metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­(nitrato-κ2O,O′)bis­­(pyridinium-4-carboxyl­ate-κO)europium(III) dinitrate

aCenter of Analysis and Testing, Nanyang Normal University, Nanyang 473061, People's Republic of China, bSchool of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China, cSchool of Mathematics and Statistics, Nanyang Normal University, Nanyang 473061, People's Republic of China, and dCollege of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
*Correspondence e-mail: zhongzhiguo1978@126.com

(Received 7 April 2011; accepted 20 April 2011; online 29 April 2011)

The asymmetric unit of the title compound, [Eu(NO3)(C6H5NO2)2(H2O)4](NO3)2, consists of one-half of the C2 symmetric coordination cation and one nitrate anion. The eight-coordinated EuIII atom is in a distorted dodeca­hedral coordination environment. The coordination cations and nitrate anions are connected via O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For photophysical properties of lanthanide(III) coordination compounds, see, for example: Jüstel et al. (1998[Jüstel, T., Nikol, H. & Ronda, C. (1998). Angew. Chem. Int. Ed. 37, 3084-3103.]); Xu et al. (2010[Xu, H., Wei, Y., Zhao, B. M. & Huang, W. (2010). J. Rare Earths, 28, 666-670.]). For potential applications of lanthanide(III) coordination compounds as light-conversion mol­ecular devices, see, for example: Lehn (1990[Lehn, J. M. (1990). Angew. Chem. Int. Ed. 29, 1304-1319.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu(NO3)(C6H5NO2)2(H2O)4](NO3)2

  • Mr = 656.27

  • Monoclinic, C 2/c

  • a = 14.612 (4) Å

  • b = 12.498 (4) Å

  • c = 13.342 (4) Å

  • β = 118.728 (4)°

  • V = 2136.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.03 mm−1

  • T = 293 K

  • 0.35 × 0.32 × 0.28 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.417, Tmax = 0.484

  • 5224 measured reflections

  • 1881 independent reflections

  • 1847 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.038

  • S = 1.02

  • 1881 reflections

  • 180 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O7i 0.81 (2) 1.99 (2) 2.790 (2) 175 (3)
O1W—H1WA⋯O1ii 0.83 (2) 1.87 (2) 2.653 (2) 155 (2)
O2W—H2WB⋯O1iii 0.83 (2) 1.84 (2) 2.661 (2) 173 (3)
O2W—H2WA⋯O5 0.82 (2) 2.23 (2) 2.958 (3) 148 (3)
N1—H6⋯O7iv 0.94 (3) 1.88 (3) 2.814 (3) 179 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The lanthanide (III) coordination compounds have attracted considerable attention due to their interesting photophysical properties and their potential application as light-conversion molecular devices. Herein, we report a new rare-earth metal–organic compound [Eu(C6H5NO2)2(H2O)4(NO3)](NO3)2. The structural unit of the title compound consists of one coordination cation which has a crystallographic twofold axis symmetry, [Eu(C6H5NO2)2(H2O)4(NO3)]2+, and two nitrate anions (Fig. 1). In the coordination cation the Eu(III) center is coordinated by eight O atoms: two from C6H5NO2 ligands, two from NO3- anion and four from water molecules. The coordination geometry around the Eu(III) center can be described as dodecahedral with O—Eu—O bond angles ranging from 51.07 (10) to 152.96 (9)° and the Eu—O bond lengths ranging from 2.3614 (16) to 2.5000 (19) Å. The electrostatic interactions and hydrogen bonds result in the formation of three-dimensional network (Fig. 2). Obviously, electrostatic interactions and hydrogen bonds play a crucial role in the chemical stability of the title compound.

Related literature top

For photophysical properties of lanthanide(III) coordination compounds, see, for example: Jüstel et al. (1998); Xu et al. (2010). For potential applications of lanthanide(III) coordination compounds as light-conversion molecular devices, see, for example: Lehn (1990).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. 0.24 g of isonicotinic acid (1 mmol) and 0.45 g Eu(NO3)3.6H2O (1 mmol) were dissolved in 30 ml of distilled water. Then pH of the mixture was carefully adjusted to 5.0 with 1M HCl solution. After stirring for half an hour, the solution was filtered and left for slowly evaporation at room temperature to obtain colorless crystals suitable for X-ray structure determination.

Refinement top

The H atoms bonded to C were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2 times Ueq(C). The H atoms bonded to O atoms were located from Fourier difference maps and refined with distance restraints of O1W—H1WA = 0.82, O1W—H1WB = 0.82, O2W—H2WA = 0.82, O2W—H2WB = 0.82, H1WA···H1WB = 1.36, H2WA···H2WB = 1.36 and H1WA···Eu1 = 2.85 Å. The H atom bonded to N atom was located from Fourier difference maps and freely refined. In addition, the O4 and N2 atoms were refined with SHELXL97 restraint 'DELUdelu 0.01'.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 30% probability level . Symmetry code for the atoms with the label A: -x, y, -z + 1/2.
[Figure 2] Fig. 2. Crystal packing viewed along the c axis. Hydrogen bonds are shown with dashed lines.
Tetraaqua(nitrato-κ2O,O')bis(pyridinium-4-carboxylate- κO)europium(III) dinitrate top
Crystal data top
[Eu(NO3)(C6H5NO2)2(H2O)4](NO3)2F(000) = 1296
Mr = 656.27Dx = 2.040 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5781 reflections
a = 14.612 (4) Åθ = 2.3–28.3°
b = 12.498 (4) ŵ = 3.03 mm1
c = 13.342 (4) ÅT = 293 K
β = 118.728 (4)°Block, colourless
V = 2136.6 (11) Å30.35 × 0.32 × 0.28 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1881 independent reflections
Radiation source: fine-focus sealed tube1847 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
SADABS (Bruker, 1997)
h = 1317
Tmin = 0.417, Tmax = 0.484k = 1412
5224 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0211P)2 + 2.5852P]
where P = (Fo2 + 2Fc2)/3
1881 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.58 e Å3
8 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Eu(NO3)(C6H5NO2)2(H2O)4](NO3)2V = 2136.6 (11) Å3
Mr = 656.27Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.612 (4) ŵ = 3.03 mm1
b = 12.498 (4) ÅT = 293 K
c = 13.342 (4) Å0.35 × 0.32 × 0.28 mm
β = 118.728 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
1881 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 1997)
1847 reflections with I > 2σ(I)
Tmin = 0.417, Tmax = 0.484Rint = 0.017
5224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0158 restraints
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.58 e Å3
1881 reflectionsΔρmin = 0.62 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.00000.184699 (10)0.25000.02398 (6)
O10.27428 (13)0.30594 (12)0.37370 (16)0.0421 (4)
O1W0.17399 (12)0.12138 (14)0.15960 (17)0.0453 (4)
H1WB0.199 (2)0.0622 (15)0.144 (2)0.044 (8)*
H1WA0.2202 (13)0.1684 (17)0.134 (3)0.063 (10)*
O20.10558 (12)0.33068 (12)0.25718 (14)0.0350 (4)
O2W0.04309 (13)0.22924 (14)0.05884 (14)0.0390 (4)
H2WB0.0982 (17)0.213 (2)0.002 (2)0.051 (8)*
H2WA0.021 (2)0.2840 (19)0.045 (3)0.061 (10)*
O30.00037 (14)0.00420 (15)0.33097 (17)0.0495 (4)
O40.00000.1458 (2)0.25000.1018 (15)
O50.08162 (14)0.35758 (14)0.01819 (16)0.0462 (4)
O60.11039 (14)0.52783 (13)0.00657 (16)0.0471 (4)
O70.23063 (12)0.42067 (12)0.10876 (14)0.0386 (4)
N10.23834 (19)0.69898 (16)0.3531 (2)0.0390 (5)
N20.00000.0487 (2)0.25000.0506 (9)
N30.13887 (14)0.43631 (14)0.02637 (16)0.0312 (4)
C10.3165 (2)0.63532 (19)0.4224 (2)0.0403 (5)
H10.37840.66470.47880.048*
C20.30538 (18)0.52613 (18)0.4104 (2)0.0353 (5)
H20.36040.48130.45670.042*
C30.21208 (16)0.48366 (16)0.32907 (17)0.0262 (4)
C40.13218 (17)0.55193 (17)0.25749 (19)0.0317 (5)
H40.06910.52460.20120.038*
C50.1479 (2)0.65997 (19)0.2713 (2)0.0387 (5)
H50.09540.70660.22350.046*
C60.19639 (16)0.36402 (16)0.31971 (17)0.0270 (4)
H60.248 (2)0.773 (3)0.367 (2)0.050 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01991 (9)0.01759 (9)0.02573 (9)0.0000.00400 (6)0.000
O10.0282 (8)0.0270 (8)0.0463 (10)0.0018 (6)0.0019 (8)0.0010 (7)
O1W0.0250 (8)0.0221 (9)0.0734 (13)0.0035 (7)0.0112 (8)0.0035 (8)
O20.0258 (8)0.0258 (8)0.0379 (9)0.0057 (6)0.0028 (7)0.0032 (6)
O2W0.0332 (9)0.0382 (10)0.0296 (8)0.0127 (8)0.0023 (7)0.0047 (7)
O30.0463 (10)0.0388 (10)0.0516 (11)0.0004 (8)0.0140 (9)0.0148 (8)
O40.088 (3)0.0177 (14)0.202 (5)0.0000.071 (3)0.000
O50.0419 (10)0.0339 (9)0.0486 (10)0.0067 (8)0.0104 (8)0.0042 (8)
O60.0487 (10)0.0281 (9)0.0581 (11)0.0106 (8)0.0207 (9)0.0114 (8)
O70.0331 (8)0.0291 (8)0.0428 (9)0.0014 (6)0.0098 (7)0.0034 (7)
N10.0544 (13)0.0233 (10)0.0466 (12)0.0076 (9)0.0302 (11)0.0047 (8)
N20.0305 (15)0.0215 (14)0.083 (3)0.0000.0135 (16)0.000
N30.0333 (10)0.0281 (10)0.0337 (10)0.0021 (8)0.0172 (8)0.0016 (8)
C10.0452 (14)0.0326 (13)0.0373 (13)0.0140 (11)0.0151 (11)0.0061 (10)
C20.0327 (11)0.0286 (12)0.0336 (12)0.0056 (9)0.0070 (10)0.0001 (9)
C30.0277 (10)0.0254 (10)0.0253 (10)0.0023 (8)0.0127 (9)0.0003 (8)
C40.0275 (10)0.0288 (11)0.0359 (12)0.0009 (9)0.0127 (9)0.0017 (9)
C50.0438 (14)0.0271 (11)0.0479 (14)0.0064 (10)0.0242 (12)0.0051 (10)
C60.0255 (10)0.0237 (11)0.0239 (10)0.0034 (8)0.0056 (8)0.0015 (8)
Geometric parameters (Å, º) top
Eu1—O22.3614 (16)O5—N31.242 (3)
Eu1—O2i2.3614 (16)O6—N31.224 (2)
Eu1—O1W2.3657 (17)O7—N31.276 (2)
Eu1—O1Wi2.3657 (17)N1—C11.333 (4)
Eu1—O2Wi2.3806 (18)N1—C51.337 (4)
Eu1—O2W2.3806 (18)N1—H60.94 (3)
Eu1—O3i2.5000 (19)N2—O3i1.264 (2)
Eu1—O32.5000 (19)C1—C21.375 (3)
Eu1—N22.917 (3)C1—H10.9300
O1—C61.246 (3)C2—C31.377 (3)
O1W—H1WB0.805 (17)C2—H20.9300
O1W—H1WA0.834 (16)C3—C41.390 (3)
O2—C61.251 (3)C3—C61.509 (3)
O2W—H2WB0.826 (17)C4—C51.367 (3)
O2W—H2WA0.818 (18)C4—H40.9300
O3—N21.264 (2)C5—H50.9300
O4—N21.214 (4)
O2—Eu1—O2i78.82 (8)Eu1—O1W—H1WA115.7 (15)
O2—Eu1—O1W143.15 (6)H1WB—O1W—H1WA111 (2)
O2i—Eu1—O1W73.54 (6)C6—O2—Eu1138.33 (14)
O2—Eu1—O1Wi73.54 (6)Eu1—O2W—H2WB125 (2)
O2i—Eu1—O1Wi143.15 (6)Eu1—O2W—H2WA121 (2)
O1W—Eu1—O1Wi140.91 (8)H2WB—O2W—H2WA109 (3)
O2—Eu1—O2Wi86.83 (6)N2—O3—Eu195.99 (15)
O2i—Eu1—O2Wi72.18 (6)C1—N1—C5122.0 (2)
O1W—Eu1—O2Wi106.89 (7)C1—N1—H6116.8 (18)
O1Wi—Eu1—O2Wi82.30 (7)C5—N1—H6121.2 (18)
O2—Eu1—O2W72.18 (6)O4—N2—O3121.53 (14)
O2i—Eu1—O2W86.83 (6)O4—N2—O3i121.53 (14)
O1W—Eu1—O2W82.30 (7)O3—N2—O3i116.9 (3)
O1Wi—Eu1—O2W106.89 (7)O4—N2—Eu1180.0
O2Wi—Eu1—O2W152.96 (9)O3—N2—Eu158.47 (14)
O2—Eu1—O3i125.48 (7)O3i—N2—Eu158.47 (14)
O2i—Eu1—O3i144.49 (6)O6—N3—O5122.3 (2)
O1W—Eu1—O3i72.50 (6)O6—N3—O7119.18 (19)
O1Wi—Eu1—O3i72.37 (6)O5—N3—O7118.56 (18)
O2Wi—Eu1—O3i128.20 (6)N1—C1—C2119.9 (2)
O2W—Eu1—O3i78.67 (7)N1—C1—H1120.1
O2—Eu1—O3144.49 (6)C2—C1—H1120.1
O2i—Eu1—O3125.48 (7)C1—C2—C3119.4 (2)
O1W—Eu1—O372.37 (6)C1—C2—H2120.3
O1Wi—Eu1—O372.50 (6)C3—C2—H2120.3
O2Wi—Eu1—O378.67 (7)C2—C3—C4119.4 (2)
O2W—Eu1—O3128.20 (6)C2—C3—C6120.06 (19)
O3i—Eu1—O351.07 (10)C4—C3—C6120.50 (19)
O2—Eu1—N2140.59 (4)C5—C4—C3118.8 (2)
O2i—Eu1—N2140.59 (4)C5—C4—H4120.6
O1W—Eu1—N270.46 (4)C3—C4—H4120.6
O1Wi—Eu1—N270.46 (4)N1—C5—C4120.4 (2)
O2Wi—Eu1—N2103.52 (4)N1—C5—H5119.8
O2W—Eu1—N2103.52 (4)C4—C5—H5119.8
O3i—Eu1—N225.54 (5)O1—C6—O2124.92 (19)
O3—Eu1—N225.54 (5)O1—C6—C3117.98 (18)
Eu1—O1W—H1WB133 (2)O2—C6—C3117.09 (18)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O7ii0.81 (2)1.99 (2)2.790 (2)175 (3)
O1W—H1WA···O1i0.83 (2)1.87 (2)2.653 (2)155 (2)
O2W—H2WB···O1iii0.83 (2)1.84 (2)2.661 (2)173 (3)
O2W—H2WA···O50.82 (2)2.23 (2)2.958 (3)148 (3)
N1—H6···O7iv0.94 (3)1.88 (3)2.814 (3)179 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y1/2, z; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Eu(NO3)(C6H5NO2)2(H2O)4](NO3)2
Mr656.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.612 (4), 12.498 (4), 13.342 (4)
β (°) 118.728 (4)
V3)2136.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)3.03
Crystal size (mm)0.35 × 0.32 × 0.28
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 1997)
Tmin, Tmax0.417, 0.484
No. of measured, independent and
observed [I > 2σ(I)] reflections
5224, 1881, 1847
Rint0.017
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.038, 1.02
No. of reflections1881
No. of parameters180
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.62

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O7i0.805 (17)1.988 (18)2.790 (2)175 (3)
O1W—H1WA···O1ii0.834 (16)1.87 (2)2.653 (2)155 (2)
O2W—H2WB···O1iii0.826 (17)1.839 (18)2.661 (2)173 (3)
O2W—H2WA···O50.818 (18)2.23 (2)2.958 (3)148 (3)
N1—H6···O7iv0.94 (3)1.88 (3)2.814 (3)179 (3)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2.
 

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJüstel, T., Nikol, H. & Ronda, C. (1998). Angew. Chem. Int. Ed. 37, 3084–3103.  Google Scholar
First citationLehn, J. M. (1990). Angew. Chem. Int. Ed. 29, 1304–1319.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Wei, Y., Zhao, B. M. & Huang, W. (2010). J. Rare Earths, 28, 666–670.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds