metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(2,2′-bipyrid­ine)di-μ3-hydroxido-bis­(μ-2-oxidobenzoato)tetra­copper(II) dinitrate tetra­hydrate

aBiochemical Section of Key Laboratory of Functional Polymer Materials, Ministry of Education of China, Chemical School of Nankai University, 300071 Tianjin, People's Republic of China, and bDepartment of Chemistry, Nankai University, 300071 Tianjin , People's Republic of China
*Correspondence e-mail: changlianze@gmail.com

(Received 20 March 2011; accepted 28 March 2011; online 7 April 2011)

The tetra­nuclear title complex, [Cu4(C7H4O3)2(OH)2(C10H8N2)4](NO3)2·4H2O, has a crystallographically imposed centre of symmetry. The CuII atoms display a distorted square-pyramidal coordination geometry and are linked by two μ2-phenolate O atoms from the salicylate ligands and two μ3-hydroxo groups, forming a Cu4O4 core that adopts a `stepped-cubane' geometry. In the crystal, the cations are linked by O—H⋯O hydrogen bonds to the nitrate anions, which are in turn connected via O—H⋯O inter­actions to centrosymmentric water tetra­mers.

Related literature

For the structures of related complexes, see: Albada et al. (2002[Albada, van G. A., Mutikainen, I., Roubeau, O., Turpeinen, U. & Reedijk, J. (2002). Inorg. Chim. Acta, 331, 208-215.]); Chandrasekhar et al. (2000[Chandrasekhar, V., Kingsley, S., Vij, A., Lam, K. C. & Rheingold, A. L. (2000). Inorg. Chem. 39, 3238-3242.]); Lu et al. (2007[Lu, J. W., Huang, Y. H., Lo, S. I. & Wei, H. H. (2007). Inorg. Chem. Commun. 10, 1210-1213.]); Sletten et al. (1990[Sletten, J., Sorensen, A., Julve, M. & Journaux, Y. (1990). Inorg. Chem. 29, 5054-5058.]); Zheng & Lin (2002[Zheng, Y. Q. & Lin, J. L. (2002). Z. Anorg. Allg. Chem. 628, 203-208.]); Fan et al. (2009[Fan, Y., Cui, Y.-T., Qian, H.-F., Liu, J.-L. & Huang, W. (2009). Acta Cryst. E65, m131-m132.]); Li et al. (2008[Li, X., Cheng, D. Y., Lin, J. L., Li, Z. F. & Zheng, Y. Q. (2008). Cryst. Growth Des. 8, 2853-2861.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4(C7H4O3)2(OH)2(C10H8N2)4](NO3)2·4H2O

  • Mr = 1381.20

  • Triclinic, [P \overline 1]

  • a = 10.280 (2) Å

  • b = 11.777 (2) Å

  • c = 12.276 (3) Å

  • α = 113.66 (3)°

  • β = 95.19 (3)°

  • γ = 96.58 (3)°

  • V = 1337.0 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 113 K

  • 0.22 × 0.06 × 0.02 mm

Data collection
  • Rigaku Saturn70 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.870, Tmax = 1.000

  • 17013 measured reflections

  • 6339 independent reflections

  • 4704 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.086

  • S = 1.04

  • 6339 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H1W⋯O6i 0.79 2.18 2.939 (3) 163
O8—H2W⋯O9ii 0.88 2.00 2.845 (3) 163
O9—H3W⋯O8iii 0.74 2.04 2.745 (3) 160
O4—H4W⋯O7 0.73 2.13 2.838 (3) 164
O9—H5W⋯O2iv 0.78 2.02 2.791 (3) 169
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+1; (iii) x, y-1, z+1; (iv) x, y, z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, some tetranuclear hydroxo-bridged copper(II) complexes with cubane and the chair-like structure have been reported (Zheng & Lin, 2002; Sletten et al., 1990; Albada et al., 2002; Lu et al., 2007; Chandrasekhar et al., 2000; Fan et al. 2009; Li et al. 2008). In this paper, the crystal structure of a new copper(II) complex exhibiting a chair-like tetranuclear motif is presented.

The atom-numbering scheme of the title compound is shown in Fig. 1. The title complex has a crystallographically imposed centre of symmetry, and consists of a chair-like [Cu4(C7H4O3)2(OH)2(bpy)4]2+ dication (bpy = 2,2'-bipyridine), two nitrate anions, and four lattice water molecules. The coordination geometry around each copper(II) ion can be described as a five-coordinate distorted square pyramid. In the crystal packing, the nitrate counter-anions stabilize the crystal structure through water O—H···O nitrate hydrogen bonds and the complex molecules are linked into one-dimensional chains by intermolecular O—H···O bonding interactions involving the solvent water molecules and the nitrate counter-anions (Fig. 2 and Table 1).

Related literature top

For the structures of related complexes, see: Albada et al. (2002); Chandrasekhar et al. (2000); Lu et al. (2007); Sletten et al. (1990); Zheng & Lin (2002); Fan et al. (2009); Li et al. (2008).

Experimental top

A mixture of salicylic acid (0.05 mmol), copper nitrate trihydrate (0.05 mmol), 2,2'-bipyridine (0.05 mmol) and 10 ml H2O were put into a 23-ml Teflon lined reactor and heated at 418 K in oven for 48 h. After the autoclave was cooled during 24 h to room temperature, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for 3 weeks afforded block single crystals.

Refinement top

H atoms bound to C atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were located in Fourier difference maps and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(O)

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Unlabeled atoms are related to the labeled ones by the symmetry operation 1-x, 1- y, 1-z.
[Figure 2] Fig. 2. A packing diagram of the title compound. The O—H···O hydrogen bonds are shown as dashed lines.
Tetrakis(2,2'-bipyridine)di-µ3-hydroxido-bis(µ-2- oxidobezoato)tetracopper(II) dinitrate tetrahydrate top
Crystal data top
[Cu4(C7H4O3)2(OH)2(C10H8N2)4](NO3)2·4H2OZ = 1
Mr = 1381.20F(000) = 704
Triclinic, P1Dx = 1.715 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.280 (2) ÅCell parameters from 3709 reflections
b = 11.777 (2) Åθ = 2.0–27.9°
c = 12.276 (3) ŵ = 1.66 mm1
α = 113.66 (3)°T = 113 K
β = 95.19 (3)°Platelet, blue
γ = 96.58 (3)°0.22 × 0.06 × 0.02 mm
V = 1337.0 (5) Å3
Data collection top
Rigaku Saturn70
diffractometer
6339 independent reflections
Radiation source: rotating anode4704 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.049
Detector resolution: 28.5714 pixels mm-1θmax = 27.9°, θmin = 1.8°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.870, Tmax = 1.000l = 1616
17013 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0365P)2]
where P = (Fo2 + 2Fc2)/3
6339 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu4(C7H4O3)2(OH)2(C10H8N2)4](NO3)2·4H2Oγ = 96.58 (3)°
Mr = 1381.20V = 1337.0 (5) Å3
Triclinic, P1Z = 1
a = 10.280 (2) ÅMo Kα radiation
b = 11.777 (2) ŵ = 1.66 mm1
c = 12.276 (3) ÅT = 113 K
α = 113.66 (3)°0.22 × 0.06 × 0.02 mm
β = 95.19 (3)°
Data collection top
Rigaku Saturn70
diffractometer
6339 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4704 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 1.000Rint = 0.049
17013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.81 e Å3
6339 reflectionsΔρmin = 0.55 e Å3
388 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.51741 (3)0.52708 (3)0.39192 (3)0.01034 (9)
Cu20.22148 (3)0.45741 (3)0.39624 (3)0.01153 (9)
O10.18797 (17)0.37760 (17)0.22317 (15)0.0141 (4)
O20.15228 (19)0.38000 (18)0.04362 (15)0.0213 (4)
O30.32811 (16)0.60131 (16)0.39640 (15)0.0117 (4)
O40.42106 (16)0.40125 (16)0.43430 (14)0.0111 (4)
H4W0.42160.33400.40090.017*
N10.6105 (2)0.6598 (2)0.35125 (18)0.0118 (4)
N20.5192 (2)0.4242 (2)0.21681 (18)0.0124 (5)
N30.1940 (2)0.5494 (2)0.56784 (18)0.0129 (5)
N40.11500 (19)0.3170 (2)0.41558 (19)0.0125 (5)
C10.1809 (2)0.4365 (3)0.1550 (2)0.0137 (5)
C20.2038 (2)0.5778 (3)0.2097 (2)0.0133 (5)
C30.1470 (3)0.6394 (3)0.1445 (2)0.0186 (6)
H30.09550.59180.06990.022*
C40.1661 (3)0.7685 (3)0.1887 (3)0.0210 (6)
H40.12500.80740.14570.025*
C50.2466 (3)0.8402 (3)0.2976 (2)0.0191 (6)
H50.26300.92720.32570.023*
C60.3031 (2)0.7829 (3)0.3652 (2)0.0149 (5)
H60.35700.83190.43820.018*
C70.2792 (2)0.6517 (2)0.3240 (2)0.0111 (5)
C80.6352 (2)0.7830 (3)0.4223 (2)0.0155 (6)
H80.61600.81050.50050.019*
C90.6884 (3)0.8708 (3)0.3830 (2)0.0183 (6)
H90.70090.95630.43290.022*
C100.7227 (3)0.8296 (3)0.2684 (2)0.0206 (6)
H100.76140.88670.24110.025*
C110.6983 (3)0.7019 (3)0.1951 (2)0.0185 (6)
H110.72210.67190.11840.022*
C120.6383 (2)0.6195 (3)0.2374 (2)0.0138 (5)
C130.4658 (3)0.3033 (3)0.1531 (2)0.0157 (6)
H130.41320.26300.18900.019*
C140.4855 (3)0.2356 (3)0.0354 (2)0.0187 (6)
H140.44790.15130.00640.022*
C150.5623 (3)0.2961 (3)0.0183 (2)0.0203 (6)
H150.57890.25240.09630.024*
C160.6144 (3)0.4225 (3)0.0452 (2)0.0178 (6)
H160.66410.46520.00950.021*
C170.5915 (2)0.4845 (3)0.1626 (2)0.0126 (5)
C180.2375 (2)0.6718 (2)0.6373 (2)0.0145 (5)
H180.28520.72000.60540.017*
C190.2137 (3)0.7287 (3)0.7552 (2)0.0192 (6)
H190.24410.81390.80170.023*
C200.1436 (3)0.6557 (3)0.8020 (2)0.0200 (6)
H200.12610.69150.88070.024*
C210.0998 (2)0.5291 (3)0.7310 (2)0.0168 (6)
H210.05390.47890.76180.020*
C220.1252 (2)0.4782 (3)0.6133 (2)0.0137 (6)
C230.0808 (3)0.1999 (3)0.3308 (2)0.0177 (6)
H230.10460.18170.25500.021*
C240.0113 (3)0.1040 (3)0.3514 (2)0.0193 (6)
H240.01080.02280.29120.023*
C250.0243 (3)0.1336 (3)0.4651 (3)0.0215 (6)
H250.07190.07170.48150.026*
C260.0107 (2)0.2547 (3)0.5538 (2)0.0176 (6)
H260.01250.27490.63010.021*
C270.0809 (2)0.3453 (3)0.5271 (2)0.0137 (5)
O50.5540 (2)0.0871 (2)0.3318 (2)0.0436 (6)
O60.4419 (2)0.0024 (2)0.15320 (19)0.0460 (7)
O70.3639 (2)0.13765 (19)0.29450 (18)0.0261 (5)
N50.4554 (2)0.0740 (2)0.2603 (2)0.0219 (5)
O80.1781 (2)0.9602 (2)0.01777 (19)0.0361 (6)
H1W0.24140.97880.06630.054*
H2W0.10770.94460.04790.054*
O90.0737 (2)0.1196 (2)0.93420 (18)0.0336 (5)
H3W0.11700.08940.96140.050*
H5W0.09040.19260.97200.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01258 (16)0.01008 (17)0.00903 (15)0.00210 (13)0.00294 (12)0.00431 (13)
Cu20.01248 (17)0.01164 (17)0.01137 (16)0.00126 (13)0.00235 (12)0.00577 (13)
O10.0184 (10)0.0127 (9)0.0116 (9)0.0013 (8)0.0023 (7)0.0058 (8)
O20.0302 (11)0.0198 (11)0.0104 (9)0.0007 (9)0.0018 (8)0.0041 (8)
O30.0091 (9)0.0131 (9)0.0155 (9)0.0020 (7)0.0012 (7)0.0087 (8)
O40.0144 (9)0.0090 (9)0.0105 (9)0.0034 (7)0.0024 (7)0.0040 (7)
N10.0123 (11)0.0132 (11)0.0115 (10)0.0048 (9)0.0038 (9)0.0057 (9)
N20.0145 (11)0.0143 (11)0.0100 (10)0.0053 (9)0.0033 (9)0.0056 (9)
N30.0126 (11)0.0123 (11)0.0135 (11)0.0017 (9)0.0014 (9)0.0053 (9)
N40.0093 (11)0.0156 (12)0.0151 (11)0.0034 (9)0.0035 (9)0.0081 (10)
C10.0106 (13)0.0163 (14)0.0134 (13)0.0028 (11)0.0042 (11)0.0048 (11)
C20.0127 (13)0.0175 (14)0.0145 (13)0.0051 (11)0.0067 (11)0.0098 (11)
C30.0166 (14)0.0275 (17)0.0174 (14)0.0024 (12)0.0030 (11)0.0153 (13)
C40.0193 (15)0.0261 (16)0.0275 (16)0.0084 (13)0.0063 (13)0.0195 (14)
C50.0208 (15)0.0166 (15)0.0270 (15)0.0060 (12)0.0113 (12)0.0138 (13)
C60.0118 (13)0.0174 (14)0.0152 (13)0.0020 (11)0.0023 (11)0.0065 (11)
C70.0085 (12)0.0134 (13)0.0146 (13)0.0052 (10)0.0056 (10)0.0073 (11)
C80.0157 (13)0.0153 (14)0.0155 (13)0.0031 (11)0.0053 (11)0.0057 (11)
C90.0183 (14)0.0142 (14)0.0187 (14)0.0009 (12)0.0012 (11)0.0050 (12)
C100.0210 (15)0.0212 (16)0.0234 (15)0.0024 (12)0.0049 (12)0.0145 (13)
C110.0173 (14)0.0252 (16)0.0161 (13)0.0012 (12)0.0036 (11)0.0121 (13)
C120.0112 (13)0.0186 (14)0.0140 (13)0.0037 (11)0.0029 (10)0.0086 (12)
C130.0168 (14)0.0155 (14)0.0148 (13)0.0036 (11)0.0048 (11)0.0056 (11)
C140.0208 (15)0.0166 (15)0.0148 (13)0.0061 (12)0.0027 (11)0.0019 (12)
C150.0210 (15)0.0260 (17)0.0129 (13)0.0105 (13)0.0040 (12)0.0050 (12)
C160.0205 (14)0.0238 (16)0.0110 (13)0.0073 (13)0.0040 (11)0.0077 (12)
C170.0093 (12)0.0179 (14)0.0133 (12)0.0060 (11)0.0019 (10)0.0084 (11)
C180.0149 (13)0.0122 (13)0.0162 (13)0.0035 (11)0.0036 (11)0.0051 (11)
C190.0180 (14)0.0184 (15)0.0178 (14)0.0070 (12)0.0001 (12)0.0038 (12)
C200.0165 (14)0.0278 (17)0.0147 (13)0.0104 (13)0.0044 (11)0.0055 (13)
C210.0124 (13)0.0246 (16)0.0188 (14)0.0087 (12)0.0063 (11)0.0121 (12)
C220.0066 (12)0.0213 (15)0.0192 (13)0.0059 (11)0.0031 (11)0.0133 (12)
C230.0171 (14)0.0164 (14)0.0179 (14)0.0027 (12)0.0019 (11)0.0056 (12)
C240.0159 (14)0.0141 (14)0.0256 (15)0.0015 (11)0.0025 (12)0.0061 (12)
C250.0160 (14)0.0193 (15)0.0354 (17)0.0019 (12)0.0074 (13)0.0173 (14)
C260.0123 (13)0.0224 (15)0.0229 (15)0.0048 (12)0.0062 (11)0.0132 (13)
C270.0100 (13)0.0171 (14)0.0176 (13)0.0051 (11)0.0014 (11)0.0102 (12)
O50.0376 (14)0.0415 (16)0.0478 (15)0.0024 (12)0.0136 (12)0.0212 (13)
O60.0614 (17)0.0378 (15)0.0241 (12)0.0200 (13)0.0100 (12)0.0061 (11)
O70.0354 (12)0.0184 (11)0.0284 (11)0.0106 (10)0.0153 (10)0.0099 (9)
N50.0317 (14)0.0129 (12)0.0208 (13)0.0012 (11)0.0040 (11)0.0073 (11)
O80.0337 (13)0.0347 (14)0.0369 (13)0.0057 (11)0.0046 (10)0.0138 (11)
O90.0485 (14)0.0204 (12)0.0291 (12)0.0020 (10)0.0022 (10)0.0101 (10)
Geometric parameters (Å, º) top
Cu1—O41.9554 (18)C9—H90.9300
Cu1—O4i1.9626 (18)C10—C111.386 (4)
Cu1—N11.995 (2)C10—H100.9300
Cu1—N22.003 (2)C11—C121.384 (4)
Cu1—O32.2191 (17)C11—H110.9300
Cu1—Cu1i3.0090 (9)C12—C171.475 (4)
Cu2—O31.9092 (18)C13—C141.390 (3)
Cu2—O11.9253 (18)C13—H130.9300
Cu2—N41.984 (2)C14—C151.381 (4)
Cu2—N32.009 (2)C14—H140.9300
Cu2—O42.2914 (17)C15—C161.386 (4)
O1—C11.286 (3)C15—H150.9300
O2—C11.246 (3)C16—C171.386 (3)
O3—C71.344 (3)C16—H160.9300
O4—Cu1i1.9626 (18)C18—C191.389 (3)
O4—H4W0.7321C18—H180.9300
N1—C81.338 (3)C19—C201.385 (4)
N1—C121.354 (3)C19—H190.9300
N2—C131.338 (3)C20—C211.384 (4)
N2—C171.359 (3)C20—H200.9300
N3—C181.343 (3)C21—C221.388 (3)
N3—C221.350 (3)C21—H210.9300
N4—C231.334 (3)C22—C271.483 (4)
N4—C271.363 (3)C23—C241.387 (4)
C1—C21.503 (4)C23—H230.9300
C2—C31.410 (3)C24—C251.391 (4)
C2—C71.413 (4)C24—H240.9300
C3—C41.376 (4)C25—C261.384 (4)
C3—H30.9300C25—H250.9300
C4—C51.385 (4)C26—C271.382 (4)
C4—H40.9300C26—H260.9300
C5—C61.390 (4)O5—N51.231 (3)
C5—H50.9300O6—N51.243 (3)
C6—C71.403 (3)O7—N51.266 (3)
C6—H60.9300O8—H1W0.7861
C8—C91.386 (4)O8—H2W0.8758
C8—H80.9300O9—H3W0.7356
C9—C101.386 (4)O9—H5W0.7848
O4—Cu1—O4i79.65 (8)C6—C7—C2119.3 (2)
O4—Cu1—N1177.76 (7)N1—C8—C9122.1 (2)
O4i—Cu1—N199.87 (9)N1—C8—H8119.0
O4—Cu1—N2100.21 (9)C9—C8—H8119.0
O4i—Cu1—N2157.28 (7)C10—C9—C8119.1 (3)
N1—Cu1—N281.09 (9)C10—C9—H9120.5
O4—Cu1—O385.03 (7)C8—C9—H9120.5
O4i—Cu1—O398.53 (7)C11—C10—C9118.8 (3)
N1—Cu1—O392.88 (7)C11—C10—H10120.6
N2—Cu1—O3104.11 (8)C9—C10—H10120.6
O4—Cu1—Cu1i39.91 (5)C12—C11—C10119.3 (2)
O4i—Cu1—Cu1i39.74 (5)C12—C11—H11120.4
N1—Cu1—Cu1i139.57 (7)C10—C11—H11120.4
N2—Cu1—Cu1i135.79 (7)N1—C12—C11121.5 (3)
O3—Cu1—Cu1i92.32 (5)N1—C12—C17114.3 (2)
O3—Cu2—O192.07 (8)C11—C12—C17124.0 (2)
O3—Cu2—N4173.73 (8)N2—C13—C14122.7 (3)
O1—Cu2—N494.20 (9)N2—C13—H13118.7
O3—Cu2—N392.89 (9)C14—C13—H13118.7
O1—Cu2—N3160.86 (8)C15—C14—C13118.5 (3)
N4—Cu2—N381.20 (9)C15—C14—H14120.7
O3—Cu2—O484.10 (7)C13—C14—H14120.7
O1—Cu2—O4101.26 (7)C14—C15—C16119.4 (2)
N4—Cu2—O494.55 (7)C14—C15—H15120.3
N3—Cu2—O497.63 (8)C16—C15—H15120.3
C1—O1—Cu2124.61 (16)C15—C16—C17119.2 (3)
C7—O3—Cu2117.08 (15)C15—C16—H16120.4
C7—O3—Cu1126.56 (14)C17—C16—H16120.4
Cu2—O3—Cu195.78 (7)N2—C17—C16121.5 (3)
Cu1—O4—Cu1i100.35 (8)N2—C17—C12114.5 (2)
Cu1—O4—Cu292.23 (7)C16—C17—C12123.9 (2)
Cu1i—O4—Cu2110.45 (8)N3—C18—C19122.1 (3)
Cu1—O4—H4W121.6N3—C18—H18119.0
Cu1i—O4—H4W116.7C19—C18—H18119.0
Cu2—O4—H4W112.6C20—C19—C18118.4 (3)
C8—N1—C12119.1 (2)C20—C19—H19120.8
C8—N1—Cu1125.48 (17)C18—C19—H19120.8
C12—N1—Cu1115.12 (18)C21—C20—C19119.6 (3)
C13—N2—C17118.6 (2)C21—C20—H20120.2
C13—N2—Cu1126.92 (18)C19—C20—H20120.2
C17—N2—Cu1114.28 (18)C20—C21—C22119.2 (3)
C18—N3—C22119.5 (2)C20—C21—H21120.4
C18—N3—Cu2125.57 (18)C22—C21—H21120.4
C22—N3—Cu2114.89 (18)N3—C22—C21121.1 (3)
C23—N4—C27119.5 (2)N3—C22—C27114.3 (2)
C23—N4—Cu2125.18 (18)C21—C22—C27124.5 (2)
C27—N4—Cu2115.27 (18)N4—C23—C24122.6 (2)
O2—C1—O1121.9 (2)N4—C23—H23118.7
O2—C1—C2118.1 (2)C24—C23—H23118.7
O1—C1—C2119.9 (2)C23—C24—C25117.7 (3)
C3—C2—C7118.5 (2)C23—C24—H24121.1
C3—C2—C1118.6 (2)C25—C24—H24121.1
C7—C2—C1122.9 (2)C26—C25—C24120.3 (3)
C4—C3—C2121.4 (3)C26—C25—H25119.9
C4—C3—H3119.3C24—C25—H25119.9
C2—C3—H3119.3C27—C26—C25118.8 (2)
C3—C4—C5119.7 (3)C27—C26—H26120.6
C3—C4—H4120.1C25—C26—H26120.6
C5—C4—H4120.1N4—C27—C26121.1 (3)
C4—C5—C6120.5 (3)N4—C27—C22114.2 (2)
C4—C5—H5119.7C26—C27—C22124.6 (2)
C6—C5—H5119.7O5—N5—O6121.4 (3)
C5—C6—C7120.4 (2)O5—N5—O7120.6 (3)
C5—C6—H6119.8O6—N5—O7118.0 (2)
C7—C6—H6119.8H1W—O8—H2W109.5
O3—C7—C6118.2 (2)H3W—O9—H5W108.6
O3—C7—C2122.5 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1W···O6ii0.792.182.939 (3)163
O8—H2W···O9iii0.882.002.845 (3)163
O9—H3W···O8iv0.742.042.745 (3)160
O4—H4W···O70.732.132.838 (3)164
O9—H5W···O2v0.782.022.791 (3)169
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x, y1, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu4(C7H4O3)2(OH)2(C10H8N2)4](NO3)2·4H2O
Mr1381.20
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)10.280 (2), 11.777 (2), 12.276 (3)
α, β, γ (°)113.66 (3), 95.19 (3), 96.58 (3)
V3)1337.0 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.22 × 0.06 × 0.02
Data collection
DiffractometerRigaku Saturn70
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.870, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17013, 6339, 4704
Rint0.049
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.086, 1.04
No. of reflections6339
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.55

Computer programs: CrystalClear (Rigaku, 2005), CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1W···O6i0.792.182.939 (3)163
O8—H2W···O9ii0.882.002.845 (3)163
O9—H3W···O8iii0.742.042.745 (3)160
O4—H4W···O70.732.132.838 (3)164
O9—H5W···O2iv0.782.022.791 (3)169
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x, y1, z+1; (iv) x, y, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (project approval No. 20974053).

References

First citationAlbada, van G. A., Mutikainen, I., Roubeau, O., Turpeinen, U. & Reedijk, J. (2002). Inorg. Chim. Acta, 331, 208–215.  Google Scholar
First citationChandrasekhar, V., Kingsley, S., Vij, A., Lam, K. C. & Rheingold, A. L. (2000). Inorg. Chem. 39, 3238–3242.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFan, Y., Cui, Y.-T., Qian, H.-F., Liu, J.-L. & Huang, W. (2009). Acta Cryst. E65, m131–m132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Cheng, D. Y., Lin, J. L., Li, Z. F. & Zheng, Y. Q. (2008). Cryst. Growth Des. 8, 2853–2861.  CrossRef CAS Google Scholar
First citationLu, J. W., Huang, Y. H., Lo, S. I. & Wei, H. H. (2007). Inorg. Chem. Commun. 10, 1210–1213.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSletten, J., Sorensen, A., Julve, M. & Journaux, Y. (1990). Inorg. Chem. 29, 5054–5058.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Y. Q. & Lin, J. L. (2002). Z. Anorg. Allg. Chem. 628, 203–208.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds