organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1032-o1033

Redetermined structure, inter­molecular inter­actions and absolute configuration of royleanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 4 March 2011; accepted 28 March 2011; online 7 April 2011)

The structure of the title diterpenoid, C20H28O3, {systematic name: (4bS,8aS)-3-hy­droxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octa­hydro­phenanthrene-1,4-dione} is confirmed [Eugster et al. (1993[Eugster, C. H., Ruedi, P., Tanudjaja, T., Bieri, J. H., Prewo, R. & Linden, A. (1993). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge.]). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge] and its packing is now described. Its absolute structure was established by refinement against data collected with Cu radiation: the two stereogenic centres both have S configurations. One cyclo­hexane ring adopts a chair conformation whereas the other cyclo­hexane ring is in a half-chair conformation and the benzoquinone ring is slightly twisted. An intra­molecular O—H⋯O hydrogen bond generates an S(5) ring motif. In the crystal, mol­ecules are linked into chains along [010] by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions. The packing also features C⋯O [3.131 (3) Å] short contacts.

Related literature

For the previous determination of the title structure, see: Eugster et al. (1993[Eugster, C. H., Ruedi, P., Tanudjaja, T., Bieri, J. H., Prewo, R. & Linden, A. (1993). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to Verbenaceae plants and the bioactivity of diterpenoids, see: Bunluepuech & Tewtrakul (2009[Bunluepuech, K. & Tewtrakul, S. (2009). Songklanakarin J. Sci. Technol. 31, 289-292]); Edwards et al. (1962[Edwards, O. E., Feniak, G. & Los, M. (1962). Can. J. Chem. 40, 1540-1546.]); Kabouche et al. (2007[Kabouche, A., Kabouche, Z., Öztürk, M., Kolak, U. & Topçu, G. (2007). Food Chem. 102, 1281-1287.]); Suresh et al. (2011[Suresh, G., Babu, K. S., Rao, V. R. S., Rao, M. S. A., Nayak, V. L. & Ramakrishna, S. (2011). Tetrahedron. Lett. 52, 1273-1276.]); Slamenová et al. (2004[Slamenová, D., Masterová, I., Lábaj, J., Horváthová, E., Kubala, P., Jakubíková, J. & Wsólová, L. (2004). Basic Clin. Pharmacol. Toxicol. 94, 282-290.]); Tezuka et al. (1998[Tezuka, Y., Kasimu, R., Li, J. X., Basnet, P., Tanaka, K., Namba, T. & Kadota, S. (1998). Chem. Pharm. Bull. 46, 107-112.]). For a related structure, see: Razak et al. (2010[Razak, I. A., Salae, A. W., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o1566-o1567.]). For hydrogen-bond motifs, see: Bernstein et al. (1995)[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]. For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H28O3

  • Mr = 316.42

  • Monoclinic, P 21

  • a = 10.2247 (2) Å

  • b = 7.6353 (1) Å

  • c = 10.7292 (2) Å

  • β = 97.992 (1)°

  • V = 829.48 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.52 × 0.31 × 0.15 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.726, Tmax = 0.909

  • 5901 measured reflections

  • 2390 independent reflections

  • 2375 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.06

  • 2390 reflections

  • 217 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) 699 Friedel pairs

  • Flack parameter: 0.11 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1 0.88 (4) 2.05 (3) 2.5977 (18) 119 (3)
O2—H1O2⋯O3i 0.88 (4) 2.35 (4) 3.1079 (19) 145 (3)
C1—H1A⋯O1 0.97 2.38 2.993 (2) 120
C7—H7A⋯O1ii 0.97 2.51 3.131 (3) 122
C17—H17B⋯O2 0.96 2.49 3.071 (2) 119
C20—H20A⋯O1 0.96 2.47 3.125 (2) 125
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The extracts of Verbenaceae plants have been found to possess anti-HIV-1 integrase activity (Bunluepuech & Tewtrakul, 2009) and cytotoxicity (Suresh et al., 2011). During the course of our study of chemical constituents and bioactive compounds from Premna obtusifolia (Verbenaceae), the title diterpenoid (I), which is known as royleanone (Edwards et al., 1962; Tezuka et al., 1998) was isolated from the roots of this plant. Compound (I) was reported to show significant biological properties such as antioxidant (Kabouche et al., 2007) and cytotoxic activities (Slame˘nová et al., 2004). The absolute configuration of (I) was determined by making use of the anomalous scattering of Cu Kα X-radiation with the Flack parameter being refined to 0.11 (19). We herein report the crystal structure of (I).

The molecule of (I) has three fused six membered rings (Fig. 1). The two cyclohexane rings are trans fused. One cyclohexane ring (C1–C5/C10) is in a standard chair conformation whereas the other (C5–C10) is in half chair conformation, with the C5 and C6 atoms having the deviation of 0.396 (2) and -0.323 (2) Å, respectively from the plane through C7–C10 atoms and the puckering parameters Q = 0.563 (2) Å, θ = 55.20 (19)° and ϕ = 16.1 (2)° (Cremer & Pople, 1975). The benzoquinone ring (C8–C9/C11–C14/O1/O3) is slightly twisted with the maximum deviations of -0.091 (1) and 0.055 (2) Å for atoms C9 and C13, respectively, and with the puckering parameters Q = 0.1474 (19) Å, θ = 72.9 (7)° and ϕ = 86.8 (8)° (Cremer & Pople, 1975). The O1, O2 and O3 atoms lie close to the mean plane of the C8–C9/C11–C14 ring with the r.m.s. of 0.0870 (1) Å. The bond angles around C8, C9, C12 and C13 are indicative of sp2 hybridization for these atoms. The orientation of the propanyl group is described by the torsion angles C12–C13–C15–C16 = -69.8 (2) and C12–C13–C15–C17 = 54.2 (2) °. Intramolecular O2—H1O2···O1 hydrogen bond (Table 1) generate S(5) ring motif (Fig. 1) (Bernstein et al., 1995). The bond distances and angles in (I) are within normal ranges (Allen et al., 1987) and comparable with a related structure (Razak et al., 2010). The absolute configuration at atoms C1 and C5 or positions 4b and 8a of royleanone are both S, which agrees with the previous stereochemistry of royleanone (Kabouche et al., 2007; Slame˘nová et al., 2004; Tezuka et al., 1998). The S,S configurations are also consistent with those in a related structure (Razak et al., 2010).

In the crystal of (I) (Fig. 2), the molecules are linked into chains along the [0 1 0] through O2—H1O2···O3 hydrogen bond and C7—H7A···O1 weak interaction (Fig. 2 and Table 1). The crystal is stabilized by these interactions together with C···O[3.131 (3) Å] short contacts.

Related literature top

For the previous determination of the title structure, see: Eugster et al. (1993). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to Verbenaceae plants and the bioactivity of diterpenoids, see: Bunluepuech & Tewtrakul (2009); Edwards et al. (1962); Kabouche et al. (2007); Suresh et al. (2011); Slame˘nová et al. (2004); Tezuka et al. (1998). For a related structure, see: Razak et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The air-dried roots of premna obtusifolia (4.5 kg) were extracted with hexane (2 × 20 l) at room temperature. The combined extracts were concentrated under reduced pressure to give a dark yellow extract (40.0 g) which was subjected to quick column chromatography (QCC) over silica gel using solvents of increasing polarity from n-hexane to EtOAc to afford 7 fractions (F1-F7). Fraction F2 was further purified by quick column chromatography using hexane, yielding the title compound (6.1 mg). Yellow blocks were recrystallized from CH2Cl2 by the slow evaporation of the solvent at room temperature after several days, M.p 451-453 K.

Refinement top

The hydroxy H atom was located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with (C—H) = 0.98 for CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.74 Å from C10 and the deepest hole is located at 0.72 Å from C2. 699 Friedel pairs were used to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 40% probability displacement ellipsoids. The hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis, showing [010] chains. Hydrogen bonds are shown as dashed lines.
(4bS,8aS)-3-hydroxy-2-isopropyl-4b,8,8-trimethyl- 4b,5,6,7,8,8a,9,10-octahydrophenanthrene-1,4-dione top
Crystal data top
C20H28O3F(000) = 344
Mr = 316.42Dx = 1.267 Mg m3
Monoclinic, P21Melting point = 451–453 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54178 Å
a = 10.2247 (2) ÅCell parameters from 2390 reflections
b = 7.6353 (1) Åθ = 5.6–72.1°
c = 10.7292 (2) ŵ = 0.66 mm1
β = 97.992 (1)°T = 100 K
V = 829.48 (2) Å3Block, yellow
Z = 20.52 × 0.31 × 0.15 mm
Data collection top
Bruker APEX Duo CCD
diffractometer
2390 independent reflections
Radiation source: sealed tube2375 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 72.1°, θmin = 5.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.726, Tmax = 0.909k = 96
5901 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.2006P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2390 reflectionsΔρmax = 0.35 e Å3
217 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983) 699 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (19)
Crystal data top
C20H28O3V = 829.48 (2) Å3
Mr = 316.42Z = 2
Monoclinic, P21Cu Kα radiation
a = 10.2247 (2) ŵ = 0.66 mm1
b = 7.6353 (1) ÅT = 100 K
c = 10.7292 (2) Å0.52 × 0.31 × 0.15 mm
β = 97.992 (1)°
Data collection top
Bruker APEX Duo CCD
diffractometer
2390 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2375 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.909Rint = 0.021
5901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.35 e Å3
S = 1.06Δρmin = 0.20 e Å3
2390 reflectionsAbsolute structure: Flack (1983) 699 Friedel pairs
217 parametersAbsolute structure parameter: 0.11 (19)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64538 (13)0.0889 (2)0.48735 (12)0.0254 (3)
O20.54777 (12)0.05136 (18)0.25211 (12)0.0219 (3)
H1O20.567 (3)0.139 (5)0.304 (3)0.055 (9)*
O30.59784 (11)0.55637 (18)0.31995 (11)0.0202 (3)
C10.91254 (18)0.0149 (3)0.61639 (17)0.0244 (4)
H1A0.86330.09320.60030.029*
H1B0.95130.04380.54140.029*
C21.02342 (19)0.0129 (3)0.72689 (19)0.0293 (4)
H2A0.98530.05290.79970.035*
H2B1.08280.10330.70480.035*
C31.10107 (17)0.1532 (3)0.76032 (17)0.0258 (5)
H3A1.14960.18240.69160.031*
H3B1.16520.13100.83410.031*
C41.01699 (15)0.3115 (3)0.78684 (15)0.0194 (4)
C50.90137 (15)0.3285 (3)0.67650 (14)0.0181 (4)
H5A0.94420.35200.60200.022*
C60.80962 (18)0.4855 (3)0.68588 (18)0.0264 (4)
H6A0.74580.45770.74190.032*
H6B0.86070.58590.71990.032*
C70.73866 (16)0.5283 (3)0.55608 (16)0.0194 (4)
H7A0.66230.60040.56460.023*
H7B0.79720.59590.51080.023*
C80.69435 (15)0.3689 (2)0.48092 (15)0.0155 (4)
C90.72317 (14)0.2047 (2)0.52206 (14)0.0153 (4)
C100.81709 (15)0.1624 (2)0.64288 (14)0.0153 (3)
C110.65384 (15)0.0604 (3)0.44783 (15)0.0174 (4)
C120.58810 (16)0.0954 (3)0.31623 (15)0.0175 (4)
C130.57151 (15)0.2572 (3)0.26820 (15)0.0165 (4)
C140.61740 (15)0.4041 (3)0.35330 (15)0.0156 (3)
C150.51364 (15)0.3012 (3)0.13372 (14)0.0184 (4)
H15A0.50370.42870.12800.022*
C160.61027 (18)0.2461 (3)0.04345 (16)0.0260 (4)
H16A0.69360.30340.06710.039*
H16B0.57500.27900.04090.039*
H16C0.62260.12150.04770.039*
C170.37759 (17)0.2199 (3)0.09225 (18)0.0262 (4)
H17A0.31870.25180.15080.039*
H17B0.38560.09470.09000.039*
H17C0.34310.26210.00990.039*
C181.10451 (18)0.4757 (3)0.78830 (19)0.0294 (5)
H18A1.18330.45920.84720.044*
H18B1.05700.57550.81290.044*
H18C1.12790.49480.70580.044*
C190.97379 (18)0.2988 (3)0.91827 (15)0.0266 (4)
H19A1.04930.31380.98130.040*
H19B0.93500.18600.92810.040*
H19C0.91010.38860.92740.040*
C200.73179 (17)0.1029 (3)0.74287 (16)0.0265 (4)
H20A0.67300.01150.70870.040*
H20B0.68130.20030.76660.040*
H20C0.78800.05980.81550.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0347 (7)0.0149 (7)0.0236 (6)0.0044 (6)0.0064 (5)0.0030 (5)
O20.0283 (6)0.0142 (8)0.0208 (6)0.0021 (5)0.0050 (5)0.0011 (5)
O30.0217 (6)0.0152 (7)0.0221 (6)0.0003 (5)0.0024 (4)0.0026 (5)
C10.0284 (8)0.0194 (11)0.0228 (8)0.0053 (8)0.0062 (7)0.0049 (7)
C20.0307 (9)0.0224 (11)0.0313 (10)0.0092 (9)0.0082 (7)0.0048 (9)
C30.0194 (8)0.0331 (13)0.0227 (8)0.0065 (8)0.0046 (6)0.0044 (8)
C40.0183 (7)0.0220 (11)0.0169 (7)0.0007 (8)0.0006 (6)0.0001 (7)
C50.0189 (7)0.0198 (10)0.0152 (7)0.0025 (7)0.0009 (6)0.0001 (7)
C60.0310 (9)0.0199 (10)0.0258 (9)0.0003 (8)0.0055 (7)0.0054 (8)
C70.0224 (7)0.0148 (10)0.0207 (8)0.0005 (7)0.0016 (6)0.0011 (7)
C80.0143 (7)0.0157 (10)0.0163 (7)0.0009 (6)0.0020 (6)0.0002 (6)
C90.0147 (6)0.0167 (10)0.0145 (7)0.0008 (6)0.0020 (5)0.0005 (6)
C100.0172 (7)0.0158 (9)0.0124 (7)0.0013 (7)0.0005 (6)0.0006 (6)
C110.0177 (7)0.0158 (10)0.0182 (7)0.0007 (7)0.0015 (6)0.0008 (7)
C120.0176 (7)0.0167 (11)0.0178 (8)0.0011 (7)0.0016 (6)0.0020 (7)
C130.0141 (7)0.0179 (10)0.0170 (8)0.0000 (6)0.0004 (6)0.0003 (7)
C140.0132 (6)0.0157 (9)0.0181 (7)0.0007 (6)0.0029 (6)0.0001 (7)
C150.0220 (7)0.0160 (10)0.0161 (7)0.0003 (7)0.0016 (6)0.0009 (7)
C160.0301 (9)0.0294 (12)0.0181 (8)0.0049 (8)0.0020 (6)0.0026 (7)
C170.0224 (8)0.0256 (11)0.0277 (8)0.0000 (8)0.0065 (6)0.0001 (8)
C180.0268 (9)0.0307 (12)0.0281 (9)0.0091 (9)0.0056 (7)0.0027 (9)
C190.0277 (8)0.0341 (12)0.0167 (8)0.0016 (8)0.0013 (6)0.0050 (8)
C200.0225 (8)0.0388 (13)0.0181 (8)0.0087 (8)0.0020 (6)0.0034 (8)
Geometric parameters (Å, º) top
O1—C111.224 (2)C8—C141.506 (2)
O2—C121.349 (2)C9—C111.481 (2)
O2—H1O20.88 (4)C9—C101.536 (2)
O3—C141.225 (2)C10—C201.542 (2)
C1—C21.537 (2)C11—C121.501 (2)
C1—C101.542 (2)C12—C131.341 (3)
C1—H1A0.9700C13—C141.481 (3)
C1—H1B0.9700C13—C151.519 (2)
C2—C31.513 (3)C15—C171.532 (2)
C2—H2A0.9700C15—C161.535 (2)
C2—H2B0.9700C15—H15A0.9800
C3—C41.533 (3)C16—H16A0.9600
C3—H3A0.9700C16—H16B0.9600
C3—H3B0.9700C16—H16C0.9600
C4—C191.538 (2)C17—H17A0.9600
C4—C181.539 (3)C17—H17B0.9600
C4—C51.558 (2)C17—H17C0.9600
C5—C61.534 (3)C18—H18A0.9600
C5—C101.548 (3)C18—H18B0.9600
C5—H5A0.9800C18—H18C0.9600
C6—C71.514 (2)C19—H19A0.9600
C6—H6A0.9700C19—H19B0.9600
C6—H6B0.9700C19—H19C0.9600
C7—C81.495 (2)C20—H20A0.9600
C7—H7A0.9700C20—H20B0.9600
C7—H7B0.9700C20—H20C0.9600
C8—C91.348 (3)
C12—O2—H1O2107 (2)C9—C10—C5106.69 (14)
C2—C1—C10112.12 (15)C20—C10—C5115.45 (14)
C2—C1—H1A109.2C1—C10—C5107.17 (13)
C10—C1—H1A109.2O1—C11—C9123.94 (15)
C2—C1—H1B109.2O1—C11—C12116.59 (16)
C10—C1—H1B109.2C9—C11—C12119.46 (16)
H1A—C1—H1B107.9C13—C12—O2123.80 (15)
C3—C2—C1111.93 (18)C13—C12—C11122.80 (16)
C3—C2—H2A109.2O2—C12—C11113.40 (16)
C1—C2—H2A109.2C12—C13—C14116.67 (14)
C3—C2—H2B109.2C12—C13—C15125.48 (17)
C1—C2—H2B109.2C14—C13—C15117.82 (16)
H2A—C2—H2B107.9O3—C14—C13120.92 (15)
C2—C3—C4114.57 (15)O3—C14—C8118.62 (15)
C2—C3—H3A108.6C13—C14—C8120.41 (16)
C4—C3—H3A108.6C13—C15—C17113.86 (15)
C2—C3—H3B108.6C13—C15—C16109.82 (14)
C4—C3—H3B108.6C17—C15—C16110.11 (15)
H3A—C3—H3B107.6C13—C15—H15A107.6
C3—C4—C19111.12 (16)C17—C15—H15A107.6
C3—C4—C18107.69 (15)C16—C15—H15A107.6
C19—C4—C18106.43 (16)C15—C16—H16A109.5
C3—C4—C5108.09 (14)C15—C16—H16B109.5
C19—C4—C5114.68 (13)H16A—C16—H16B109.5
C18—C4—C5108.58 (15)C15—C16—H16C109.5
C6—C5—C10109.26 (13)H16A—C16—H16C109.5
C6—C5—C4114.94 (15)H16B—C16—H16C109.5
C10—C5—C4116.62 (16)C15—C17—H17A109.5
C6—C5—H5A104.9C15—C17—H17B109.5
C10—C5—H5A104.9H17A—C17—H17B109.5
C4—C5—H5A104.9C15—C17—H17C109.5
C7—C6—C5109.12 (15)H17A—C17—H17C109.5
C7—C6—H6A109.9H17B—C17—H17C109.5
C5—C6—H6A109.9C4—C18—H18A109.5
C7—C6—H6B109.9C4—C18—H18B109.5
C5—C6—H6B109.9H18A—C18—H18B109.5
H6A—C6—H6B108.3C4—C18—H18C109.5
C8—C7—C6113.02 (17)H18A—C18—H18C109.5
C8—C7—H7A109.0H18B—C18—H18C109.5
C6—C7—H7A109.0C4—C19—H19A109.5
C8—C7—H7B109.0C4—C19—H19B109.5
C6—C7—H7B109.0H19A—C19—H19B109.5
H7A—C7—H7B107.8C4—C19—H19C109.5
C9—C8—C7122.99 (14)H19A—C19—H19C109.5
C9—C8—C14121.79 (15)H19B—C19—H19C109.5
C7—C8—C14115.20 (15)C10—C20—H20A109.5
C8—C9—C11116.69 (14)C10—C20—H20B109.5
C8—C9—C10123.65 (15)H20A—C20—H20B109.5
C11—C9—C10119.60 (16)C10—C20—H20C109.5
C9—C10—C20107.53 (12)H20A—C20—H20C109.5
C9—C10—C1109.58 (13)H20B—C20—H20C109.5
C20—C10—C1110.27 (16)
C10—C1—C2—C356.7 (2)C4—C5—C10—C9172.64 (13)
C1—C2—C3—C454.2 (2)C6—C5—C10—C2064.48 (19)
C2—C3—C4—C1976.8 (2)C4—C5—C10—C2067.96 (19)
C2—C3—C4—C18167.00 (15)C6—C5—C10—C1172.24 (13)
C2—C3—C4—C549.9 (2)C4—C5—C10—C155.33 (17)
C3—C4—C5—C6177.96 (16)C8—C9—C11—O1162.38 (16)
C19—C4—C5—C657.5 (2)C10—C9—C11—O114.7 (2)
C18—C4—C5—C661.40 (19)C8—C9—C11—C1217.2 (2)
C3—C4—C5—C1052.25 (18)C10—C9—C11—C12165.74 (13)
C19—C4—C5—C1072.3 (2)O1—C11—C12—C13169.20 (16)
C18—C4—C5—C10168.81 (14)C9—C11—C12—C1310.4 (2)
C10—C5—C6—C768.58 (19)O1—C11—C12—O210.7 (2)
C4—C5—C6—C7158.12 (15)C9—C11—C12—O2169.71 (14)
C5—C6—C7—C840.90 (19)O2—C12—C13—C14177.82 (14)
C6—C7—C8—C94.3 (2)C11—C12—C13—C142.1 (2)
C6—C7—C8—C14177.17 (14)O2—C12—C13—C154.1 (2)
C7—C8—C9—C11169.78 (13)C11—C12—C13—C15176.03 (14)
C14—C8—C9—C1111.8 (2)C12—C13—C14—O3174.92 (15)
C7—C8—C9—C107.2 (2)C15—C13—C14—O36.8 (2)
C14—C8—C9—C10171.21 (13)C12—C13—C14—C87.7 (2)
C8—C9—C10—C20105.79 (19)C15—C13—C14—C8170.58 (13)
C11—C9—C10—C2071.10 (19)C9—C8—C14—O3177.84 (15)
C8—C9—C10—C1134.34 (17)C7—C8—C14—O30.68 (19)
C11—C9—C10—C148.77 (19)C9—C8—C14—C130.4 (2)
C8—C9—C10—C518.63 (19)C7—C8—C14—C13178.12 (13)
C11—C9—C10—C5164.48 (13)C12—C13—C15—C1754.2 (2)
C2—C1—C10—C9170.62 (16)C14—C13—C15—C17127.68 (17)
C2—C1—C10—C2071.2 (2)C12—C13—C15—C1669.8 (2)
C2—C1—C10—C555.2 (2)C14—C13—C15—C16108.33 (18)
C6—C5—C10—C954.93 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.88 (4)2.05 (3)2.5977 (18)119 (3)
O2—H1O2···O3i0.88 (4)2.35 (4)3.1079 (19)145 (3)
C1—H1A···O10.972.382.993 (2)120
C7—H7A···O1ii0.972.513.131 (3)122
C17—H17B···O20.962.493.071 (2)119
C20—H20A···O10.962.473.125 (2)125
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H28O3
Mr316.42
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)10.2247 (2), 7.6353 (1), 10.7292 (2)
β (°) 97.992 (1)
V3)829.48 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.52 × 0.31 × 0.15
Data collection
DiffractometerBruker APEX Duo CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.726, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
5901, 2390, 2375
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.06
No. of reflections2390
No. of parameters217
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.20
Absolute structureFlack (1983) 699 Friedel pairs
Absolute structure parameter0.11 (19)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.88 (4)2.05 (3)2.5977 (18)119 (3)
O2—H1O2···O3i0.88 (4)2.35 (4)3.1079 (19)145 (3)
C1—H1A···O10.972.382.993 (2)120
C7—H7A···O1ii0.972.513.131 (3)122
C17—H17B···O20.962.493.071 (2)119
C20—H20A···O10.962.473.125 (2)125
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

On PhD study leave from Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

Acknowledgements

AWS thanks Universiti Sains Malaysia for the PhD student visiting fellowship. SC thanks the Prince of Songkla University for generous support. The authors thank Universiti Sains Malaysia for the Research University Grant No.1001/PFIZIK/811151.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunluepuech, K. & Tewtrakul, S. (2009). Songklanakarin J. Sci. Technol. 31, 289–292  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEdwards, O. E., Feniak, G. & Los, M. (1962). Can. J. Chem. 40, 1540–1546.  CrossRef CAS Google Scholar
First citationEugster, C. H., Ruedi, P., Tanudjaja, T., Bieri, J. H., Prewo, R. & Linden, A. (1993). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKabouche, A., Kabouche, Z., Öztürk, M., Kolak, U. & Topçu, G. (2007). Food Chem. 102, 1281–1287.  Web of Science CrossRef CAS Google Scholar
First citationRazak, I. A., Salae, A. W., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o1566–o1567.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlamenová, D., Masterová, I., Lábaj, J., Horváthová, E., Kubala, P., Jakubíková, J. & Wsólová, L. (2004). Basic Clin. Pharmacol. Toxicol. 94, 282–290.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, G., Babu, K. S., Rao, V. R. S., Rao, M. S. A., Nayak, V. L. & Ramakrishna, S. (2011). Tetrahedron. Lett. 52, 1273–1276.  CrossRef CAS Google Scholar
First citationTezuka, Y., Kasimu, R., Li, J. X., Basnet, P., Tanaka, K., Namba, T. & Kadota, S. (1998). Chem. Pharm. Bull. 46, 107–112.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1032-o1033
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds