metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[4-(methyl­sulfan­yl)phen­yl]-1H-benzimidazol-3-ium} tetra­bromido­cuprate(II) dihydrate

aDepartment of Chemistry, Bangalore University, Bangalore 560 001, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 15 March 2011; accepted 6 April 2011; online 13 April 2011)

The asymmetric unit of the title compound, (C14H13N2S)2[CuBr4]·2H2O, contains two cations, one anion and two solvent water mol­ecules that are connected via O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds into a two-dimensional polymeric structure. The cations are arranged in a head-to-tail fashion and form stacks along [100]. The central CuII atom of the anion is in a distorted tetra­hedral environment.

Related literature

For general background to benzimidazoles and their derivatives, see: Huang & Scarborough et al. (1999[Huang, W. & Scarborough, R. M. (1999). Tetrahedron Lett. 40, 2665-2668.]); Preston (1974[Preston, P. N. (1974). Chem. Rev. 74, 279-314.]); Zhu et al. (2000[Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430-2437.]). For related structures, see: Ziaulla et al. (2011[Ziaulla, M., Manjunatha, M. N., Sankolli, R., Nagasundara, K. R. & Begum, N. S. (2011). Acta Cryst. E67, o341-o342.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H13N2S)2[CuBr4]·2H2O

  • Mr = 901.86

  • Triclinic, [P \overline 1]

  • a = 7.6878 (5) Å

  • b = 11.8358 (7) Å

  • c = 18.5485 (9) Å

  • α = 85.305 (4)°

  • β = 84.778 (5)°

  • γ = 80.692 (5)°

  • V = 1654.74 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.65 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.430, Tmax = 0.465

  • 27134 measured reflections

  • 5805 independent reflections

  • 3344 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.127

  • S = 1.00

  • 5805 reflections

  • 384 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.86 1.86 2.703 (8) 165
N2—H2⋯Br3ii 0.86 2.44 3.275 (6) 162
O1—H1D⋯Br3iii 0.85 (6) 2.55 (7) 3.344 (6) 155
O2—H2A⋯Br2iii 0.83 (4) 2.96 (6) 3.735 (6) 155
O1—H1E⋯Br1 0.84 (7) 2.53 (7) 3.359 (6) 170
O2—H2B⋯Br4 0.85 (5) 2.77 (7) 3.597 (6) 166
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker. (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis of benzimidazoles makes use of solid-phase synthesis via o-nitroanilines (Preston et al., 1974; Huang &Scarborough, 1999). Benzimidazole derivatives are effective against the human cytomegalo virus (HCMV) (Zhu et al., 2000). In addition benzimidazole derivatives exhibit a number of important pharmacological properties, such as antihistaminic, anti-ulcerative, antiallergic and antipyretic. In the title compound, as shown in Fig. 1, there are two cations, one tetrabromidocopper(II) anion and two solvent water molecules in the asymmetric unit. The CuII atom shows strongly distorted tetrahedral geometry, coordinating with four terminal bromine atoms with the bond lengths in the range 2.3389 (1) Å to 2.4084 (1) Å. The Br—Cu—Br bond angles are between 96.18 (4)° and 139.53 (6)°. The benzimidazole and thiomethyl phenyl rings are virtually planar and inclined at an dihedral angle 2.67 (2)° . The bond lengths and angles for the benzimidazole cation of the molecule are in good agreement, within experimental errors, with those observed in other benzimidazole derivatives (Ziaulla et al., 2011). The crystal structure is stabilized by N—H···O, O—H···Br and N—H···Br hydrogen bonds (Fig.2).

Related literature top

For general background to benzimidazoles and their derivatives, see: Huang & Scarborough et al. (1999); Preston (1974); Zhu et al. (2000). For related structures, see: Ziaulla et al. (2011).

Experimental top

An ethanolic solution (15 ml) of the 2-(4-methylsulfanyl phenyl)-1H- benzimidazole) (0.960 g, 2 mmol) was added to a solution of copper(II) bromide (0.446 g, 1 mmol) in ethanol (25 ml). The mixture was then treated with 48% HBr (2–3 ml) followed by liquid Br2 (2–3 ml).The mixture was refluxed for nearly six hours during which yellow crystals suitable for X-ray analysis were obtained. The crystals were washed with cold ethanol and dried in vacuum over P2O5 (yield 1.2 g, 85%).

Refinement top

The H atoms were placed at calculated positions and refined in the riding model approximation with C—H= 0.93-0.96 Å and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N). H atoms of water molecules were refined with restraints imposed on the O–H and H···H distances [O–H = 0.85 (2) Å, H···H =1.39 (4) Å] and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.
Bis{2-[4-(methylsulfanyl)phenyl]-1H-benzimidazol-3-ium} tetrabromidocuprate(II) dihydrate top
Crystal data top
(C14H13N2S)2[CuBr4]·2H2OZ = 2
Mr = 901.86F(000) = 886
Triclinic, P1Dx = 1.810 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6878 (5) ÅCell parameters from 5805 reflections
b = 11.8358 (7) Åθ = 2.7–25.0°
c = 18.5485 (9) ŵ = 5.65 mm1
α = 85.305 (4)°T = 296 K
β = 84.778 (5)°Block, yellow
γ = 80.692 (5)°0.18 × 0.16 × 0.16 mm
V = 1654.74 (17) Å3
Data collection top
Bruker SMART APEX CCD detector
diffractometer
5805 independent reflections
Radiation source: Enhance (Mo) X-ray Source3344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 99
Tmin = 0.430, Tmax = 0.465k = 1414
27134 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0351P)2]
where P = (Fo2 + 2Fc2)/3
5805 reflections(Δ/σ)max < 0.001
384 parametersΔρmax = 0.75 e Å3
6 restraintsΔρmin = 0.59 e Å3
Crystal data top
(C14H13N2S)2[CuBr4]·2H2Oγ = 80.692 (5)°
Mr = 901.86V = 1654.74 (17) Å3
Triclinic, P1Z = 2
a = 7.6878 (5) ÅMo Kα radiation
b = 11.8358 (7) ŵ = 5.65 mm1
c = 18.5485 (9) ÅT = 296 K
α = 85.305 (4)°0.18 × 0.16 × 0.16 mm
β = 84.778 (5)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
5805 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3344 reflections with I > 2σ(I)
Tmin = 0.430, Tmax = 0.465Rint = 0.110
27134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0596 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.75 e Å3
5805 reflectionsΔρmin = 0.59 e Å3
384 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br30.84824 (12)0.57905 (7)0.30208 (4)0.0669 (3)
Br20.87267 (11)0.78902 (7)0.15526 (5)0.0683 (3)
Cu10.66741 (12)0.74774 (8)0.25235 (5)0.0514 (3)
Br40.53451 (13)0.82526 (8)0.35966 (5)0.0790 (3)
Br10.41165 (11)0.76741 (8)0.18456 (4)0.0704 (3)
S10.6325 (3)0.24760 (18)0.32773 (11)0.0633 (6)
S20.9931 (3)0.15553 (19)0.17091 (12)0.0709 (7)
N10.0725 (8)0.7087 (5)0.4564 (3)0.0510 (17)
H10.08340.72910.41080.061*
N20.1042 (7)0.6081 (5)0.5582 (3)0.0455 (15)
H20.13820.55320.58960.055*
N30.6882 (8)0.5966 (5)0.0737 (3)0.0483 (16)
H30.73310.54730.10450.058*
N40.6053 (7)0.6754 (5)0.0272 (3)0.0491 (16)
H40.58750.68500.07290.059*
O10.2089 (9)0.5361 (5)0.1865 (3)0.0744 (18)
O20.0818 (8)0.8287 (6)0.3236 (3)0.0755 (17)
H1E0.263 (9)0.593 (5)0.180 (5)0.113*
H1D0.103 (5)0.557 (7)0.204 (5)0.113*
H2B0.188 (5)0.838 (8)0.326 (4)0.113*
H2A0.070 (10)0.811 (8)0.282 (2)0.113*
C10.6852 (11)0.1254 (6)0.3895 (4)0.073 (3)
H1B0.75920.06540.36420.109*
H1A0.57820.09880.40940.109*
H1C0.74660.14620.42800.109*
C20.4938 (9)0.3474 (6)0.3793 (4)0.049 (2)
C30.4289 (10)0.4503 (7)0.3424 (4)0.059 (2)
H3A0.46260.46280.29330.071*
C40.3167 (9)0.5329 (6)0.3772 (4)0.049 (2)
H4A0.27090.59960.35080.059*
C50.2689 (9)0.5208 (6)0.4504 (4)0.0406 (18)
C60.3317 (9)0.4189 (6)0.4874 (4)0.0435 (18)
H60.29730.40730.53640.052*
C70.4443 (10)0.3339 (6)0.4531 (4)0.050 (2)
H70.48780.26670.47950.060*
C80.1509 (9)0.6090 (6)0.4875 (4)0.0418 (18)
C90.0276 (9)0.7731 (6)0.5082 (4)0.0480 (19)
C100.0077 (9)0.7088 (6)0.5740 (4)0.0460 (19)
C110.0876 (10)0.7504 (7)0.6385 (4)0.058 (2)
H110.07460.70780.68260.070*
C120.1869 (10)0.8578 (7)0.6341 (4)0.063 (2)
H120.24390.88800.67630.075*
C130.2050 (10)0.9230 (7)0.5683 (4)0.064 (2)
H130.27100.99610.56780.077*
C140.1274 (10)0.8812 (6)0.5045 (4)0.063 (2)
H140.14120.92390.46050.076*
C151.0901 (10)0.0542 (6)0.1072 (4)0.077 (3)
H15C1.17930.08570.07580.116*
H15A1.00050.03720.07870.116*
H15B1.14290.01500.13260.116*
C160.9121 (9)0.2772 (6)0.1158 (4)0.050 (2)
C170.9176 (10)0.2808 (6)0.0417 (4)0.056 (2)
H170.96870.21680.01710.067*
C180.8455 (9)0.3818 (6)0.0031 (4)0.050 (2)
H180.85140.38430.04730.060*
C190.7664 (9)0.4771 (6)0.0380 (4)0.0432 (18)
C200.7666 (10)0.4719 (6)0.1131 (4)0.056 (2)
H200.71910.53630.13800.067*
C210.8361 (10)0.3726 (6)0.1511 (4)0.061 (2)
H210.83150.37010.20150.074*
C220.6917 (9)0.5791 (6)0.0009 (4)0.0455 (19)
C230.6011 (9)0.7062 (6)0.0912 (4)0.0435 (18)
C240.5622 (10)0.7637 (7)0.1566 (4)0.061 (2)
H240.59650.72970.20020.073*
C250.4703 (11)0.8735 (7)0.1549 (5)0.066 (2)
H250.44280.91470.19840.080*
C260.4178 (10)0.9240 (7)0.0901 (5)0.064 (2)
H260.35640.99850.09110.077*
C270.4541 (10)0.8667 (6)0.0245 (4)0.060 (2)
H270.41720.89990.01920.071*
C280.5485 (10)0.7572 (6)0.0269 (4)0.050 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br30.0774 (6)0.0605 (6)0.0514 (5)0.0114 (5)0.0023 (4)0.0136 (4)
Br20.0606 (6)0.0670 (6)0.0700 (6)0.0054 (4)0.0039 (5)0.0200 (5)
Cu10.0536 (6)0.0493 (6)0.0477 (6)0.0012 (5)0.0026 (5)0.0023 (4)
Br40.0916 (7)0.0806 (7)0.0606 (6)0.0093 (6)0.0038 (5)0.0273 (5)
Br10.0521 (5)0.1001 (7)0.0562 (6)0.0001 (5)0.0059 (4)0.0116 (5)
S10.0654 (15)0.0619 (14)0.0568 (13)0.0100 (12)0.0091 (11)0.0053 (11)
S20.0672 (15)0.0632 (15)0.0771 (16)0.0009 (12)0.0111 (13)0.0147 (12)
N10.058 (4)0.042 (4)0.050 (4)0.001 (3)0.008 (3)0.002 (3)
N20.049 (4)0.050 (4)0.037 (4)0.007 (3)0.009 (3)0.001 (3)
N30.062 (4)0.042 (4)0.039 (4)0.001 (3)0.002 (3)0.008 (3)
N40.057 (4)0.042 (4)0.047 (4)0.008 (3)0.004 (3)0.001 (3)
O10.078 (5)0.078 (4)0.060 (4)0.008 (3)0.003 (4)0.017 (3)
O20.084 (4)0.089 (5)0.054 (4)0.021 (4)0.011 (3)0.011 (3)
C10.085 (7)0.051 (5)0.080 (6)0.000 (5)0.018 (5)0.000 (5)
C20.033 (4)0.054 (5)0.059 (5)0.002 (4)0.013 (4)0.005 (4)
C30.053 (5)0.072 (6)0.044 (5)0.005 (4)0.002 (4)0.005 (4)
C40.048 (5)0.052 (5)0.041 (5)0.005 (4)0.004 (4)0.004 (4)
C50.045 (4)0.038 (4)0.039 (4)0.008 (3)0.006 (3)0.004 (3)
C60.054 (5)0.047 (4)0.032 (4)0.017 (4)0.004 (4)0.002 (3)
C70.059 (5)0.047 (5)0.045 (5)0.010 (4)0.010 (4)0.008 (4)
C80.039 (4)0.043 (4)0.044 (5)0.008 (3)0.007 (4)0.000 (3)
C90.049 (5)0.051 (5)0.042 (5)0.008 (4)0.000 (4)0.002 (4)
C100.045 (5)0.050 (5)0.045 (5)0.009 (4)0.004 (4)0.009 (4)
C110.052 (5)0.066 (6)0.054 (5)0.004 (4)0.004 (4)0.001 (4)
C120.058 (6)0.063 (6)0.063 (6)0.002 (5)0.000 (4)0.009 (5)
C130.062 (6)0.055 (5)0.068 (6)0.010 (4)0.001 (5)0.006 (5)
C140.070 (6)0.048 (5)0.067 (6)0.006 (4)0.015 (5)0.002 (4)
C150.063 (6)0.051 (5)0.112 (7)0.001 (4)0.003 (5)0.006 (5)
C160.047 (5)0.047 (5)0.056 (5)0.008 (4)0.005 (4)0.003 (4)
C170.055 (5)0.045 (5)0.065 (6)0.002 (4)0.000 (4)0.007 (4)
C180.060 (5)0.052 (5)0.040 (4)0.010 (4)0.007 (4)0.007 (4)
C190.048 (5)0.033 (4)0.047 (5)0.004 (3)0.001 (4)0.004 (3)
C200.073 (6)0.053 (5)0.041 (5)0.005 (4)0.008 (4)0.002 (4)
C210.078 (6)0.053 (5)0.048 (5)0.005 (5)0.001 (4)0.010 (4)
C220.049 (5)0.041 (4)0.048 (5)0.014 (4)0.003 (4)0.003 (4)
C230.039 (4)0.042 (4)0.051 (5)0.007 (4)0.006 (4)0.000 (4)
C240.069 (6)0.064 (6)0.052 (5)0.021 (5)0.011 (4)0.008 (4)
C250.077 (6)0.061 (6)0.067 (6)0.025 (5)0.034 (5)0.022 (5)
C260.063 (6)0.047 (5)0.079 (7)0.000 (4)0.020 (5)0.004 (5)
C270.063 (6)0.047 (5)0.069 (6)0.005 (4)0.009 (5)0.008 (4)
C280.062 (5)0.046 (5)0.039 (5)0.003 (4)0.007 (4)0.000 (4)
Geometric parameters (Å, º) top
Br3—Cu12.4091 (11)C6—H60.9300
Br2—Cu12.3579 (12)C7—H70.9300
Cu1—Br42.3396 (12)C9—C141.382 (9)
Cu1—Br12.3990 (12)C9—C101.391 (9)
S1—C21.743 (7)C10—C111.385 (9)
S1—C11.787 (7)C11—C121.373 (9)
S2—C161.758 (7)C11—H110.9300
S2—C151.782 (7)C12—C131.395 (10)
N1—C81.346 (8)C12—H120.9300
N1—C91.376 (8)C13—C141.368 (9)
N1—H10.8600C13—H130.9300
N2—C81.327 (8)C14—H140.9300
N2—C101.388 (8)C15—H15C0.9600
N2—H20.8600C15—H15A0.9600
N3—C221.351 (8)C15—H15B0.9600
N3—C231.388 (8)C16—C171.370 (9)
N3—H30.8600C16—C211.373 (9)
N4—C221.342 (8)C17—C181.402 (9)
N4—C281.386 (8)C17—H170.9300
N4—H40.8600C18—C191.373 (8)
O1—H1E0.84 (7)C18—H180.9300
O1—H1D0.85 (6)C19—C201.390 (9)
O2—H2B0.85 (5)C19—C221.421 (9)
O2—H2A0.84 (2)C20—C211.376 (9)
C1—H1B0.9600C20—H200.9300
C1—H1A0.9600C21—H210.9300
C1—H1C0.9600C23—C241.374 (9)
C2—C71.390 (9)C23—C281.379 (9)
C2—C31.391 (9)C24—C251.377 (10)
C3—C41.358 (9)C24—H240.9300
C3—H3A0.9300C25—C261.385 (10)
C4—C51.376 (9)C25—H250.9300
C4—H4A0.9300C26—C271.373 (10)
C5—C61.377 (8)C26—H260.9300
C5—C81.443 (9)C27—C281.381 (9)
C6—C71.374 (9)C27—H270.9300
Br4—Cu1—Br2139.54 (6)C12—C11—H11121.7
Br4—Cu1—Br199.30 (4)C10—C11—H11121.7
Br2—Cu1—Br197.76 (4)C11—C12—C13122.0 (7)
Br4—Cu1—Br399.91 (4)C11—C12—H12119.0
Br2—Cu1—Br396.13 (4)C13—C12—H12119.0
Br1—Cu1—Br3130.74 (5)C14—C13—C12121.2 (7)
C2—S1—C1104.8 (4)C14—C13—H13119.4
C16—S2—C15103.5 (4)C12—C13—H13119.4
C8—N1—C9109.9 (6)C13—C14—C9117.2 (7)
C8—N1—H1125.0C13—C14—H14121.4
C9—N1—H1125.0C9—C14—H14121.4
C8—N2—C10109.9 (6)S2—C15—H15C109.5
C8—N2—H2125.0S2—C15—H15A109.5
C10—N2—H2125.0H15C—C15—H15A109.5
C22—N3—C23109.6 (6)S2—C15—H15B109.5
C22—N3—H3125.2H15C—C15—H15B109.5
C23—N3—H3125.2H15A—C15—H15B109.5
C22—N4—C28111.2 (6)C17—C16—C21119.4 (7)
C22—N4—H4124.4C17—C16—S2124.3 (6)
C28—N4—H4124.4C21—C16—S2116.3 (6)
H1E—O1—H1D110 (5)C16—C17—C18119.5 (7)
H2B—O2—H2A109 (5)C16—C17—H17120.2
S1—C1—H1B109.5C18—C17—H17120.2
S1—C1—H1A109.5C19—C18—C17121.6 (7)
H1B—C1—H1A109.5C19—C18—H18119.2
S1—C1—H1C109.5C17—C18—H18119.2
H1B—C1—H1C109.5C18—C19—C20117.7 (6)
H1A—C1—H1C109.5C18—C19—C22121.6 (7)
C7—C2—C3117.7 (6)C20—C19—C22120.7 (6)
C7—C2—S1126.4 (6)C21—C20—C19120.8 (7)
C3—C2—S1116.0 (6)C21—C20—H20119.6
C4—C3—C2120.7 (7)C19—C20—H20119.6
C4—C3—H3A119.7C16—C21—C20121.0 (7)
C2—C3—H3A119.7C16—C21—H21119.5
C3—C4—C5121.9 (6)C20—C21—H21119.5
C3—C4—H4A119.0N4—C22—N3106.5 (6)
C5—C4—H4A119.0N4—C22—C19126.9 (7)
C4—C5—C6117.7 (6)N3—C22—C19126.5 (6)
C4—C5—C8121.9 (6)C24—C23—C28120.8 (7)
C6—C5—C8120.3 (6)C24—C23—N3132.0 (7)
C7—C6—C5121.2 (6)C28—C23—N3107.2 (6)
C7—C6—H6119.4C23—C24—C25117.3 (7)
C5—C6—H6119.4C23—C24—H24121.4
C6—C7—C2120.7 (6)C25—C24—H24121.4
C6—C7—H7119.7C24—C25—C26121.6 (7)
C2—C7—H7119.7C24—C25—H25119.2
N2—C8—N1107.8 (6)C26—C25—H25119.2
N2—C8—C5126.5 (6)C27—C26—C25121.5 (7)
N1—C8—C5125.7 (6)C27—C26—H26119.2
N1—C9—C14132.3 (7)C25—C26—H26119.2
N1—C9—C10106.2 (6)C26—C27—C28116.4 (7)
C14—C9—C10121.5 (7)C26—C27—H27121.8
C11—C10—N2132.5 (7)C28—C27—H27121.8
C11—C10—C9121.3 (7)C23—C28—C27122.4 (7)
N2—C10—C9106.1 (6)C23—C28—N4105.4 (6)
C12—C11—C10116.7 (7)C27—C28—N4132.1 (7)
C1—S1—C2—C72.6 (8)C15—S2—C16—C174.3 (8)
C1—S1—C2—C3178.0 (6)C15—S2—C16—C21177.1 (6)
C7—C2—C3—C42.0 (12)C21—C16—C17—C180.0 (12)
S1—C2—C3—C4178.6 (6)S2—C16—C17—C18178.6 (6)
C2—C3—C4—C52.9 (12)C16—C17—C18—C191.1 (12)
C3—C4—C5—C63.2 (11)C17—C18—C19—C202.6 (12)
C3—C4—C5—C8179.4 (7)C17—C18—C19—C22179.4 (7)
C4—C5—C6—C72.7 (11)C18—C19—C20—C213.1 (12)
C8—C5—C6—C7179.9 (7)C22—C19—C20—C21178.9 (8)
C5—C6—C7—C21.9 (11)C17—C16—C21—C200.5 (13)
C3—C2—C7—C61.5 (11)S2—C16—C21—C20179.2 (7)
S1—C2—C7—C6179.1 (6)C19—C20—C21—C162.1 (13)
C10—N2—C8—N10.3 (8)C28—N4—C22—N31.4 (8)
C10—N2—C8—C5178.6 (7)C28—N4—C22—C19179.2 (7)
C9—N1—C8—N20.3 (8)C23—N3—C22—N41.1 (8)
C9—N1—C8—C5178.6 (7)C23—N3—C22—C19178.9 (7)
C4—C5—C8—N2176.3 (7)C18—C19—C22—N4177.1 (7)
C6—C5—C8—N26.4 (11)C20—C19—C22—N44.9 (12)
C4—C5—C8—N11.7 (12)C18—C19—C22—N30.2 (12)
C6—C5—C8—N1175.6 (7)C20—C19—C22—N3177.7 (7)
C8—N1—C9—C14177.7 (8)C22—N3—C23—C24179.4 (8)
C8—N1—C9—C100.2 (8)C22—N3—C23—C280.4 (8)
C8—N2—C10—C11177.9 (8)C28—C23—C24—C250.4 (12)
C8—N2—C10—C90.1 (8)N3—C23—C24—C25179.2 (8)
N1—C9—C10—C11178.0 (7)C23—C24—C25—C260.5 (13)
C14—C9—C10—C110.2 (12)C24—C25—C26—C270.4 (14)
N1—C9—C10—N20.1 (8)C25—C26—C27—C281.2 (13)
C14—C9—C10—N2177.9 (7)C24—C23—C28—C270.5 (12)
N2—C10—C11—C12177.5 (8)N3—C23—C28—C27178.6 (7)
C9—C10—C11—C120.1 (12)C24—C23—C28—N4178.7 (7)
C10—C11—C12—C130.9 (12)N3—C23—C28—N40.4 (8)
C11—C12—C13—C141.6 (14)C26—C27—C28—C231.3 (12)
C12—C13—C14—C91.3 (13)C26—C27—C28—N4178.9 (8)
N1—C9—C14—C13176.7 (8)C22—N4—C28—C231.1 (8)
C10—C9—C14—C130.4 (12)C22—N4—C28—C27179.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Br4i0.932.993.831 (8)150
N3—H3···O1ii0.861.862.703 (8)165
C18—H18···O1ii0.932.733.614 (9)159
N2—H2···Br3iii0.862.443.275 (6)162
O1—H1D···Br3iv0.85 (6)2.55 (7)3.344 (6)155
O2—H2A···Br2iv0.83 (4)2.96 (6)3.735 (6)155
O1—H1E···Br10.84 (7)2.53 (7)3.359 (6)170
O2—H2B···Br40.85 (5)2.77 (7)3.597 (6)166
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula(C14H13N2S)2[CuBr4]·2H2O
Mr901.86
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.6878 (5), 11.8358 (7), 18.5485 (9)
α, β, γ (°)85.305 (4), 84.778 (5), 80.692 (5)
V3)1654.74 (17)
Z2
Radiation typeMo Kα
µ (mm1)5.65
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.430, 0.465
No. of measured, independent and
observed [I > 2σ(I)] reflections
27134, 5805, 3344
Rint0.110
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.127, 1.00
No. of reflections5805
No. of parameters384
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.59

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.861.8612.703 (8)165
N2—H2···Br3ii0.862.4443.275 (6)162
O1—H1D···Br3iii0.85 (6)2.55 (7)3.344 (6)155
O2—H2A···Br2iii0.83 (4)2.96 (6)3.735 (6)155
O1—H1E···Br10.84 (7)2.53 (7)3.359 (6)170
O2—H2B···Br40.85 (5)2.77 (7)3.597 (6)166
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and the Department of Science and Technology, (DST), India, for the data collection facility under the IRHPA–DST program. MNM thanks the M. S. Ramaiah Institute of Technology, Bangalore, for their support and encouragement.

References

First citationBruker. (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, W. & Scarborough, R. M. (1999). Tetrahedron Lett. 40, 2665–2668.  Web of Science CrossRef CAS Google Scholar
First citationPreston, P. N. (1974). Chem. Rev. 74, 279–314.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationZhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZiaulla, M., Manjunatha, M. N., Sankolli, R., Nagasundara, K. R. & Begum, N. S. (2011). Acta Cryst. E67, o341–o342.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds