organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1185

Di­ethyl 4,6-diacetamido­isophthalate

aKey Laboratory for Radiation Physics and Technology of the Ministry of Education, College of Chemistry, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, Sichuan, People's Republic of China
*Correspondence e-mail: wfeng9510@scu.edu.cn

(Received 26 March 2011; accepted 12 April 2011; online 22 April 2011)

In the title compound, C16H20N2O6, two intra­molecular N—H⋯O hydrogen bonds occur, in which the carbonyl O atoms of the ethyl acetate groups serve as the acceptor atoms; both motifs generate S(6) rings. In the crystal, mol­ecules are linked by weak C—H⋯O links (with the acceptor O atoms part of the amide groups), generating [001] chains.

Related literature

For background to intra­molecular hydrogen bonds this class of compound, see: Zhu et al. (2000[Zhu, J., Parra, R. D., Zeng, H. Q., Skrzypczak-Jankun, E., Zeng, X. C. & Gong, B. (2000). J. Am. Chem. Soc. 122, 4219-4220.]); Yuan et al. (2004[Yuan, L. H., Feng, W., Yamato, K., Sanford, A. R., Xu, D. G., Guo, H. & Gong, B. (2004). J. Am. Chem. Soc. 126, 11120-11121.]); Feng et al. (2009[Feng, W., Yamato, K., Yang, L. Q., Ferguson, J. S., Zhong, L. J., Zou, S. L., Yuan, L. H., Zeng, X. C. & Gong, B. (2009). J. Am. Chem. Soc. 131, 2629-2637.]); Yan et al. (2010[Yan, Y., Qin, B., Ren, C. L., Chen, X. Y., Yip, Y. K., Ye, R. J., Zhang, D. W., Su, H. B. & Zeng, H. Q. (2010). J. Am. Chem. Soc. 132, 5869-5879.]); Zhang et al. (2008[Zhang, Y. F., Yamato, K., Zhong, K., Zhu, J., Deng, J. G. & Gong, B. (2008). Org. Lett. 10, 4338-4342.]). For a related structure, see: Zhang et al. (2006[Zhang, A. M., Han, Y. H., Yamato, K., Zeng, X. C. & Gong, B. (2006). Org. Lett. 8, 803-806.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N2O6

  • Mr = 336.34

  • Triclinic, [P \overline 1]

  • a = 7.951 (3) Å

  • b = 10.249 (3) Å

  • c = 11.109 (4) Å

  • α = 76.70 (3)°

  • β = 77.42 (3)°

  • γ = 76.50 (2)°

  • V = 843.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 292 K

  • 0.50 × 0.46 × 0.40 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3149 measured reflections

  • 3094 independent reflections

  • 1826 reflections with I > 2σ(I)

  • Rint = 0.004

  • 3 standard reflections every 150 reflections intensity decay: 4.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.268

  • S = 1.09

  • 3094 reflections

  • 223 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.88 (4) 1.92 (3) 2.676 (4) 144 (3)
N2—H2N⋯O6 0.81 (4) 1.96 (4) 2.656 (4) 143 (3)
C9—H9B⋯O3i 0.96 2.54 3.445 (6) 157
C16—H16A⋯O4ii 0.96 2.57 3.485 (7) 160
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+2.

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting Abstract, PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrogen bonds play a vital role in assisting formation of aromatic oligoamide foldmers and macrocycles (Zhu et al., 2000; Yuan et al., 2004; Feng et al., 2009). It is important to examine the structural feature of the backbones that is responsible for the formation of foldmers and macrocycles. Research has focused on the role of intramolecular hydrogen bonds in regulating conformations and interactions both in solution and the solid state (Yan et al., 2010; Zhang et al. 2008). Herein, we report on the crystal structure of the aromatic monomer containing intramolecular hydrogen bonds, which could be applied as important building blocks to construct macrocycles.

The title compound comprises two similar six-member hydrogen bonds. There are two possible comformations: (a) one with the ethoxy O atoms involving in the intramolecular NH···OC2H5 six-member hydrogen bonds (conformation a), and (b) the other with carbonyl O atoms that form intramolecualr H-bonds (conformation b) (Fig. 1). However, the crystal structure revealed the existence of two six-member hydrogen bonds that involve carbonyl O atoms, indicating that conformation b is more stable and is sustained by two intromolecular hydrogen bond N1H1···O2 (Table1, Fig. 2). It is expected that this type of hydrogen bonds may be exploited to construct macrocyles and supamolecular architecture with folded conformations. In the crystal, the molecules are linked by C—H···O interactions.

Related literature top

For background to intramolecular hydrogen bonds this class of compound, see: Zhu et al. (2000); Yuan et al. (2004); Feng et al. (2009); Yan et al. (2010); Zhang et al. (2008). For a related structure, see: Zhang et al. (2006).

Experimental top

For synthesis of the title compound, Pd/C (50 mg) was added to the solution of diethyl 4,6-dinitroisophthalate (500 mg, 1.60 mmol) in CH2Cl2 and the mixture was stirred at room temperature under H2 atmosphere for 6 h. After removal of Pd/C and solvent, the white solid was obtained and then dissolved in CH2Cl2 (50 ml). Et3N (335 mg, 3.31 mmol) was added to the above solution followed by dropping acetyl chloride (350 mg, 4.46 mmol). After stirring 2 h at room temperature, the mixture was washed with distilled water, dried over anhydrous Na2SO4. Removal of solvent under reduced pressure gave the crude product, which was recrystallized from methanol to yield the white product (430 mg, yield 79.8%). 1H NMR (400 MHz, CDCl3): δ 10.95 (s, 2H), 9.98 (s, 1H), 8.74 (s, 1H), 4.35 (m, 4H), 2.25 (s, 6H), 1.20 (t, J = 6.4 Hz, 6H).

The crystal of the title compound was grown from the THF solution. This compound was dissolved in THF and filtered, then the filtrate was allowed to stand undisturbed to give the single-crystal.

Refinement top

The H atoms bonded to atom N1 and N2 of the title compound were located from difference Fourier maps and refined isotropically [N1—H = 1.88 (4), N2—H = 0.81 (4) Å]. H atoms bonded to C atoms were placed in calculated positions and refined using a riding model, with C—H = 0.9300 Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms, C—H = 0.9700 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, C—H = 0.9600 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The deepest difference hole of -0.65 e.Å-3 is 0.33 Å from atom C16.

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two possible intramolecular hydrogen bond conformations of the title compound.
[Figure 2] Fig. 2. A view of the title compound with displacement ellipsoids shown at the 50% probability level. Hydrogen bonds are indicated by broken lines.
Diethyl 4,6-diacetamidoisophthalate top
Crystal data top
C16H20N2O6Z = 2
Mr = 336.34F(000) = 356
Triclinic, P1Dx = 1.324 Mg m3
a = 7.951 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.249 (3) ÅCell parameters from 20 reflections
c = 11.109 (4) Åθ = 5.4–6.7°
α = 76.70 (3)°µ = 0.10 mm1
β = 77.42 (3)°T = 292 K
γ = 76.50 (2)°Block, colourless
V = 843.7 (5) Å30.50 × 0.46 × 0.40 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.004
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.9°
Graphite monochromatorh = 99
ω/2θ scansk = 112
3149 measured reflectionsl = 1213
3094 independent reflections3 standard reflections every 150 reflections
1826 reflections with I > 2σ(I) intensity decay: 4.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.268H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1639P)2 + 0.1078P]
where P = (Fo2 + 2Fc2)/3
3094 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.59 e Å3
4 restraintsΔρmin = 0.65 e Å3
Crystal data top
C16H20N2O6γ = 76.50 (2)°
Mr = 336.34V = 843.7 (5) Å3
Triclinic, P1Z = 2
a = 7.951 (3) ÅMo Kα radiation
b = 10.249 (3) ŵ = 0.10 mm1
c = 11.109 (4) ÅT = 292 K
α = 76.70 (3)°0.50 × 0.46 × 0.40 mm
β = 77.42 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.004
3149 measured reflections3 standard reflections every 150 reflections
3094 independent reflections intensity decay: 4.5%
1826 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0794 restraints
wR(F2) = 0.268H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.59 e Å3
3094 reflectionsΔρmin = 0.65 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9467 (4)0.1465 (3)0.6464 (2)0.0692 (9)
O21.1334 (4)0.2976 (3)0.7586 (2)0.0706 (9)
O31.0473 (5)0.3487 (3)1.2179 (3)0.0988 (12)
O40.7415 (4)0.0447 (3)1.3243 (3)0.0796 (9)
O50.5572 (4)0.2164 (3)0.7774 (3)0.0692 (8)
O60.5009 (4)0.2628 (3)0.9676 (3)0.0718 (8)
N11.0637 (4)0.3063 (3)1.0068 (3)0.0503 (8)
H1N1.113 (4)0.338 (4)0.938 (3)0.046 (9)*
N20.6413 (4)0.0776 (3)1.1468 (3)0.0514 (8)
H2N0.581 (5)0.150 (4)1.120 (3)0.044 (10)*
C10.9150 (4)0.1332 (4)0.8583 (3)0.0477 (8)
C20.9442 (4)0.1847 (3)0.9824 (3)0.0427 (8)
C30.8541 (4)0.1138 (3)1.0777 (3)0.0440 (8)
H30.87450.14771.15940.053*
C40.7336 (4)0.0075 (3)1.0518 (3)0.0413 (8)
C50.7021 (4)0.0591 (3)0.9291 (3)0.0449 (8)
C60.7941 (4)0.0127 (3)0.8356 (3)0.0460 (8)
H60.77360.02160.75390.055*
C71.0103 (5)0.2022 (4)0.7527 (3)0.0539 (9)
C81.0398 (7)0.1987 (5)0.5319 (4)0.0871 (15)
H8A1.16550.21920.53100.104*
H8B1.01600.13030.45810.104*
C90.9772 (8)0.3269 (6)0.5304 (5)0.1008 (17)
H9A1.01750.39870.59610.151*
H9B1.02330.35430.45070.151*
H9C0.85120.30900.54340.151*
C101.1082 (5)0.3819 (4)1.1169 (4)0.0574 (10)
C111.2385 (6)0.5100 (4)1.1039 (4)0.0680 (11)
H11A1.23820.56961.18440.102*
H11B1.35330.48881.07220.102*
H11C1.20810.55441.04660.102*
C120.6424 (5)0.0486 (4)1.2735 (3)0.0544 (9)
C130.5091 (6)0.1480 (5)1.3433 (4)0.0723 (12)
H13A0.39510.15301.32490.108*
H13B0.53990.23671.31770.108*
H13C0.50730.11771.43200.108*
C140.5778 (5)0.1888 (4)0.8965 (4)0.0531 (9)
C150.4366 (9)0.3443 (6)0.7425 (5)0.1109 (14)
H15A0.48480.42160.74630.133*
H15B0.32450.34650.79870.133*
C160.4146 (9)0.3488 (6)0.6092 (5)0.1109 (14)
H16A0.37960.26660.60510.166*
H16B0.52390.35650.55340.166*
H16C0.32620.42630.58480.166*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0823 (19)0.0772 (19)0.0456 (15)0.0082 (15)0.0164 (13)0.0255 (13)
O20.0655 (17)0.0820 (19)0.0598 (17)0.0178 (15)0.0127 (13)0.0357 (14)
O30.130 (3)0.084 (2)0.0577 (19)0.040 (2)0.0244 (18)0.0185 (16)
O40.094 (2)0.082 (2)0.0529 (16)0.0193 (18)0.0208 (15)0.0222 (14)
O50.0774 (19)0.0613 (16)0.0625 (17)0.0094 (14)0.0272 (14)0.0076 (13)
O60.083 (2)0.0520 (15)0.0749 (19)0.0166 (14)0.0225 (15)0.0227 (14)
N10.0532 (17)0.0460 (16)0.0500 (17)0.0046 (13)0.0107 (14)0.0184 (13)
N20.0526 (18)0.0501 (18)0.0507 (18)0.0036 (15)0.0115 (14)0.0189 (14)
C10.0476 (19)0.0513 (19)0.0465 (19)0.0098 (16)0.0054 (15)0.0161 (15)
C20.0392 (17)0.0438 (17)0.0469 (18)0.0060 (14)0.0068 (14)0.0147 (14)
C30.0455 (18)0.0449 (18)0.0428 (18)0.0052 (15)0.0074 (14)0.0147 (14)
C40.0353 (16)0.0430 (17)0.0480 (18)0.0066 (14)0.0029 (13)0.0182 (14)
C50.0436 (18)0.0433 (18)0.0492 (19)0.0035 (15)0.0102 (15)0.0143 (15)
C60.0485 (19)0.0480 (18)0.0430 (17)0.0067 (15)0.0100 (14)0.0120 (14)
C70.055 (2)0.058 (2)0.051 (2)0.0040 (18)0.0062 (16)0.0240 (17)
C80.105 (4)0.096 (3)0.054 (2)0.007 (3)0.009 (2)0.032 (2)
C90.121 (4)0.107 (4)0.081 (3)0.002 (3)0.026 (3)0.048 (3)
C100.058 (2)0.051 (2)0.062 (2)0.0021 (17)0.0145 (18)0.0186 (18)
C110.076 (3)0.048 (2)0.077 (3)0.0043 (19)0.021 (2)0.0148 (19)
C120.056 (2)0.060 (2)0.050 (2)0.0067 (18)0.0058 (17)0.0237 (17)
C130.071 (3)0.081 (3)0.063 (2)0.005 (2)0.005 (2)0.035 (2)
C140.058 (2)0.0453 (19)0.058 (2)0.0045 (17)0.0150 (17)0.0146 (16)
C150.130 (3)0.087 (3)0.103 (3)0.021 (2)0.050 (3)0.008 (2)
C160.130 (3)0.087 (3)0.103 (3)0.021 (2)0.050 (3)0.008 (2)
Geometric parameters (Å, º) top
O1—C71.338 (4)C5—C141.482 (5)
O1—C81.474 (5)C6—H60.9300
O2—C71.212 (4)C8—C91.514 (6)
O3—C101.212 (5)C8—H8A0.9700
O4—C121.204 (5)C8—H8B0.9700
O5—C141.326 (4)C9—H9A0.9600
O5—C151.459 (5)C9—H9B0.9600
O6—C141.192 (4)C9—H9C0.9600
N1—C101.359 (5)C10—C111.485 (5)
N1—C21.390 (4)C11—H11A0.9600
N1—H1N0.88 (4)C11—H11B0.9600
N2—C121.371 (5)C11—H11C0.9600
N2—C41.391 (4)C12—C131.505 (5)
N2—H2N0.81 (4)C13—H13A0.9600
C1—C61.386 (5)C13—H13B0.9600
C1—C21.408 (5)C13—H13C0.9600
C1—C71.482 (5)C15—C161.517 (7)
C2—C31.393 (4)C15—H15A0.9700
C3—C41.395 (4)C15—H15B0.9700
C3—H30.9300C16—H16A0.9600
C4—C51.398 (5)C16—H16B0.9600
C5—C61.388 (4)C16—H16C0.9600
C7—O1—C8117.5 (3)H9A—C9—H9B109.5
C14—O5—C15114.2 (3)C8—C9—H9C109.5
C10—N1—C2130.8 (3)H9A—C9—H9C109.5
C10—N1—H1N117 (2)H9B—C9—H9C109.5
C2—N1—H1N112 (2)O3—C10—N1123.3 (3)
C12—N2—C4131.2 (3)O3—C10—C11122.3 (4)
C12—N2—H2N116 (3)N1—C10—C11114.4 (3)
C4—N2—H2N112 (3)C10—C11—H11A109.5
C6—C1—C2118.0 (3)C10—C11—H11B109.5
C6—C1—C7119.7 (3)H11A—C11—H11B109.5
C2—C1—C7122.3 (3)C10—C11—H11C109.5
N1—C2—C3121.5 (3)H11A—C11—H11C109.5
N1—C2—C1118.7 (3)H11B—C11—H11C109.5
C3—C2—C1119.9 (3)O4—C12—N2124.0 (3)
C2—C3—C4120.7 (3)O4—C12—C13122.9 (4)
C2—C3—H3119.6N2—C12—C13113.1 (3)
C4—C3—H3119.6C12—C13—H13A109.5
N2—C4—C3121.0 (3)C12—C13—H13B109.5
N2—C4—C5119.0 (3)H13A—C13—H13B109.5
C3—C4—C5120.0 (3)C12—C13—H13C109.5
C6—C5—C4118.3 (3)H13A—C13—H13C109.5
C6—C5—C14119.7 (3)H13B—C13—H13C109.5
C4—C5—C14122.0 (3)O6—C14—O5121.7 (3)
C1—C6—C5123.0 (3)O6—C14—C5125.2 (3)
C1—C6—H6118.5O5—C14—C5113.1 (3)
C5—C6—H6118.5O5—C15—C16106.1 (4)
O2—C7—O1122.4 (3)O5—C15—H15A110.5
O2—C7—C1125.2 (3)C16—C15—H15A110.5
O1—C7—C1112.4 (3)O5—C15—H15B110.5
O1—C8—C9108.6 (4)C16—C15—H15B110.5
O1—C8—H8A110.0H15A—C15—H15B108.7
C9—C8—H8A110.0C15—C16—H16A109.5
O1—C8—H8B110.0C15—C16—H16B109.5
C9—C8—H8B110.0H16A—C16—H16B109.5
H8A—C8—H8B108.3C15—C16—H16C109.5
C8—C9—H9A109.5H16A—C16—H16C109.5
C8—C9—H9B109.5H16B—C16—H16C109.5
C10—N1—C2—C34.6 (6)C14—C5—C6—C1178.7 (3)
C10—N1—C2—C1175.5 (3)C8—O1—C7—O24.3 (6)
C6—C1—C2—N1179.3 (3)C8—O1—C7—C1175.0 (3)
C7—C1—C2—N11.5 (5)C6—C1—C7—O2170.3 (4)
C6—C1—C2—C30.8 (5)C2—C1—C7—O28.9 (6)
C7—C1—C2—C3178.4 (3)C6—C1—C7—O19.1 (5)
N1—C2—C3—C4179.5 (3)C2—C1—C7—O1171.8 (3)
C1—C2—C3—C40.6 (5)C7—O1—C8—C983.1 (5)
C12—N2—C4—C31.0 (6)C2—N1—C10—O32.1 (7)
C12—N2—C4—C5178.0 (3)C2—N1—C10—C11177.7 (3)
C2—C3—C4—N2179.0 (3)C4—N2—C12—O46.1 (7)
C2—C3—C4—C50.0 (5)C4—N2—C12—C13175.2 (3)
N2—C4—C5—C6179.4 (3)C15—O5—C14—O61.0 (6)
C3—C4—C5—C60.4 (5)C15—O5—C14—C5179.4 (4)
N2—C4—C5—C142.1 (5)C6—C5—C14—O6174.9 (4)
C3—C4—C5—C14178.9 (3)C4—C5—C14—O63.6 (6)
C2—C1—C6—C50.4 (5)C6—C5—C14—O55.6 (5)
C7—C1—C6—C5178.8 (3)C4—C5—C14—O5176.0 (3)
C4—C5—C6—C10.2 (5)C14—O5—C15—C16173.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.88 (4)1.92 (3)2.676 (4)144 (3)
N2—H2N···O60.81 (4)1.96 (4)2.656 (4)143 (3)
C9—H9B···O3i0.962.543.445 (6)157
C16—H16A···O4ii0.962.573.485 (7)160
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC16H20N2O6
Mr336.34
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.951 (3), 10.249 (3), 11.109 (4)
α, β, γ (°)76.70 (3), 77.42 (3), 76.50 (2)
V3)843.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.46 × 0.40
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3149, 3094, 1826
Rint0.004
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.268, 1.09
No. of reflections3094
No. of parameters223
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.65

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.88 (4)1.92 (3)2.676 (4)144 (3)
N2—H2N···O60.81 (4)1.96 (4)2.656 (4)143 (3)
C9—H9B···O3i0.962.543.445 (6)157
C16—H16A···O4ii0.962.573.485 (7)160
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+2.
 

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (20774059) for funding this work, and the Analytical & Testing Center of Sichuan University for the X-ray analysis.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeng, W., Yamato, K., Yang, L. Q., Ferguson, J. S., Zhong, L. J., Zou, S. L., Yuan, L. H., Zeng, X. C. & Gong, B. (2009). J. Am. Chem. Soc. 131, 2629–2637.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting Abstract, PA 104.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Y., Qin, B., Ren, C. L., Chen, X. Y., Yip, Y. K., Ye, R. J., Zhang, D. W., Su, H. B. & Zeng, H. Q. (2010). J. Am. Chem. Soc. 132, 5869–5879.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYuan, L. H., Feng, W., Yamato, K., Sanford, A. R., Xu, D. G., Guo, H. & Gong, B. (2004). J. Am. Chem. Soc. 126, 11120–11121.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, A. M., Han, Y. H., Yamato, K., Zeng, X. C. & Gong, B. (2006). Org. Lett. 8, 803–806.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Y. F., Yamato, K., Zhong, K., Zhu, J., Deng, J. G. & Gong, B. (2008). Org. Lett. 10, 4338–4342.  Google Scholar
First citationZhu, J., Parra, R. D., Zeng, H. Q., Skrzypczak-Jankun, E., Zeng, X. C. & Gong, B. (2000). J. Am. Chem. Soc. 122, 4219–4220.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1185
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds