromo-2-hydroxyphenyl)-ethylidene]-4-hydroxybenzohydrazide.

A methanol solution (10 ml) of N'-[(E)-(5-bromo-2-hydroxyphenyl) ethylidene]-4-hydroxybenzohydrazide (0.25 mmol, 0.087 g) was mixed with a DMF solution (5 ml) of CuCl2.2H2O (0.25 mmol, 0.043 g). The mixture was stirred at 298 K for 2 h. and then filtered. A blue precipitate was produced after about 15 days. A pyridine amount (5 ml) was used to dissolve the precipitate at 330 K. Blue block-shaped crystals of the title complex were obtained after one month (yield 30%).

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms,with CH(methyl) = 0.96 Å, C—H(aromatic) = 0.93 Å, O—H = 0.82 Å and with Uiso(H) =1.5Ueq(Cmethyl,O) and 1.2Ueq(Caromatic).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
{N'-[(E)-1-(5-Bromo-2-oxidophenyl)ethylidene]-4- hydroxybenzohydrazidato}pyridinecopper(II) top
Crystal data top
[Cu(C15H11BrN2O3)(C5H5N)]F(000) = 980
Mr = 489.81Dx = 1.748 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4160 reflections
a = 12.514 (3) Åθ = 2.9–27.6°
b = 7.6539 (15) ŵ = 3.35 mm1
c = 19.467 (4) ÅT = 298 K
β = 93.276 (3)°Block, blue
V = 1861.6 (6) Å30.21 × 0.14 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3293 independent reflections
Radiation source: fine-focus sealed tube2742 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.540, Tmax = 0.710k = 89
9243 measured reflectionsl = 1923
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.064P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3293 reflectionsΔρmax = 0.53 e Å3
254 parametersΔρmin = 0.89 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0113 (15)
Crystal data top
[Cu(C15H11BrN2O3)(C5H5N)]V = 1861.6 (6) Å3
Mr = 489.81Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.514 (3) ŵ = 3.35 mm1
b = 7.6539 (15) ÅT = 298 K
c = 19.467 (4) Å0.21 × 0.14 × 0.11 mm
β = 93.276 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3293 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2742 reflections with I > 2σ(I)
Tmin = 0.540, Tmax = 0.710Rint = 0.041
9243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.02Δρmax = 0.53 e Å3
3293 reflectionsΔρmin = 0.89 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.42814 (3)0.76855 (5)0.51714 (2)0.02479 (15)
Br10.72536 (3)0.37728 (5)0.24220 (2)0.04230 (16)
O10.45528 (17)0.8886 (3)0.60153 (13)0.0317 (6)
O20.41045 (18)0.6643 (3)0.43203 (13)0.0356 (6)
O30.6722 (2)1.2098 (4)0.86987 (14)0.0530 (8)
H30.73311.24960.87190.079*
N10.6306 (2)0.8483 (3)0.57583 (14)0.0255 (6)
N20.5824 (2)0.7708 (3)0.51648 (14)0.0231 (6)
N30.2686 (2)0.7744 (4)0.52600 (15)0.0297 (7)
C10.5564 (2)0.9039 (4)0.61532 (17)0.0243 (7)
C20.5902 (2)0.9870 (4)0.68103 (16)0.0245 (7)
C30.6889 (2)1.0679 (4)0.69190 (17)0.0264 (7)
H3A0.73611.06990.65670.032*
C40.7182 (3)1.1457 (4)0.75435 (18)0.0290 (8)
H40.78411.20130.76060.035*
C50.6498 (3)1.1405 (4)0.80707 (19)0.0324 (8)
C60.5506 (3)1.0600 (5)0.79668 (19)0.0386 (9)
H60.50441.05490.83240.046*
C70.5207 (3)0.9881 (5)0.73399 (18)0.0337 (8)
H70.45290.93950.72690.040*
C80.6428 (2)0.7196 (4)0.46905 (17)0.0227 (7)
C90.7609 (3)0.7525 (5)0.4745 (2)0.0325 (8)
H9A0.77580.85210.50350.049*
H9B0.78570.77460.42960.049*
H9C0.79700.65190.49410.049*
C100.5969 (3)0.6315 (4)0.40775 (18)0.0231 (7)
C110.4854 (3)0.6139 (4)0.39242 (19)0.0280 (8)
C120.4511 (3)0.5377 (5)0.33003 (18)0.0326 (8)
H120.37800.53110.31890.039*
C130.5190 (3)0.4728 (5)0.28489 (18)0.0358 (9)
H130.49300.42290.24370.043*
C140.6286 (3)0.4821 (4)0.30120 (17)0.0288 (7)
C150.6662 (3)0.5614 (4)0.36049 (17)0.0259 (7)
H150.73980.56930.36990.031*
C160.2007 (3)0.7253 (5)0.4739 (2)0.0430 (10)
H160.22800.68830.43290.052*
C170.0928 (3)0.7282 (7)0.4793 (2)0.0594 (13)
H170.04750.69440.44210.071*
C180.0502 (3)0.7811 (6)0.5396 (3)0.0556 (12)
H180.02340.78460.54370.067*
C190.1188 (3)0.8281 (6)0.5930 (2)0.0472 (10)
H190.09310.86300.63470.057*
C200.2280 (3)0.8229 (5)0.58405 (19)0.0338 (8)
H200.27480.85510.62070.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0153 (2)0.0365 (2)0.0219 (3)0.00162 (15)0.00401 (17)0.00250 (17)
Br10.0465 (3)0.0481 (3)0.0335 (3)0.00384 (16)0.01232 (19)0.00779 (17)
O10.0164 (12)0.0502 (15)0.0277 (14)0.0023 (10)0.0067 (10)0.0094 (11)
O20.0192 (12)0.0575 (15)0.0292 (15)0.0015 (11)0.0057 (11)0.0127 (12)
O30.0337 (15)0.095 (2)0.0296 (16)0.0228 (15)0.0001 (12)0.0242 (15)
N10.0195 (14)0.0354 (15)0.0210 (16)0.0035 (11)0.0039 (12)0.0041 (12)
N20.0196 (14)0.0312 (14)0.0178 (15)0.0001 (10)0.0038 (12)0.0006 (11)
N30.0224 (15)0.0388 (16)0.0276 (17)0.0002 (12)0.0012 (13)0.0051 (13)
C10.0197 (17)0.0311 (17)0.0214 (18)0.0005 (13)0.0045 (14)0.0003 (14)
C20.0193 (16)0.0308 (17)0.0230 (18)0.0027 (13)0.0032 (14)0.0006 (14)
C30.0188 (16)0.0345 (17)0.0257 (19)0.0001 (13)0.0008 (14)0.0004 (15)
C40.0176 (17)0.0382 (19)0.030 (2)0.0009 (13)0.0040 (15)0.0001 (15)
C50.0245 (18)0.048 (2)0.023 (2)0.0023 (15)0.0085 (15)0.0075 (16)
C60.0228 (18)0.068 (2)0.025 (2)0.0051 (17)0.0032 (15)0.0115 (19)
C70.0183 (17)0.050 (2)0.032 (2)0.0045 (15)0.0039 (15)0.0083 (17)
C80.0169 (16)0.0286 (16)0.0222 (18)0.0019 (12)0.0025 (14)0.0034 (14)
C90.0147 (17)0.052 (2)0.030 (2)0.0027 (14)0.0018 (15)0.0046 (16)
C100.0234 (17)0.0261 (16)0.0191 (17)0.0019 (12)0.0034 (14)0.0020 (13)
C110.0223 (17)0.0307 (18)0.030 (2)0.0036 (13)0.0042 (15)0.0006 (15)
C120.0229 (18)0.045 (2)0.029 (2)0.0006 (15)0.0080 (15)0.0061 (16)
C130.040 (2)0.039 (2)0.028 (2)0.0002 (16)0.0065 (17)0.0088 (16)
C140.036 (2)0.0299 (17)0.0218 (18)0.0015 (14)0.0086 (15)0.0006 (15)
C150.0218 (17)0.0303 (17)0.0256 (18)0.0016 (13)0.0005 (14)0.0051 (15)
C160.027 (2)0.070 (3)0.031 (2)0.0003 (18)0.0073 (17)0.0030 (19)
C170.026 (2)0.103 (4)0.048 (3)0.007 (2)0.008 (2)0.007 (3)
C180.017 (2)0.089 (3)0.061 (3)0.0056 (19)0.001 (2)0.002 (3)
C190.031 (2)0.065 (3)0.047 (3)0.0008 (18)0.0078 (19)0.003 (2)
C200.0223 (19)0.049 (2)0.030 (2)0.0006 (15)0.0041 (16)0.0003 (17)
Geometric parameters (Å, º) top
Cu1—O21.841 (2)C7—H70.9300
Cu1—O11.896 (2)C8—C101.460 (4)
Cu1—N21.931 (3)C8—C91.497 (4)
Cu1—N32.015 (3)C9—H9A0.9600
Br1—C141.894 (3)C9—H9B0.9600
O1—C11.284 (4)C9—H9C0.9600
O2—C111.306 (4)C10—C151.407 (5)
O3—C51.347 (4)C10—C111.416 (5)
O3—H30.8200C11—C121.393 (5)
N1—C11.310 (4)C12—C131.351 (5)
N1—N21.404 (4)C12—H120.9300
N2—C81.287 (4)C13—C141.392 (5)
N3—C201.318 (5)C13—H130.9300
N3—C161.339 (5)C14—C151.364 (5)
C1—C21.469 (4)C15—H150.9300
C2—C71.386 (5)C16—C171.361 (6)
C2—C31.388 (4)C16—H160.9300
C3—C41.384 (5)C17—C181.377 (6)
C3—H3A0.9300C17—H170.9300
C4—C51.374 (5)C18—C191.358 (6)
C4—H40.9300C18—H180.9300
C5—C61.391 (5)C19—C201.388 (5)
C6—C71.371 (5)C19—H190.9300
C6—H60.9300C20—H200.9300
O2—Cu1—O1175.06 (11)C8—C9—H9A109.5
O2—Cu1—N293.83 (11)C8—C9—H9B109.5
O1—Cu1—N282.63 (10)H9A—C9—H9B109.5
O2—Cu1—N391.02 (11)C8—C9—H9C109.5
O1—Cu1—N392.55 (11)H9A—C9—H9C109.5
N2—Cu1—N3175.14 (11)H9B—C9—H9C109.5
C1—O1—Cu1110.6 (2)C15—C10—C11117.6 (3)
C11—O2—Cu1127.3 (2)C15—C10—C8118.8 (3)
C5—O3—H3109.5C11—C10—C8123.6 (3)
C1—N1—N2109.5 (3)O2—C11—C12116.3 (3)
C8—N2—N1118.5 (3)O2—C11—C10125.4 (3)
C8—N2—Cu1129.1 (2)C12—C11—C10118.3 (3)
N1—N2—Cu1112.4 (2)C13—C12—C11123.2 (3)
C20—N3—C16118.0 (3)C13—C12—H12118.4
C20—N3—Cu1120.8 (2)C11—C12—H12118.4
C16—N3—Cu1121.2 (3)C12—C13—C14118.7 (3)
O1—C1—N1124.8 (3)C12—C13—H13120.6
O1—C1—C2116.9 (3)C14—C13—H13120.6
N1—C1—C2118.3 (3)C15—C14—C13120.2 (3)
C7—C2—C3118.3 (3)C15—C14—Br1120.0 (3)
C7—C2—C1119.3 (3)C13—C14—Br1119.7 (3)
C3—C2—C1122.4 (3)C14—C15—C10121.8 (3)
C4—C3—C2121.0 (3)C14—C15—H15119.1
C4—C3—H3A119.5C10—C15—H15119.1
C2—C3—H3A119.5N3—C16—C17121.7 (4)
C5—C4—C3119.9 (3)N3—C16—H16119.1
C5—C4—H4120.0C17—C16—H16119.1
C3—C4—H4120.0C16—C17—C18120.3 (4)
O3—C5—C4124.1 (3)C16—C17—H17119.8
O3—C5—C6116.3 (3)C18—C17—H17119.8
C4—C5—C6119.6 (3)C19—C18—C17118.2 (4)
C7—C6—C5120.2 (3)C19—C18—H18120.9
C7—C6—H6119.9C17—C18—H18120.9
C5—C6—H6119.9C18—C19—C20118.7 (4)
C6—C7—C2120.9 (3)C18—C19—H19120.6
C6—C7—H7119.5C20—C19—H19120.6
C2—C7—H7119.5N3—C20—C19123.1 (4)
N2—C8—C10120.5 (3)N3—C20—H20118.5
N2—C8—C9121.0 (3)C19—C20—H20118.5
C10—C8—C9118.5 (3)
N2—Cu1—O1—C12.0 (2)N1—N2—C8—C10177.3 (3)
N3—Cu1—O1—C1177.3 (2)Cu1—N2—C8—C106.2 (4)
N2—Cu1—O2—C111.3 (3)N1—N2—C8—C94.1 (4)
N3—Cu1—O2—C11178.3 (3)Cu1—N2—C8—C9172.3 (2)
C1—N1—N2—C8175.0 (3)N2—C8—C10—C15173.5 (3)
C1—N1—N2—Cu12.0 (3)C9—C8—C10—C158.0 (4)
O2—Cu1—N2—C82.2 (3)N2—C8—C10—C117.2 (5)
O1—Cu1—N2—C8174.4 (3)C9—C8—C10—C11171.3 (3)
O2—Cu1—N2—N1178.77 (19)Cu1—O2—C11—C12179.9 (2)
O1—Cu1—N2—N12.24 (19)Cu1—O2—C11—C100.4 (5)
O2—Cu1—N3—C20172.7 (3)C15—C10—C11—O2176.8 (3)
O1—Cu1—N3—C2010.8 (3)C8—C10—C11—O24.0 (5)
O2—Cu1—N3—C165.7 (3)C15—C10—C11—C123.6 (4)
O1—Cu1—N3—C16170.9 (3)C8—C10—C11—C12175.7 (3)
Cu1—O1—C1—N11.6 (4)O2—C11—C12—C13177.3 (3)
Cu1—O1—C1—C2177.1 (2)C10—C11—C12—C133.1 (5)
N2—N1—C1—O10.3 (4)C11—C12—C13—C140.0 (6)
N2—N1—C1—C2179.0 (3)C12—C13—C14—C152.5 (5)
O1—C1—C2—C722.6 (4)C12—C13—C14—Br1175.4 (3)
N1—C1—C2—C7156.1 (3)C13—C14—C15—C101.8 (5)
O1—C1—C2—C3156.1 (3)Br1—C14—C15—C10176.1 (2)
N1—C1—C2—C325.1 (5)C11—C10—C15—C141.3 (5)
C7—C2—C3—C40.9 (5)C8—C10—C15—C14178.0 (3)
C1—C2—C3—C4179.7 (3)C20—N3—C16—C171.4 (6)
C2—C3—C4—C51.2 (5)Cu1—N3—C16—C17179.8 (3)
C3—C4—C5—O3178.8 (3)N3—C16—C17—C180.5 (7)
C3—C4—C5—C61.3 (5)C16—C17—C18—C190.6 (8)
O3—C5—C6—C7179.1 (4)C17—C18—C19—C200.8 (7)
C4—C5—C6—C70.8 (6)C16—N3—C20—C191.1 (6)
C5—C6—C7—C23.0 (6)Cu1—N3—C20—C19179.6 (3)
C3—C2—C7—C63.1 (5)C18—C19—C20—N30.0 (6)
C1—C2—C7—C6178.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.822.082.834 (4)153
Symmetry code: (i) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C15H11BrN2O3)(C5H5N)]
Mr489.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.514 (3), 7.6539 (15), 19.467 (4)
β (°) 93.276 (3)
V3)1861.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.35
Crystal size (mm)0.21 × 0.14 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.540, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
9243, 3293, 2742
Rint0.041
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.02
No. of reflections3293
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.89

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the National Natural Science Foundation of Shaanxi Province, China (grant No. 2009JM2012) for financial support.

References

First citationAli, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708–m1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, C.-Z., Ji, C.-Y., Chang, X.-L. & Zhang, L. (2008). Acta Cryst. E64, o2487.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds