organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermined structure of di­phenyl­phospho­nimidotri­phenyl­phospho­rane: location of the hydrogen atoms and analysis of the inter­molecular inter­actions

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 25 March 2011; accepted 28 March 2011; online 7 April 2011)

The title compound, C30H25NOP2, is a bulky phosphazene derivative. Its previous crystal structure [Cameron et al. (1979[Cameron, A. F., Cameron, I. R. & Keat, R. (1979). Acta Cryst. B35, 1373-1377.]). Acta Cryst. B35, 1373–1377] is confirmed and its H atoms have been located in the present study. The formal P=N double bond is about 0.05 Å shorter than the P—N single bond and the large P=N—P bond angle reflects the steric strain in the mol­ecule. An intra­molecular C—H⋯O inter­action occurs. In the crystal, short C—H⋯O contacts connect the mol­ecules into chains propagating in [011], which are cross-linked via C—H⋯π inter­actions, generating a three-dimensional network. Aromatic ππ stacking also occurs [shortest centroid–centroid separation = 3.6012 (11) Å].

Related literature

For the previous structure determination, see: Cameron et al. (1979[Cameron, A. F., Cameron, I. R. & Keat, R. (1979). Acta Cryst. B35, 1373-1377.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C30H25NOP2

  • Mr = 477.45

  • Orthorhombic, P n a 21

  • a = 17.6607 (12) Å

  • b = 15.1593 (10) Å

  • c = 8.9192 (6) Å

  • V = 2387.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 200 K

  • 0.88 × 0.42 × 0.31 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 12511 measured reflections

  • 4498 independent reflections

  • 4348 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.076

  • S = 1.11

  • 4498 reflections

  • 307 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1332 Friedel pairs

  • Flack parameter: −0.03 (6)

Table 1
Selected geometric parameters (Å, °)

P1—N1 1.6014 (13)
P2—N1 1.5532 (13)
P2—N1—P1 146.35 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯O1 0.95 2.34 3.257 (2) 163
C43—H43⋯O1i 0.95 2.34 3.257 (2) 162
C45—H45⋯Cg1ii 0.95 2.92 3.846 (2) 165
C55—H55⋯Cg2iii 0.95 2.73 3.644 (2) 163
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [-x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

For many main group elements as well as transition and rare earth metals, preferred coordination numbers in coordination compounds are apparent. While coordination numbers of 4, 6 and 8 have been found to be dominant in most cases and, as a consequence, vast structural information has been collected for such compounds in solution and in the solid state, information about other coordination numbers is comparatively limited. Especially for smaller coordination numbers the literature is scant or hitherto completely unknown for many elements. One reason for this certainly is that sometimes challenging synthesis procedures have to be followed and, thus, a general but simple synthetic protocol is desireable. Since such compounds may act as versatile and potent catalysts in many industrial processes and might even show interesting pharmacological properties, we were interested in developing an easy-access-route for their synthesis. Applying bulky ligands might open up a pathway in this aspect. In order to be able to compare metrical parameters in envisioned reaction products, we determined the crystal structure of the title compound. The latter one has already been reported earlier (Cameron et al. (1979)), however, no hydrogen atoms were included in the refinement thus ruling out the possibility to assess the role of C–H···X contacts.

The length of the N–P bonds deviate by 0.05 Å with the – formal – P–N-double bond found at around 1.55 Å. The P–N–P angle was measured at more than 146 °. The marked widening of this angle in comparison to the value expected for a sp2-hybridized nitrogen atom can be explained by the repulsive interaction of the phenyl-moieties on both P atoms. The phenyl groups on each phosphorus atom are approximately orientated perpendicular to each other. The least-squares planes defined by their carbon atoms intersect at an angle of 82.19 (6) ° in case of the P(O)Ph2-moiety and at angles of 79.82 (5) °, 80.91 (6) ° and 83.28 (6) °, respectively, in case of the PPh3-moiety. Due to the formation of an intramolecular C–H···O contact (see below), the least-squares plane defined by the P(O)–N–P motif encloses an angle of only 29.40 (9) ° with one of the aromatic carbocycles on the PPh3-moiety (Fig. 1). For the same reason, both phenyl groups of the P(O)Ph2-moiety adopt a slightly ecliptic conformation with respect to the P(O) motif, the respective dihedral angles were found at about 19 ° and 26 °.

In the crystal structure, intermolecular C–H···O contacts are present whose range falls by more than 0.3 Å below the sum of van-der-Waals radii of the atoms participating. These can be observed between one of the H atoms in meta-position of a phenyl group on the PPh3-moiety and the O atom of the P(O)Ph2-moiety and connect the molecules to infinte chains along [0 1 1] (Fig. 2). Furthermore, intramolecular C–H···O contacts invariably involving hydrogen atoms in ortho-position on one of the phenyl groups of the PPh3-moiety as well as both phenyl groups of the P(O)Ph2-moiety are present. However, the latter two ones are not very pronounced. Additionally, a set of C–H···π contacts are evident involving H atoms and aromatic systems both on the PPh3-moiety as well as the P(O)Ph2-moiety. Their details are listed in Table 1 (with Cg(1) = C41···C46, Cg(2) = C31···C36 and Cg(3) = C11···C16). In total, the C–H···O contacts as well as the C–H···π contacts connect the molecules to a three dimensional network. In terms of graph-set analysis (Etter et al. (1990); Bernstein et al. (1995)), the intermolecular C–H···O contacts can be assigned a C11(8) descriptor on the unitary level while the intramolecular C–H···O contact involving the phenyl group of the PPh3-moiety necessitates a S11(7) descriptor. For the other two intramolecular C–H···O contacts, a S11(5) each is feasible. An analysis of Cg···Cg interactions shows the closest distance between two centers of gravity to occur between a phenyl group on the PPh3-moiety and a phenyl group on the P(O)Ph2-moiety. The distance was measured at 3.6012 (11) Å.

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For the previous structure determination, see: Cameron et al. (1979). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The compound was obtained commercially (Aldrich). A colourles block suitable for the X-ray diffraction study were taken directly from the provided material.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. Symmetry operators: i -x + 1/2, y - 1/2, z + 1/2; ii -x + 1/2, y + 1/2, z - 1/2.
[Figure 3] Fig. 3. Crystal packing of the title compound, viewed along [0 0 - 1] (anisotropic displacement ellipsoids drawn at 50% probability level).
Diphenylphosphonimidotriphenylphosphorane top
Crystal data top
C30H25NOP2Dx = 1.328 Mg m3
Mr = 477.45Melting point = 442–445 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9977 reflections
a = 17.6607 (12) Åθ = 2.7–28.3°
b = 15.1593 (10) ŵ = 0.21 mm1
c = 8.9192 (6) ÅT = 200 K
V = 2387.9 (3) Å3Block, colourless
Z = 40.88 × 0.42 × 0.31 mm
F(000) = 1000
Data collection top
Bruker APEXII CCD
diffractometer
4348 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.3°, θmin = 2.9°
ϕ and ω scansh = 2223
12511 measured reflectionsk = 2016
4498 independent reflectionsl = 711
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.5077P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
4498 reflectionsΔρmax = 0.21 e Å3
307 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1332 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (6)
Crystal data top
C30H25NOP2V = 2387.9 (3) Å3
Mr = 477.45Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.6607 (12) ŵ = 0.21 mm1
b = 15.1593 (10) ÅT = 200 K
c = 8.9192 (6) Å0.88 × 0.42 × 0.31 mm
Data collection top
Bruker APEXII CCD
diffractometer
4348 reflections with I > 2σ(I)
12511 measured reflectionsRint = 0.021
4498 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.21 e Å3
S = 1.11Δρmin = 0.25 e Å3
4498 reflectionsAbsolute structure: Flack (1983), 1332 Friedel pairs
307 parametersAbsolute structure parameter: 0.03 (6)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.083912 (19)0.16050 (2)0.55082 (5)0.02138 (9)
P20.227542 (18)0.05280 (2)0.53590 (6)0.02115 (9)
O10.08330 (6)0.21271 (8)0.40946 (15)0.0276 (3)
N10.15673 (7)0.10297 (9)0.59418 (19)0.0272 (3)
C110.06899 (9)0.23246 (11)0.7102 (2)0.0251 (3)
C120.02931 (10)0.31087 (11)0.6883 (3)0.0327 (4)
H120.01320.32680.59030.039*
C130.01304 (11)0.36602 (13)0.8084 (3)0.0420 (5)
H130.01390.41940.79240.050*
C140.03602 (12)0.34320 (14)0.9502 (3)0.0440 (5)
H140.02520.38131.03210.053*
C150.07484 (12)0.26496 (15)0.9752 (3)0.0426 (5)
H150.08980.24891.07380.051*
C160.09162 (10)0.21044 (13)0.8546 (2)0.0336 (4)
H160.11900.15730.87100.040*
C210.00231 (8)0.08902 (9)0.5576 (2)0.0228 (3)
C220.05883 (9)0.10711 (11)0.4654 (2)0.0294 (4)
H220.05630.15490.39680.035*
C230.12411 (10)0.05546 (13)0.4728 (2)0.0358 (4)
H230.16630.06870.41060.043*
C240.12731 (9)0.01467 (12)0.5705 (2)0.0357 (4)
H240.17140.05040.57410.043*
C250.06683 (10)0.03348 (12)0.6635 (2)0.0331 (4)
H250.06930.08190.73090.040*
C260.00227 (9)0.01904 (11)0.6576 (2)0.0286 (4)
H260.03910.00690.72250.034*
C310.29089 (9)0.11812 (11)0.4214 (2)0.0250 (3)
C320.26144 (10)0.18326 (12)0.3296 (2)0.0352 (4)
H320.20870.19580.33150.042*
C330.30909 (12)0.23043 (13)0.2347 (3)0.0421 (5)
H330.28870.27470.17110.051*
C340.38560 (11)0.21312 (13)0.2327 (2)0.0378 (4)
H340.41790.24550.16760.045*
C350.41530 (10)0.14935 (15)0.3242 (3)0.0404 (5)
H350.46810.13770.32220.048*
C360.36879 (10)0.10175 (14)0.4197 (2)0.0350 (4)
H360.38980.05810.48390.042*
C410.28149 (8)0.01741 (10)0.6966 (2)0.0222 (3)
C420.31729 (9)0.06444 (11)0.7022 (2)0.0288 (4)
H420.31460.10310.61860.035*
C430.35690 (10)0.08954 (12)0.8295 (2)0.0340 (4)
H430.38090.14560.83340.041*
C440.36148 (10)0.03317 (14)0.9506 (2)0.0375 (4)
H440.38860.05041.03780.045*
C450.32647 (11)0.04883 (13)0.9453 (2)0.0372 (4)
H450.33010.08781.02840.045*
C460.28624 (9)0.07380 (11)0.8190 (2)0.0290 (4)
H460.26180.12960.81610.035*
C510.20882 (9)0.04527 (11)0.4262 (2)0.0252 (3)
C520.25999 (10)0.07830 (13)0.3230 (2)0.0335 (4)
H520.30720.04940.30880.040*
C530.24317 (12)0.15319 (13)0.2399 (3)0.0402 (5)
H530.27860.17570.16950.048*
C540.17403 (12)0.19490 (12)0.2607 (3)0.0396 (5)
H540.16170.24560.20300.047*
C550.12324 (11)0.16321 (12)0.3645 (3)0.0369 (4)
H550.07630.19260.37920.044*
C560.14026 (9)0.08887 (11)0.4474 (2)0.0310 (4)
H560.10500.06740.51920.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01837 (15)0.02043 (17)0.0254 (2)0.00090 (11)0.00122 (16)0.00224 (17)
P20.01691 (14)0.02080 (17)0.0257 (2)0.00025 (12)0.00016 (17)0.00197 (17)
O10.0292 (6)0.0257 (6)0.0280 (7)0.0001 (4)0.0027 (5)0.0053 (5)
N10.0199 (5)0.0267 (6)0.0351 (8)0.0034 (5)0.0010 (5)0.0037 (6)
C110.0199 (6)0.0245 (8)0.0308 (9)0.0035 (6)0.0018 (6)0.0028 (7)
C120.0298 (8)0.0289 (8)0.0395 (11)0.0029 (6)0.0048 (8)0.0001 (8)
C130.0428 (10)0.0290 (9)0.0542 (14)0.0017 (8)0.0125 (10)0.0085 (9)
C140.0450 (10)0.0417 (11)0.0452 (13)0.0110 (8)0.0144 (10)0.0188 (10)
C150.0421 (10)0.0524 (12)0.0333 (11)0.0127 (9)0.0004 (9)0.0061 (9)
C160.0309 (8)0.0361 (9)0.0338 (10)0.0025 (7)0.0022 (8)0.0020 (8)
C210.0199 (6)0.0213 (6)0.0271 (9)0.0013 (5)0.0022 (6)0.0025 (7)
C220.0264 (7)0.0307 (8)0.0312 (9)0.0017 (6)0.0034 (7)0.0001 (7)
C230.0232 (7)0.0444 (10)0.0398 (11)0.0007 (7)0.0051 (7)0.0080 (9)
C240.0265 (7)0.0418 (9)0.0388 (11)0.0100 (6)0.0079 (7)0.0124 (8)
C250.0346 (8)0.0314 (8)0.0332 (10)0.0077 (7)0.0073 (8)0.0006 (8)
C260.0258 (7)0.0317 (8)0.0282 (9)0.0022 (6)0.0002 (7)0.0028 (7)
C310.0232 (7)0.0257 (7)0.0262 (8)0.0035 (6)0.0031 (6)0.0017 (7)
C320.0318 (8)0.0326 (9)0.0411 (12)0.0050 (7)0.0094 (8)0.0071 (8)
C330.0481 (10)0.0323 (9)0.0460 (12)0.0030 (8)0.0174 (10)0.0110 (9)
C340.0417 (10)0.0398 (10)0.0320 (10)0.0152 (8)0.0124 (8)0.0041 (8)
C350.0238 (8)0.0626 (13)0.0348 (11)0.0106 (8)0.0025 (8)0.0013 (10)
C360.0243 (7)0.0480 (10)0.0328 (10)0.0023 (7)0.0012 (7)0.0056 (8)
C410.0186 (6)0.0234 (7)0.0247 (8)0.0013 (5)0.0001 (6)0.0030 (6)
C420.0257 (7)0.0273 (8)0.0335 (10)0.0035 (6)0.0004 (7)0.0010 (7)
C430.0290 (8)0.0324 (8)0.0407 (11)0.0042 (6)0.0041 (8)0.0091 (8)
C440.0316 (8)0.0503 (11)0.0305 (10)0.0008 (7)0.0061 (7)0.0094 (9)
C450.0346 (9)0.0451 (10)0.0319 (10)0.0010 (7)0.0040 (8)0.0076 (9)
C460.0255 (7)0.0279 (8)0.0335 (10)0.0004 (6)0.0005 (7)0.0030 (8)
C510.0232 (7)0.0239 (7)0.0284 (9)0.0016 (5)0.0052 (6)0.0014 (6)
C520.0289 (8)0.0379 (9)0.0339 (11)0.0013 (7)0.0019 (7)0.0064 (8)
C530.0417 (10)0.0382 (10)0.0407 (12)0.0087 (8)0.0027 (9)0.0109 (9)
C540.0471 (10)0.0272 (8)0.0443 (12)0.0033 (7)0.0163 (9)0.0032 (8)
C550.0346 (8)0.0282 (8)0.0480 (12)0.0054 (7)0.0104 (9)0.0039 (8)
C560.0265 (7)0.0286 (8)0.0379 (10)0.0019 (6)0.0023 (7)0.0012 (8)
Geometric parameters (Å, º) top
P1—O11.4887 (13)C32—C331.392 (3)
P1—N11.6014 (13)C32—H320.9500
P1—C211.8040 (15)C33—C341.377 (3)
P1—C111.8109 (18)C33—H330.9500
P2—N11.5532 (13)C34—C351.370 (3)
P2—C411.8027 (17)C34—H340.9500
P2—C311.8099 (17)C35—C361.386 (3)
P2—C511.8099 (17)C35—H350.9500
C11—C161.389 (3)C36—H360.9500
C11—C121.394 (2)C41—C461.389 (2)
C12—C131.389 (3)C41—C421.394 (2)
C12—H120.9500C42—C431.387 (3)
C13—C141.373 (4)C42—H420.9500
C13—H130.9500C43—C441.380 (3)
C14—C151.388 (3)C43—H430.9500
C14—H140.9500C44—C451.389 (3)
C15—C161.388 (3)C44—H440.9500
C15—H150.9500C45—C461.384 (3)
C16—H160.9500C45—H450.9500
C21—C221.385 (2)C46—H460.9500
C21—C261.388 (2)C51—C521.384 (3)
C22—C231.395 (2)C51—C561.392 (2)
C22—H220.9500C52—C531.388 (3)
C23—C241.376 (3)C52—H520.9500
C23—H230.9500C53—C541.387 (3)
C24—C251.382 (3)C53—H530.9500
C24—H240.9500C54—C551.375 (3)
C25—C261.392 (2)C54—H540.9500
C25—H250.9500C55—C561.381 (3)
C26—H260.9500C55—H550.9500
C31—C321.384 (3)C56—H560.9500
C31—C361.398 (2)
O1—P1—N1120.00 (8)C31—C32—C33119.94 (17)
O1—P1—C21110.00 (8)C31—C32—H32120.0
N1—P1—C21107.83 (7)C33—C32—H32120.0
O1—P1—C11110.08 (7)C34—C33—C32120.2 (2)
N1—P1—C11104.80 (8)C34—C33—H33119.9
C21—P1—C11102.66 (7)C32—C33—H33119.9
N1—P2—C41107.77 (8)C35—C34—C33120.16 (18)
N1—P2—C31114.75 (7)C35—C34—H34119.9
C41—P2—C31106.55 (7)C33—C34—H34119.9
N1—P2—C51115.84 (7)C34—C35—C36120.47 (17)
C41—P2—C51106.37 (8)C34—C35—H35119.8
C31—P2—C51104.91 (8)C36—C35—H35119.8
P2—N1—P1146.35 (12)C35—C36—C31119.81 (18)
C16—C11—C12118.64 (17)C35—C36—H36120.1
C16—C11—P1122.75 (13)C31—C36—H36120.1
C12—C11—P1118.51 (15)C46—C41—C42119.50 (16)
C13—C12—C11120.6 (2)C46—C41—P2118.28 (12)
C13—C12—H12119.7C42—C41—P2122.22 (14)
C11—C12—H12119.7C43—C42—C41120.15 (18)
C14—C13—C12119.86 (19)C43—C42—H42119.9
C14—C13—H13120.1C41—C42—H42119.9
C12—C13—H13120.1C44—C43—C42120.04 (17)
C13—C14—C15120.6 (2)C44—C43—H43120.0
C13—C14—H14119.7C42—C43—H43120.0
C15—C14—H14119.7C43—C44—C45120.09 (18)
C14—C15—C16119.3 (2)C43—C44—H44120.0
C14—C15—H15120.3C45—C44—H44120.0
C16—C15—H15120.3C46—C45—C44120.07 (18)
C15—C16—C11120.92 (18)C46—C45—H45120.0
C15—C16—H16119.5C44—C45—H45120.0
C11—C16—H16119.5C45—C46—C41120.15 (16)
C22—C21—C26119.16 (14)C45—C46—H46119.9
C22—C21—P1118.95 (13)C41—C46—H46119.9
C26—C21—P1121.82 (12)C52—C51—C56119.09 (16)
C21—C22—C23120.35 (17)C52—C51—P2122.51 (13)
C21—C22—H22119.8C56—C51—P2118.39 (14)
C23—C22—H22119.8C51—C52—C53120.76 (17)
C24—C23—C22119.84 (17)C51—C52—H52119.6
C24—C23—H23120.1C53—C52—H52119.6
C22—C23—H23120.1C54—C53—C52119.33 (19)
C23—C24—C25120.51 (15)C54—C53—H53120.3
C23—C24—H24119.7C52—C53—H53120.3
C25—C24—H24119.7C55—C54—C53120.31 (18)
C24—C25—C26119.50 (18)C55—C54—H54119.8
C24—C25—H25120.3C53—C54—H54119.8
C26—C25—H25120.3C54—C55—C56120.23 (18)
C21—C26—C25120.63 (16)C54—C55—H55119.9
C21—C26—H26119.7C56—C55—H55119.9
C25—C26—H26119.7C55—C56—C51120.27 (18)
C32—C31—C36119.36 (16)C55—C56—H56119.9
C32—C31—P2119.46 (12)C51—C56—H56119.9
C36—C31—P2121.14 (14)
C41—P2—N1—P1173.79 (15)C41—P2—C31—C3629.82 (17)
C31—P2—N1—P155.30 (19)C51—P2—C31—C3682.72 (17)
C51—P2—N1—P167.26 (19)C36—C31—C32—C331.3 (3)
O1—P1—N1—P225.4 (2)P2—C31—C32—C33176.30 (16)
C21—P1—N1—P2101.52 (17)C31—C32—C33—C340.6 (3)
C11—P1—N1—P2149.62 (16)C32—C33—C34—C350.0 (3)
O1—P1—C11—C16157.41 (13)C33—C34—C35—C360.1 (3)
N1—P1—C11—C1627.08 (16)C34—C35—C36—C310.8 (3)
C21—P1—C11—C1685.50 (15)C32—C31—C36—C351.4 (3)
O1—P1—C11—C1226.37 (15)P2—C31—C36—C35176.14 (16)
N1—P1—C11—C12156.70 (13)N1—P2—C41—C4638.07 (14)
C21—P1—C11—C1290.72 (14)C31—P2—C41—C4685.57 (13)
C16—C11—C12—C130.3 (2)C51—P2—C41—C46162.90 (13)
P1—C11—C12—C13176.66 (14)N1—P2—C41—C42141.06 (13)
C11—C12—C13—C140.2 (3)C31—P2—C41—C4295.30 (14)
C12—C13—C14—C150.6 (3)C51—P2—C41—C4216.23 (16)
C13—C14—C15—C161.2 (3)C46—C41—C42—C430.5 (2)
C14—C15—C16—C111.1 (3)P2—C41—C42—C43178.67 (13)
C12—C11—C16—C150.3 (3)C41—C42—C43—C440.5 (3)
P1—C11—C16—C15175.88 (14)C42—C43—C44—C450.0 (3)
O1—P1—C21—C2218.58 (16)C43—C44—C45—C460.7 (3)
N1—P1—C21—C22151.12 (14)C44—C45—C46—C410.8 (3)
C11—P1—C21—C2298.56 (15)C42—C41—C46—C450.2 (2)
O1—P1—C21—C26164.52 (14)P2—C41—C46—C45179.36 (14)
N1—P1—C21—C2631.99 (17)N1—P2—C51—C52155.63 (15)
C11—P1—C21—C2678.33 (15)C41—P2—C51—C5284.66 (17)
C26—C21—C22—C230.1 (3)C31—P2—C51—C5228.00 (17)
P1—C21—C22—C23177.12 (14)N1—P2—C51—C5624.50 (18)
C21—C22—C23—C241.0 (3)C41—P2—C51—C5695.21 (15)
C22—C23—C24—C251.2 (3)C31—P2—C51—C56152.12 (14)
C23—C24—C25—C260.1 (3)C56—C51—C52—C530.8 (3)
C22—C21—C26—C251.2 (3)P2—C51—C52—C53179.31 (16)
P1—C21—C26—C25178.09 (14)C51—C52—C53—C540.3 (3)
C24—C25—C26—C211.1 (3)C52—C53—C54—C551.1 (3)
N1—P2—C31—C3233.42 (18)C53—C54—C55—C560.9 (3)
C41—P2—C31—C32152.60 (15)C54—C55—C56—C510.2 (3)
C51—P2—C31—C3294.86 (16)C52—C51—C56—C551.0 (3)
N1—P2—C31—C36148.99 (15)P2—C51—C56—C55179.07 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···O10.952.343.257 (2)163
C43—H43···O1i0.952.343.257 (2)162
C45—H45···Cg1ii0.952.923.846 (2)165
C55—H55···Cg2iii0.952.733.644 (2)163
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1; (iii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC30H25NOP2
Mr477.45
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)200
a, b, c (Å)17.6607 (12), 15.1593 (10), 8.9192 (6)
V3)2387.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.88 × 0.42 × 0.31
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12511, 4498, 4348
Rint0.021
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.11
No. of reflections4498
No. of parameters307
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25
Absolute structureFlack (1983), 1332 Friedel pairs
Absolute structure parameter0.03 (6)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
P1—N11.6014 (13)P2—N11.5532 (13)
P2—N1—P1146.35 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···O10.952.343.257 (2)163
C43—H43···O1i0.952.343.257 (2)162
C45—H45···Cg1ii0.952.923.846 (2)165
C55—H55···Cg2iii0.952.733.644 (2)163
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1; (iii) x, y, z1/2.
 

Acknowledgements

The authors thank Mr Gerhard Schneeberger for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.  Google Scholar
First citationCameron, A. F., Cameron, I. R. & Keat, R. (1979). Acta Cryst. B35, 1373–1377.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds