organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1091

1,3-Bis(prop-2-yn­yl)-1H-1,3-benzimid­azol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: kandri_rodi@yahoo.fr

(Received 28 March 2011; accepted 4 April 2011; online 13 April 2011)

In the title compound, C13H10N2O, the fused-ring system is essentially planar, the largest deviation from the mean plane being 0.015 (1) Å. The two propynyl groups are nearly perpendicular to the benzimidazole plane, making dihedral angles of 85 (3) and 80 (2) °, and point in opposite directions. There are two short inter­molecular C—H⋯O contacts to the carbonyl O atom, one involving the acetyl­enic H atom and the other a H atom of the methyl­ene group.

Related literature

For applications of benzimidazole compounds, see: Gravatt et al. (1994[Gravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338-4345.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Kim et al. (1996[Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992-998.]); Roth et al. (1997[Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.]); Ouzidan et al. (2011a[Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.],b[Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011b). Acta Cryst. E67, o362-o363.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O

  • Mr = 210.23

  • Monoclinic, P 21 /c

  • a = 7.7398 (4) Å

  • b = 17.1869 (9) Å

  • c = 8.4856 (5) Å

  • β = 101.459 (6)°

  • V = 1106.28 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 170 K

  • 0.42 × 0.41 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur E Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.966, Tmax = 0.984

  • 5295 measured reflections

  • 2631 independent reflections

  • 2244 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.05

  • 2631 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.99 2.42 3.3096 (15) 149
C13—H13⋯O1ii 0.95 2.34 3.2252 (17) 156
Symmetry codes: (i) -x, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest. Benzimidazole and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals.

Benzimidazole derivatives have found applications in diverse therapeutic areas including anti-ulcers, anti-hypertensives, anti-virals, anti-fungals, anti-cancers (Gravatt et al., 1994; Horton et al., 2003; Kim et al., 1996; Roth et al., 1997).

As a continuation of our research works devoted to the development benzimidazol-2-one derivatives (Ouzidan et al., 2011a,b), we report in this paper the synthesis of a new benzimidazol-2-one derivative prepared by action of propargyl bromide on 1H-benzimidazol-2(3H)-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish the title compound (Scheme 1).

In the title compound (Fig. 1), the benzimidazole ring system is essentially planar with a maximum deviation of 0.015 (1) Å for C1 atom. The two propynyl chains are almost perpendicular to the benzimidazole mean plane but oriented one above and one below the plane. The molecular conformation is also characterized by the following torsion angles: C1-N1-C8-C9 = 93.5 (2) ° and C1-N2-C11-C12 = 105.9 (2) °. In the crystal structure, molecules are linked by weak intermolecular C—H···O no classic hydrogen bonds as shown in Fig. 2 and Table 2.

Related literature top

For applications of benzimidazole compounds, see: Gravatt et al. (1994); Horton et al. (2003); Kim et al. (1996); Roth et al. (1997); Ouzidan et al. (2011a,b).

Experimental top

To a mixture of 1H-benzimidazol-2(3H)-one (0.2 g, 1.5 mmol), potassium carbonate (0.45 g, 3.2 mmol), tetra-n-butylammonium bromide (0.1 g, 0.2 mmol) in DMF (15 ml) was added propargyl bromide (0.28 ml, 3.2 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The product was purified by recrystallization from dichloromethane to give colourless crystals (m.p. 425 K).

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.95 Å or 0.99 Å with Uiso(H) = 1.2 Ueq (C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Partial packing view showing the C—H···O interactions (dashed lines).
1,3-Bis(prop-2-ynyl)-1H-1,3-benzimidazol-2(3H)-one top
Crystal data top
C13H10N2OF(000) = 440
Mr = 210.23Dx = 1.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3141 reflections
a = 7.7398 (4) Åθ = 3.4–32.2°
b = 17.1869 (9) ŵ = 0.08 mm1
c = 8.4856 (5) ÅT = 170 K
β = 101.459 (6)°Block, colorless
V = 1106.28 (10) Å30.42 × 0.41 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur E Gemini
diffractometer
2631 independent reflections
Radiation source: Enhance (Mo) X-ray Source2244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 16.1500 pixels mm-1θmax = 27.9°, θmin = 3.4°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2022
Tmin = 0.966, Tmax = 0.984l = 114
5295 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.2172P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2631 reflectionsΔρmax = 0.19 e Å3
146 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (4)
Crystal data top
C13H10N2OV = 1106.28 (10) Å3
Mr = 210.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7398 (4) ŵ = 0.08 mm1
b = 17.1869 (9) ÅT = 170 K
c = 8.4856 (5) Å0.42 × 0.41 × 0.20 mm
β = 101.459 (6)°
Data collection top
Oxford Diffraction Xcalibur E Gemini
diffractometer
2631 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2244 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.984Rint = 0.014
5295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
2631 reflectionsΔρmin = 0.16 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19931 (12)0.56190 (5)0.15005 (11)0.0468 (2)
N10.13961 (12)0.46462 (5)0.32281 (11)0.0338 (2)
N20.29126 (12)0.56670 (5)0.42832 (12)0.0356 (2)
C10.20862 (14)0.53446 (6)0.28398 (14)0.0346 (3)
C20.18290 (13)0.45232 (6)0.48810 (13)0.0319 (2)
C30.14722 (15)0.39128 (7)0.58201 (15)0.0400 (3)
H3A0.08260.34700.53620.048*
C40.21003 (18)0.39733 (9)0.74692 (16)0.0493 (3)
H4A0.18710.35650.81530.059*
C50.30518 (18)0.46160 (9)0.81362 (16)0.0524 (4)
H5A0.34630.46380.92670.063*
C60.34172 (16)0.52287 (8)0.71876 (15)0.0447 (3)
H6A0.40730.56690.76460.054*
C70.27878 (14)0.51721 (6)0.55512 (14)0.0337 (3)
C80.06303 (16)0.40760 (7)0.20295 (15)0.0398 (3)
H8A0.01590.43430.10000.048*
H8B0.03620.38100.23830.048*
C90.19408 (17)0.34996 (7)0.17828 (16)0.0438 (3)
C100.3035 (2)0.30587 (10)0.1615 (2)0.0748 (5)
H100.39270.26990.14790.090*
C110.39412 (16)0.63759 (7)0.43751 (18)0.0443 (3)
H11A0.42080.64840.33020.053*
H11B0.50760.62930.51310.053*
C120.30770 (17)0.70582 (7)0.48968 (16)0.0454 (3)
C130.2472 (2)0.76260 (9)0.5312 (2)0.0678 (5)
H130.19800.80880.56490.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0561 (5)0.0414 (5)0.0426 (5)0.0004 (4)0.0090 (4)0.0060 (4)
N10.0375 (5)0.0275 (4)0.0351 (5)0.0017 (4)0.0043 (4)0.0037 (4)
N20.0349 (5)0.0290 (5)0.0430 (5)0.0006 (4)0.0080 (4)0.0051 (4)
C10.0339 (5)0.0297 (5)0.0405 (6)0.0054 (4)0.0079 (5)0.0013 (4)
C20.0276 (5)0.0317 (5)0.0363 (6)0.0059 (4)0.0060 (4)0.0026 (4)
C30.0359 (6)0.0374 (6)0.0481 (7)0.0031 (5)0.0118 (5)0.0028 (5)
C40.0470 (7)0.0577 (8)0.0457 (7)0.0070 (6)0.0150 (6)0.0114 (6)
C50.0489 (7)0.0727 (9)0.0351 (6)0.0086 (7)0.0068 (5)0.0004 (6)
C60.0367 (6)0.0538 (7)0.0419 (7)0.0025 (5)0.0034 (5)0.0114 (6)
C70.0278 (5)0.0348 (5)0.0390 (6)0.0055 (4)0.0077 (4)0.0044 (4)
C80.0396 (6)0.0349 (6)0.0413 (6)0.0008 (5)0.0003 (5)0.0066 (5)
C90.0525 (7)0.0328 (6)0.0440 (7)0.0025 (5)0.0043 (6)0.0082 (5)
C100.0733 (11)0.0515 (9)0.0976 (14)0.0171 (8)0.0124 (10)0.0250 (9)
C110.0358 (6)0.0355 (6)0.0628 (8)0.0057 (5)0.0128 (6)0.0079 (6)
C120.0447 (7)0.0340 (6)0.0536 (8)0.0026 (5)0.0002 (6)0.0054 (5)
C130.0771 (11)0.0436 (8)0.0749 (11)0.0136 (7)0.0038 (9)0.0170 (7)
Geometric parameters (Å, º) top
O1—C11.2194 (14)C5—H5A0.9500
N1—C11.3800 (14)C6—C71.3806 (17)
N1—C21.3919 (14)C6—H6A0.9500
N1—C81.4515 (14)C8—C91.4622 (17)
N2—C11.3802 (15)C8—H8A0.9900
N2—C71.3899 (15)C8—H8B0.9900
N2—C111.4491 (14)C9—C101.166 (2)
C2—C31.3782 (16)C10—H100.9500
C2—C71.3965 (15)C11—C121.4615 (17)
C3—C41.3911 (19)C11—H11A0.9900
C3—H3A0.9500C11—H11B0.9900
C4—C51.385 (2)C12—C131.1665 (19)
C4—H4A0.9500C13—H130.9500
C5—C61.388 (2)
C1—N1—C2110.22 (9)C7—C6—H6A121.4
C1—N1—C8122.92 (10)C5—C6—H6A121.4
C2—N1—C8125.91 (9)C6—C7—N2132.11 (11)
C1—N2—C7110.49 (9)C6—C7—C2121.24 (11)
C1—N2—C11122.56 (10)N2—C7—C2106.65 (10)
C7—N2—C11126.50 (10)N1—C8—C9111.07 (10)
O1—C1—N1127.23 (11)N1—C8—H8A109.4
O1—C1—N2127.08 (11)C9—C8—H8A109.4
N1—C1—N2105.69 (10)N1—C8—H8B109.4
C3—C2—N1131.49 (11)C9—C8—H8B109.4
C3—C2—C7121.59 (11)H8A—C8—H8B108.0
N1—C2—C7106.92 (9)C10—C9—C8177.43 (15)
C2—C3—C4117.04 (12)C9—C10—H10180.0
C2—C3—H3A121.5N2—C11—C12114.29 (10)
C4—C3—H3A121.5N2—C11—H11A108.7
C5—C4—C3121.47 (12)C12—C11—H11A108.7
C5—C4—H4A119.3N2—C11—H11B108.7
C3—C4—H4A119.3C12—C11—H11B108.7
C4—C5—C6121.41 (13)H11A—C11—H11B107.6
C4—C5—H5A119.3C13—C12—C11176.21 (15)
C6—C5—H5A119.3C12—C13—H13180.0
C7—C6—C5117.25 (12)
C2—N1—C1—O1177.95 (11)C4—C5—C6—C70.21 (19)
C8—N1—C1—O18.50 (18)C5—C6—C7—N2179.89 (11)
C2—N1—C1—N21.76 (11)C5—C6—C7—C20.23 (17)
C8—N1—C1—N2171.22 (9)C1—N2—C7—C6178.83 (11)
C7—N2—C1—O1178.10 (11)C11—N2—C7—C66.44 (19)
C11—N2—C1—O15.36 (18)C1—N2—C7—C20.87 (12)
C7—N2—C1—N11.61 (12)C11—N2—C7—C2173.26 (10)
C11—N2—C1—N1174.35 (9)C3—C2—C7—C60.08 (16)
C1—N1—C2—C3178.62 (11)N1—C2—C7—C6179.97 (10)
C8—N1—C2—C39.55 (18)C3—C2—C7—N2179.66 (10)
C1—N1—C2—C71.26 (11)N1—C2—C7—N20.23 (11)
C8—N1—C2—C7170.33 (10)C1—N1—C8—C993.46 (13)
N1—C2—C3—C4179.74 (11)C2—N1—C8—C974.31 (14)
C7—C2—C3—C40.40 (16)C1—N2—C11—C12105.88 (13)
C2—C3—C4—C50.42 (18)C7—N2—C11—C1282.58 (15)
C3—C4—C5—C60.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.992.423.3096 (15)149
C13—H13···O1ii0.952.343.2252 (17)156
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10N2O
Mr210.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)170
a, b, c (Å)7.7398 (4), 17.1869 (9), 8.4856 (5)
β (°) 101.459 (6)
V3)1106.28 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.41 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur E Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.966, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
5295, 2631, 2244
Rint0.014
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.05
No. of reflections2631
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.992.423.3096 (15)149
C13—H13···O1ii0.952.343.2252 (17)156
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationGravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338–4345.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992–998.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011b). Acta Cryst. E67, o362–o363.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1091
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds