organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1095

3-[2-(6-Bromo-2-phenyl-3H-imidazo[4,5-b]pyridin-3-yl)eth­yl]-1,3-oxazolidin-2-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, dLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Avenue Ibn Battouta, Rabat, Morocco, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: ouzidan@yahoo.fr

(Received 28 March 2011; accepted 5 April 2011; online 13 April 2011)

In the title mol­ecule, C17H15BrN4O2, the fused-ring system is essentially planar, the largest deviation from the mean plane being 0.015 (2) Å, and forms dihedral angles of 37.8 (2) and 35.5 (2)° with the phenyl and oxazolidine rings, respectively. The conformation adopted by the mol­ecule is stabilized by an intra­molecular ππ inter­action [centroid–centroid distance = 3.855(2) Å] between oxazolidine and phenyl rings. The crystal packing features inter­molecular C—H⋯N and C—H⋯O inter­actions.

Related literature

For background to the medicinal chemistry of oxazolidin-2-ones and their application in asymmetric synthesis, see: Diekema & Jones (2000[Diekema, D. J. & Jones, R. N. (2000). Drugs, 59, 7-16.]); Mukhtar & Wright (2004[Mukhtar, T. A. & Wright, G. D. (2004). Chem. Rev. 105, 529-542.]); Evans et al. (1993[Evans, D. A., Ny, H. P. & Rieger, D. L. (1993). J. Am. Chem. Soc. 115, 11446-11459.]); Matsunaga et al. (2005[Matsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron, 61, 8073-8094.]). For similar compounds with an imidazo[4,5-b]pyridine group, see: Ouzidan et al. (2010a[Ouzidan, Y., Kandri Rodi, Y., Obbade, S., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o947.],b[Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o946.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BrN4O2

  • Mr = 387.24

  • Monoclinic, P 21 /n

  • a = 11.3553 (6) Å

  • b = 11.5915 (5) Å

  • c = 12.2542 (8) Å

  • β = 98.685 (6)°

  • V = 1594.46 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.60 mm−1

  • T = 170 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction XcaliburE Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.599, Tmax = 0.652

  • 7850 measured reflections

  • 3791 independent reflections

  • 2839 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.091

  • S = 1.03

  • 3791 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N2i 0.95 2.61 3.544 (3) 168
C10—H10A⋯N2ii 0.99 2.55 3.261 (3) 128
C15—H15A⋯O1iii 0.95 2.53 3.423 (3) 156
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Oxazolidin-2-ones are a very important class of heterocyclic compounds and their derivatives have attracted attention in various areas of drug development for antibacterial activity (Diekema & Jones, 2000; Mukhtar & Wright, 2004). Some oxazolidin-2-ones have been used as chiral auxiliaries in a wide range of asymmetric reactions (Evans et al.,1993; Matsunaga et al., 2005). As a continuation of our research works devoted to the development of substituted imidazo[4,5-b]pyridine derivatives (Ouzidan et al., 2010a,b), we report in this paper the synthesis of a new 2,6-disubstituted imidazo[4,5-b]pyridine possessing the oxazolidin-2-one ring (Scheme 1) by the action of bis(2-chloroethyl)amine hydrochloride on 6-bromo-2-phenyl-3H-imidazo [4,5-b]pyridine in boiling DMF.

The title molecule is shown in Fig. 1. The two cycles forming the imidazo[4,5-b]pyridine are almost planar with a maximum deviation of 0.015 (1) Å for N3 atom and form dihedral angles of 37.8 (2)° and 35.5 (2)° with the phenyl and the oxazolidine rings respectively. The oxazolidinone group is linked to the phenyl group by a weak intramolecular C-H···π interaction. The crystal structure is stabilized by two intermolecular C–H···N and C–H···O interactions as shown in Fig. 2 and Table 2.

Related literature top

For background to the medicinal chemistry of oxazolidin-2-ones and their application in asymmetric synthesis, see: Diekema & Jones (2000); Mukhtar & Wright (2004); Evans et al. (1993); Matsunaga et al. (2005). For similar compounds with an imidazo[4,5-b]pyridine group, see: Ouzidan et al. (2010a,b).

Experimental top

To 6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine (0.3 g, 1.09 mmol), potassium carbonate (0.33 g, 2.4 mmol) and tetra-n-butylammonium bromide (0.05 g, 0.1 mmol) in DMF (15 ml) was added bis(2-chloroethyl)amine hydrochloride (0.23 g, 1.31 mmol). The mixture was heated for 48 h. After the completion of the reaction (as monitored by TLC), the inorganic salt was filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel by using (ethanol/ethyl acetate: 1/4) as eluent. The product was recrystallized from ethanol to furnish colourless crystals (m.p. 454 K).

Refinement top

All H atoms were located in a difference map. They were refined in a riding model approximation with C—H = 0.95 -0.99 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Partial packing view showing the C—H···O and C—H···N interactions (dashed lines).
3-[2-(6-Bromo-2-phenyl-3H-imidazo[4,5-b]pyridin- 3-yl)ethyl]-1,3-oxazolidin-2-one top
Crystal data top
C17H15BrN4O2F(000) = 784
Mr = 387.24Dx = 1.613 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3008 reflections
a = 11.3553 (6) Åθ = 3.5–32.3°
b = 11.5915 (5) ŵ = 2.60 mm1
c = 12.2542 (8) ÅT = 170 K
β = 98.685 (6)°Block, colourless
V = 1594.46 (15) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction XcaliburE Gemini
diffractometer
3791 independent reflections
Radiation source: Enhance (Mo) X-ray Source2839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.1500 pixels mm-1θmax = 27.9°, θmin = 3.5°
ω scansh = 914
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 156
Tmin = 0.599, Tmax = 0.652l = 1516
7850 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.4211P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3791 reflectionsΔρmax = 0.50 e Å3
218 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (7)
Crystal data top
C17H15BrN4O2V = 1594.46 (15) Å3
Mr = 387.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.3553 (6) ŵ = 2.60 mm1
b = 11.5915 (5) ÅT = 170 K
c = 12.2542 (8) Å0.22 × 0.20 × 0.18 mm
β = 98.685 (6)°
Data collection top
Oxford Diffraction XcaliburE Gemini
diffractometer
3791 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2839 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.652Rint = 0.028
7850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.50 e Å3
3791 reflectionsΔρmin = 0.35 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.83535 (2)0.94591 (2)0.34797 (3)0.05968 (13)
O10.28122 (17)0.80153 (15)0.18265 (18)0.0643 (6)
O20.09323 (15)0.76454 (14)0.20646 (16)0.0521 (5)
N10.61867 (17)0.66117 (16)0.33964 (18)0.0444 (5)
N20.42350 (16)0.82558 (14)0.48010 (15)0.0331 (4)
N30.43353 (16)0.64555 (14)0.41210 (15)0.0341 (4)
N40.22330 (16)0.62233 (15)0.23253 (16)0.0380 (4)
C10.53419 (19)0.70349 (17)0.39157 (18)0.0336 (5)
C20.7057 (2)0.7361 (2)0.3310 (2)0.0476 (6)
H2A0.76940.71190.29430.057*
C30.7086 (2)0.84809 (19)0.3727 (2)0.0386 (5)
C40.61915 (19)0.89053 (18)0.42593 (18)0.0347 (5)
H4A0.62040.96680.45440.042*
C50.52729 (19)0.81425 (17)0.43494 (18)0.0313 (5)
C60.37023 (19)0.72409 (17)0.46453 (17)0.0314 (5)
C70.3943 (2)0.53819 (17)0.3543 (2)0.0397 (5)
H7A0.33780.49770.39520.048*
H7B0.46400.48720.35260.048*
C80.3343 (2)0.56137 (19)0.2369 (2)0.0427 (6)
H8A0.38880.60720.19810.051*
H8B0.31950.48700.19750.051*
C90.2077 (2)0.7339 (2)0.2053 (2)0.0422 (6)
C100.0290 (2)0.6685 (2)0.2428 (2)0.0473 (6)
H10A0.04440.65330.19000.057*
H10B0.00660.68410.31640.057*
C110.1133 (2)0.5666 (2)0.2479 (2)0.0494 (6)
H11A0.12070.52700.32010.059*
H11B0.08730.51040.18820.059*
C120.25728 (19)0.69848 (18)0.50368 (17)0.0331 (5)
C130.2346 (2)0.5929 (2)0.5501 (2)0.0491 (6)
H13A0.29270.53330.55590.059*
C140.1272 (3)0.5745 (2)0.5880 (2)0.0582 (7)
H14A0.11160.50190.61880.070*
C150.0434 (2)0.6598 (3)0.5815 (2)0.0572 (7)
H15A0.03040.64620.60690.069*
C160.0661 (2)0.7651 (2)0.5383 (2)0.0511 (6)
H16A0.00850.82490.53500.061*
C170.1725 (2)0.7849 (2)0.49934 (19)0.0407 (5)
H17A0.18750.85810.46950.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04820 (18)0.05086 (18)0.0845 (3)0.01581 (12)0.02468 (15)0.00566 (14)
O10.0624 (12)0.0360 (9)0.0993 (16)0.0107 (9)0.0285 (11)0.0095 (10)
O20.0458 (10)0.0376 (9)0.0730 (13)0.0032 (8)0.0094 (9)0.0075 (8)
N10.0396 (11)0.0275 (9)0.0690 (14)0.0033 (8)0.0182 (10)0.0068 (9)
N20.0361 (10)0.0268 (9)0.0377 (10)0.0006 (8)0.0093 (8)0.0039 (7)
N30.0339 (10)0.0215 (8)0.0468 (11)0.0001 (7)0.0063 (8)0.0022 (8)
N40.0378 (11)0.0287 (9)0.0472 (12)0.0055 (8)0.0061 (9)0.0012 (8)
C10.0321 (11)0.0243 (10)0.0440 (13)0.0016 (9)0.0038 (9)0.0011 (9)
C20.0388 (13)0.0367 (12)0.0708 (18)0.0047 (11)0.0200 (12)0.0055 (12)
C30.0328 (12)0.0334 (11)0.0498 (14)0.0021 (9)0.0071 (10)0.0032 (10)
C40.0375 (12)0.0246 (10)0.0412 (13)0.0019 (9)0.0033 (9)0.0021 (9)
C50.0345 (11)0.0241 (10)0.0349 (12)0.0018 (8)0.0039 (9)0.0000 (8)
C60.0333 (11)0.0263 (10)0.0342 (12)0.0024 (9)0.0034 (9)0.0015 (9)
C70.0419 (13)0.0184 (10)0.0593 (16)0.0013 (9)0.0094 (11)0.0036 (9)
C80.0491 (14)0.0297 (11)0.0517 (15)0.0020 (10)0.0154 (11)0.0099 (10)
C90.0505 (15)0.0314 (12)0.0450 (14)0.0046 (11)0.0084 (11)0.0009 (10)
C100.0428 (14)0.0531 (15)0.0459 (15)0.0086 (12)0.0063 (11)0.0027 (12)
C110.0421 (14)0.0404 (14)0.0644 (18)0.0132 (11)0.0037 (12)0.0041 (12)
C120.0341 (11)0.0336 (11)0.0319 (12)0.0022 (9)0.0057 (9)0.0017 (9)
C130.0509 (15)0.0385 (13)0.0595 (17)0.0001 (11)0.0140 (12)0.0078 (12)
C140.0626 (18)0.0510 (16)0.0657 (19)0.0159 (14)0.0248 (15)0.0080 (13)
C150.0475 (16)0.0679 (18)0.0607 (18)0.0146 (14)0.0228 (13)0.0063 (14)
C160.0446 (14)0.0599 (16)0.0514 (16)0.0073 (13)0.0152 (12)0.0050 (13)
C170.0453 (13)0.0374 (12)0.0418 (13)0.0017 (10)0.0139 (10)0.0003 (10)
Geometric parameters (Å, º) top
Br1—C31.892 (2)C7—C81.520 (4)
O1—C91.208 (3)C7—H7A0.9900
O2—C91.349 (3)C7—H7B0.9900
O2—C101.438 (3)C8—H8A0.9900
N1—C11.323 (3)C8—H8B0.9900
N1—C21.332 (3)C10—C111.516 (4)
N2—C61.323 (3)C10—H10A0.9900
N2—C51.382 (3)C10—H10B0.9900
N3—C61.378 (3)C11—H11A0.9900
N3—C11.381 (3)C11—H11B0.9900
N3—C71.467 (3)C12—C171.385 (3)
N4—C91.340 (3)C12—C131.390 (3)
N4—C81.439 (3)C13—C141.385 (4)
N4—C111.443 (3)C13—H13A0.9500
C1—C51.396 (3)C14—C151.366 (4)
C2—C31.393 (3)C14—H14A0.9500
C2—H2A0.9500C15—C161.370 (4)
C3—C41.378 (3)C15—H15A0.9500
C4—C51.385 (3)C16—C171.383 (3)
C4—H4A0.9500C16—H16A0.9500
C6—C121.466 (3)C17—H17A0.9500
C9—O2—C10109.50 (18)N4—C8—H8B109.0
C1—N1—C2113.39 (19)C7—C8—H8B109.0
C6—N2—C5104.87 (17)H8A—C8—H8B107.8
C6—N3—C1105.55 (16)O1—C9—N4127.8 (2)
C6—N3—C7130.08 (18)O1—C9—O2122.1 (2)
C1—N3—C7121.58 (18)N4—C9—O2110.1 (2)
C9—N4—C8124.4 (2)O2—C10—C11105.60 (19)
C9—N4—C11112.3 (2)O2—C10—H10A110.6
C8—N4—C11123.08 (18)C11—C10—H10A110.6
N1—C1—N3125.98 (19)O2—C10—H10B110.6
N1—C1—C5127.6 (2)C11—C10—H10B110.6
N3—C1—C5106.39 (18)H10A—C10—H10B108.8
N1—C2—C3123.7 (2)N4—C11—C10101.52 (18)
N1—C2—H2A118.1N4—C11—H11A111.5
C3—C2—H2A118.1C10—C11—H11A111.5
C4—C3—C2121.8 (2)N4—C11—H11B111.5
C4—C3—Br1119.65 (16)C10—C11—H11B111.5
C2—C3—Br1118.43 (17)H11A—C11—H11B109.3
C3—C4—C5115.34 (19)C17—C12—C13118.8 (2)
C3—C4—H4A122.3C17—C12—C6118.60 (19)
C5—C4—H4A122.3C13—C12—C6122.5 (2)
N2—C5—C4132.04 (18)C14—C13—C12119.9 (2)
N2—C5—C1109.89 (18)C14—C13—H13A120.0
C4—C5—C1118.07 (19)C12—C13—H13A120.0
N2—C6—N3113.29 (18)C15—C14—C13120.7 (2)
N2—C6—C12122.43 (19)C15—C14—H14A119.7
N3—C6—C12124.24 (18)C13—C14—H14A119.7
N3—C7—C8111.52 (17)C14—C15—C16119.8 (2)
N3—C7—H7A109.3C14—C15—H15A120.1
C8—C7—H7A109.3C16—C15—H15A120.1
N3—C7—H7B109.3C15—C16—C17120.4 (2)
C8—C7—H7B109.3C15—C16—H16A119.8
H7A—C7—H7B108.0C17—C16—H16A119.8
N4—C8—C7112.74 (19)C16—C17—C12120.3 (2)
N4—C8—H8A109.0C16—C17—H17A119.8
C7—C8—H8A109.0C12—C17—H17A119.8
C2—N1—C1—N3179.8 (2)C1—N3—C7—C876.4 (3)
C2—N1—C1—C50.7 (4)C9—N4—C8—C7106.1 (3)
C6—N3—C1—N1178.2 (2)C11—N4—C8—C779.5 (3)
C7—N3—C1—N115.3 (3)N3—C7—C8—N466.7 (2)
C6—N3—C1—C51.1 (2)C8—N4—C9—O11.6 (4)
C7—N3—C1—C5163.93 (19)C11—N4—C9—O1176.5 (3)
C1—N1—C2—C30.3 (4)C8—N4—C9—O2178.6 (2)
N1—C2—C3—C40.7 (4)C11—N4—C9—O23.7 (3)
N1—C2—C3—Br1177.4 (2)C10—O2—C9—O1176.5 (2)
C2—C3—C4—C50.2 (3)C10—O2—C9—N43.3 (3)
Br1—C3—C4—C5176.72 (16)C9—O2—C10—C118.5 (3)
C6—N2—C5—C4179.9 (2)C9—N4—C11—C108.5 (3)
C6—N2—C5—C10.3 (2)C8—N4—C11—C10176.5 (2)
C3—C4—C5—N2178.8 (2)O2—C10—C11—N49.8 (3)
C3—C4—C5—C10.8 (3)N2—C6—C12—C1736.7 (3)
N1—C1—C5—N2178.3 (2)N3—C6—C12—C17145.7 (2)
N3—C1—C5—N20.9 (2)N2—C6—C12—C13139.9 (2)
N1—C1—C5—C41.3 (4)N3—C6—C12—C1337.7 (3)
N3—C1—C5—C4179.46 (19)C17—C12—C13—C141.9 (4)
C5—N2—C6—N30.4 (2)C6—C12—C13—C14178.5 (2)
C5—N2—C6—C12178.28 (19)C12—C13—C14—C150.8 (4)
C1—N3—C6—N21.0 (2)C13—C14—C15—C160.7 (5)
C7—N3—C6—N2161.8 (2)C14—C15—C16—C171.1 (4)
C1—N3—C6—C12178.78 (19)C15—C16—C17—C120.0 (4)
C7—N3—C6—C1220.4 (3)C13—C12—C17—C161.5 (4)
C6—N3—C7—C881.7 (3)C6—C12—C17—C16178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N2i0.952.613.544 (3)168
C10—H10A···N2ii0.992.553.261 (3)128
C15—H15A···O1iii0.952.533.423 (3)156
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1/2, y+3/2, z1/2; (iii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H15BrN4O2
Mr387.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)170
a, b, c (Å)11.3553 (6), 11.5915 (5), 12.2542 (8)
β (°) 98.685 (6)
V3)1594.46 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.60
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction XcaliburE Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.599, 0.652
No. of measured, independent and
observed [I > 2σ(I)] reflections
7850, 3791, 2839
Rint0.028
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.03
No. of reflections3791
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.35

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N2i0.952.613.544 (3)168
C10—H10A···N2ii0.992.553.261 (3)128
C15—H15A···O1iii0.952.533.423 (3)156
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1/2, y+3/2, z1/2; (iii) x1/2, y+3/2, z+1/2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationDiekema, D. J. & Jones, R. N. (2000). Drugs, 59, 7–16.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, D. A., Ny, H. P. & Rieger, D. L. (1993). J. Am. Chem. Soc. 115, 11446–11459.  CrossRef CAS Web of Science Google Scholar
First citationMatsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron, 61, 8073–8094.  Web of Science CrossRef CAS Google Scholar
First citationMukhtar, T. A. & Wright, G. D. (2004). Chem. Rev. 105, 529–542.  CrossRef Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Obbade, S., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o947.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o946.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1095
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds