organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1058

4-({[(E)-Pyridin-3-yl­methyl­­idene]amino}­meth­yl)cyclo­hexa­necarb­­oxy­lic acid

aInstitute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 29 March 2011; accepted 30 March 2011; online 7 April 2011)

The title compound, C14H18N2O2, contains two geometrically different mol­ecules in the asymmetric unit: the basal plane of the cyclo­hexane chair and the N-[pyridin-3-yl­methyl­idene]methanamine moiety are oriented at dihedral angles of 71.77 (7)° and 83.42 (8)°. In the crystal, the mol­ecules are linked by O—H⋯N hydrogen bonds, generating C(13) head-to-tail chains extending along the base vector [103]. R22(26) ring motifs are formed due to the C—H⋯·O inter­actions that link neighbouring chains. There also exist ππ inter­actions [centroid–centroid separation = 3.6925 (12) Å] between the symmetry-related pyridine rings of one of the independent mol­ecules.

Related literature

For related structures, see: Huh & Lee (2007[Huh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244-1248.]): Shahzadi et al. (2007[Shahzadi, S., Ali, S., Parvez, M., Badshah, A., Ahmed, E. & Malik, A. (2007). Russ. J. Inorg. Chem. 52, 386-393.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N2O2

  • Mr = 246.31

  • Monoclinic, P 21 /n

  • a = 12.7580 (6) Å

  • b = 11.2504 (6) Å

  • c = 18.8088 (7) Å

  • β = 94.720 (2)°

  • V = 2690.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.34 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.983

  • 24311 measured reflections

  • 6635 independent reflections

  • 3908 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.207

  • S = 1.05

  • 6635 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N4i 0.82 1.87 2.682 (2) 171
O3—H3⋯N2ii 0.82 1.89 2.685 (2) 164
C11—H11⋯O2iii 0.93 2.56 3.478 (3) 168
C13—H13⋯O2iv 0.93 2.57 3.316 (3) 137
C27—H27⋯O4v 0.93 2.45 3.280 (3) 148
Symmetry codes: (i) x, y, z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y, -z+1; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) has been prepared for the study of biological studies and for the synthesis of metallic complexes.

The crystal structure of (II) i.e., 4-(aminomethyl)cyclohexane-1-carboxylic acid (Shahzadi et al., 2007) and (III) i.e., N,N'-bis(pyridin-3-ylmethylene)cyclohexane-trans-1,4-diamine (Huh & Lee, 2007) have been published which are related to the title compound.

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecules, the basal plane A (C3/C4/C6/C7) of cyclohexane and N-[pyridin-3-ylmethylidene]methanamine moiety B (C8—C14/N1/N2) are almost planar with r.m.s. deviation of 0.014 and 0.034 Å, respectively. The dihedral angle between A/B is 71.77 (7)°. The carboxylate group C (O1/C1/O2) is of course planar. The dihedral angle between A/C and B/C is 30.07 (15)° and 53.36 (15)°, respectively. In second molecules, the basal plane D (C17/C18/C20/C21) of cyclohexane and N-[pyridin-3-ylmethylidene]methanamine moiety E (C22—C28/N3/N4) are also almost planar with r.m.s. deviation of 0.006 and 0.047 Å, respectively. The dihedral angle between D/E is 83.42 (8)°. The carboxylate group F (O3/C15/O4) makes dihedral angle of 30.03 (26)° and 62.40 (14)° with D and E, respectively.

In the crystal, the molecules are stabilized in the form of infinite C(13) polymeric chains due to O—H···.N H-bonds (Table 1, Fig. 2) extending along the base vector [103]. Due to intermolecular H-bonding of C—H···.O type (Table 1, Fig. 2) ring motifs (Bernstein et al., 1995) R22(26) are formed. The molecules are further stabilized by the π···π interaction between the symmetry related pyridine ring (C24/C25/N4/C26/C27/C28) at a distance of 3.6925 (12) Å.

Related literature top

For related structures, see: Huh & Lee (2007): Shahzadi et al. (2007). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A two-necked reaction flask equipped with a reflux condenser, serum cap and a magnet bar was charged with a methanolic solution (40 ml) of tranexamic acid (0.157 g, 1 mmol) and pyridine-3-carboxaldehyde (0.107 g, 1 mmol) at room temperature under nitrogen atmosphere. An excess amount of triethylamine (1 ml) was dropped into the reaction mixture through a serum cap and subsequently the reaction mixture was refluxed for about 20 h. The disappearance of the starting materials was ascertained by TLC (methanol:chloroform). After completion of the reaction, an equivalent quantity of glacial acetic acid was added to the mixture to ensure neutralization of triethylamine. Later on, the crude mixture was allowed to stand overnight which resulted gradually into crystallized material. The solid was collected by suction filtration, washed with diethyl ether and recrystalized from hot methanol to give colourless prisms of (I).

Refinement top

The coordinates of H-atoms of hydroxy groups were refined. The H-atoms were positioned geometrically (O—H = 0.82, C–H = 0.93—0.98 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The partial packing, which shows that the molecules form polymeric chains and ring motifs.
4-({[(E)-Pyridin-3-ylmethylidene]amino}methyl)cyclohexanecarboxylic acid top
Crystal data top
C14H18N2O2F(000) = 1056
Mr = 246.31Dx = 1.216 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3908 reflections
a = 12.7580 (6) Åθ = 1.9–28.3°
b = 11.2504 (6) ŵ = 0.08 mm1
c = 18.8088 (7) ÅT = 296 K
β = 94.720 (2)°Prism, colourless
V = 2690.5 (2) Å30.34 × 0.25 × 0.22 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6635 independent reflections
Radiation source: fine-focus sealed tube3908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 1.9°
ω scansh = 1517
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1314
Tmin = 0.975, Tmax = 0.983l = 2521
24311 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1099P)2 + 0.2692P]
where P = (Fo2 + 2Fc2)/3
6635 reflections(Δ/σ)max < 0.001
327 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H18N2O2V = 2690.5 (2) Å3
Mr = 246.31Z = 8
Monoclinic, P21/nMo Kα radiation
a = 12.7580 (6) ŵ = 0.08 mm1
b = 11.2504 (6) ÅT = 296 K
c = 18.8088 (7) Å0.34 × 0.25 × 0.22 mm
β = 94.720 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6635 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3908 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.034
24311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.05Δρmax = 0.50 e Å3
6635 reflectionsΔρmin = 0.25 e Å3
327 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34542 (12)0.20319 (19)0.85240 (7)0.0774 (7)
O20.48692 (13)0.19021 (19)0.79343 (8)0.0852 (8)
N10.18226 (12)0.02615 (17)0.48003 (7)0.0500 (6)
N20.18135 (14)0.04146 (17)0.22905 (8)0.0552 (6)
C10.39348 (17)0.1868 (2)0.79392 (10)0.0542 (7)
C20.31681 (15)0.1641 (2)0.72955 (9)0.0496 (7)
C30.37171 (17)0.1506 (2)0.66075 (9)0.0607 (8)
C40.29250 (17)0.1273 (2)0.59682 (9)0.0577 (8)
C50.22042 (14)0.0229 (2)0.60795 (8)0.0465 (6)
C60.16868 (15)0.0366 (2)0.67770 (9)0.0558 (7)
C70.24956 (15)0.0556 (2)0.74099 (9)0.0529 (7)
C80.13716 (15)0.0072 (2)0.54600 (9)0.0543 (7)
C90.15528 (15)0.0323 (2)0.42457 (9)0.0482 (6)
C100.19220 (14)0.00271 (18)0.35472 (8)0.0429 (6)
C110.15284 (15)0.0644 (2)0.29463 (9)0.0509 (7)
C120.25168 (16)0.0442 (2)0.22215 (10)0.0552 (7)
C130.29540 (16)0.1099 (2)0.27881 (10)0.0547 (7)
C140.26511 (15)0.08693 (19)0.34589 (9)0.0493 (6)
O30.58371 (14)0.35232 (17)0.61410 (7)0.0740 (7)
O40.69327 (16)0.4490 (2)0.55311 (8)0.1074 (8)
N30.50418 (13)0.15359 (17)0.22618 (8)0.0547 (6)
N40.47454 (15)0.19104 (17)0.02788 (8)0.0584 (6)
C150.61952 (15)0.3860 (2)0.55416 (9)0.0493 (7)
C160.55551 (15)0.33872 (19)0.48915 (9)0.0470 (6)
C170.59449 (19)0.3837 (2)0.41964 (10)0.0636 (8)
C180.52518 (18)0.3364 (2)0.35534 (10)0.0600 (8)
C190.52023 (17)0.2027 (2)0.35542 (9)0.0535 (7)
C200.4829 (2)0.1581 (3)0.42478 (11)0.0726 (9)
C210.55003 (19)0.2050 (2)0.48971 (10)0.0622 (8)
C220.45076 (17)0.1549 (2)0.29154 (9)0.0612 (8)
C230.45152 (16)0.17579 (19)0.16841 (9)0.0485 (6)
C240.49662 (15)0.16380 (18)0.09908 (9)0.0460 (6)
C250.44008 (17)0.2013 (2)0.03678 (9)0.0522 (7)
C260.56779 (19)0.1403 (2)0.03228 (11)0.0623 (8)
C270.62979 (18)0.0993 (2)0.02655 (12)0.0650 (8)
C280.59361 (16)0.1115 (2)0.09252 (10)0.0564 (7)
H10.388970.204270.886980.0929*
H20.269830.233000.723810.0596*
H3A0.410800.222550.652400.0729*
H3B0.421310.085240.665880.0729*
H4A0.250090.197990.587460.0692*
H4B0.330440.112170.555120.0692*
H50.263540.049280.611410.0557*
H6A0.127810.034060.685860.0670*
H6B0.120880.103800.673890.0670*
H7A0.213680.065930.784070.0634*
H7B0.294230.014020.747150.0634*
H8A0.087850.053720.558140.0652*
H8B0.098460.080950.538480.0652*
H90.110270.096750.427860.0579*
H110.104270.124700.300070.0611*
H120.272290.060530.176870.0663*
H130.344610.168880.271810.0657*
H140.293000.130740.384900.0591*
H30.623090.376400.647680.0888*
H160.483560.368270.491220.0563*
H17A0.666500.358010.416330.0763*
H17B0.593430.469920.419230.0763*
H18A0.454690.368340.356400.0720*
H18B0.553150.363320.311700.0720*
H190.591680.172630.351820.0642*
H20A0.484810.071910.425110.0871*
H20B0.410480.182530.427920.0871*
H21A0.520300.178720.532870.0747*
H21B0.620510.172600.489870.0747*
H22A0.428670.074760.302020.0734*
H22B0.388170.203830.284390.0734*
H230.382080.200490.169360.0582*
H250.374420.235620.040460.0626*
H260.592720.131950.077100.0748*
H270.694670.064120.021230.0779*
H280.633910.084790.132820.0676*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0682 (10)0.1258 (17)0.0379 (7)0.0013 (10)0.0026 (7)0.0168 (9)
O20.0607 (10)0.1432 (19)0.0519 (9)0.0195 (10)0.0063 (7)0.0162 (10)
N10.0513 (9)0.0658 (12)0.0323 (7)0.0041 (8)0.0004 (6)0.0019 (7)
N20.0652 (10)0.0674 (13)0.0318 (7)0.0006 (9)0.0030 (7)0.0051 (8)
C10.0618 (13)0.0623 (15)0.0390 (10)0.0043 (10)0.0075 (9)0.0034 (9)
C20.0545 (11)0.0606 (14)0.0339 (9)0.0018 (9)0.0042 (8)0.0028 (9)
C30.0612 (12)0.0862 (18)0.0357 (10)0.0198 (11)0.0095 (9)0.0031 (10)
C40.0648 (12)0.0790 (17)0.0300 (9)0.0088 (11)0.0088 (8)0.0053 (9)
C50.0451 (10)0.0635 (14)0.0307 (8)0.0066 (8)0.0026 (7)0.0014 (8)
C60.0479 (10)0.0848 (17)0.0354 (9)0.0032 (10)0.0077 (8)0.0001 (10)
C70.0559 (11)0.0744 (16)0.0288 (8)0.0033 (10)0.0064 (8)0.0036 (9)
C80.0497 (10)0.0801 (16)0.0331 (9)0.0061 (10)0.0035 (8)0.0016 (9)
C90.0478 (10)0.0583 (13)0.0380 (9)0.0040 (9)0.0005 (7)0.0010 (9)
C100.0437 (9)0.0510 (12)0.0332 (8)0.0027 (8)0.0016 (7)0.0015 (8)
C110.0539 (11)0.0581 (14)0.0400 (9)0.0072 (9)0.0009 (8)0.0065 (9)
C120.0651 (13)0.0657 (15)0.0349 (9)0.0087 (10)0.0041 (9)0.0056 (9)
C130.0585 (12)0.0562 (14)0.0495 (11)0.0053 (10)0.0044 (9)0.0064 (10)
C140.0544 (11)0.0548 (13)0.0379 (9)0.0038 (9)0.0010 (8)0.0050 (9)
O30.0978 (12)0.0927 (14)0.0312 (7)0.0347 (10)0.0032 (7)0.0069 (8)
O40.0983 (13)0.179 (2)0.0455 (9)0.0758 (15)0.0102 (8)0.0169 (11)
N30.0624 (10)0.0665 (12)0.0341 (8)0.0035 (8)0.0021 (7)0.0072 (8)
N40.0747 (12)0.0651 (13)0.0346 (8)0.0048 (9)0.0001 (8)0.0044 (8)
C150.0515 (11)0.0640 (14)0.0327 (9)0.0015 (9)0.0060 (8)0.0063 (9)
C160.0475 (10)0.0619 (14)0.0316 (8)0.0011 (9)0.0040 (7)0.0061 (8)
C170.0808 (15)0.0708 (16)0.0391 (10)0.0209 (12)0.0044 (10)0.0015 (10)
C180.0707 (13)0.0744 (17)0.0346 (9)0.0040 (11)0.0020 (9)0.0045 (10)
C190.0595 (12)0.0672 (15)0.0336 (9)0.0026 (10)0.0020 (8)0.0062 (9)
C200.1047 (19)0.0713 (17)0.0401 (10)0.0256 (14)0.0037 (11)0.0018 (10)
C210.0824 (15)0.0681 (16)0.0353 (9)0.0030 (12)0.0006 (9)0.0057 (10)
C220.0687 (13)0.0805 (17)0.0337 (9)0.0184 (12)0.0001 (9)0.0061 (10)
C230.0566 (11)0.0521 (13)0.0364 (9)0.0007 (9)0.0014 (8)0.0043 (8)
C240.0591 (11)0.0432 (11)0.0350 (9)0.0041 (9)0.0003 (8)0.0056 (8)
C250.0622 (12)0.0570 (14)0.0367 (9)0.0019 (10)0.0001 (8)0.0033 (9)
C260.0814 (15)0.0658 (16)0.0414 (10)0.0096 (12)0.0148 (10)0.0126 (10)
C270.0672 (13)0.0673 (16)0.0612 (13)0.0085 (11)0.0102 (11)0.0137 (11)
C280.0638 (12)0.0570 (14)0.0471 (11)0.0064 (10)0.0026 (9)0.0032 (9)
Geometric parameters (Å, º) top
O1—C11.316 (2)C8—H8A0.9700
O2—C11.194 (3)C8—H8B0.9700
O1—H10.8200C9—H90.9300
O3—C151.307 (2)C11—H110.9300
O4—C151.180 (3)C12—H120.9300
O3—H30.8200C13—H130.9300
N1—C81.459 (2)C14—H140.9300
N1—C91.257 (2)C15—C161.510 (3)
N2—C121.330 (3)C16—C171.523 (3)
N2—C111.340 (2)C16—C211.506 (3)
N3—C221.454 (2)C17—C181.534 (3)
N3—C231.255 (2)C18—C191.506 (3)
N4—C261.328 (3)C19—C201.511 (3)
N4—C251.332 (2)C19—C221.531 (3)
C1—C21.514 (3)C20—C211.527 (3)
C2—C31.529 (3)C23—C241.474 (2)
C2—C71.518 (3)C24—C251.390 (3)
C3—C41.528 (3)C24—C281.385 (3)
C4—C51.517 (3)C26—C271.385 (3)
C5—C61.524 (2)C27—C281.366 (3)
C5—C81.521 (2)C16—H160.9800
C6—C71.525 (3)C17—H17A0.9700
C9—C101.470 (2)C17—H17B0.9700
C10—C111.385 (3)C18—H18A0.9700
C10—C141.391 (3)C18—H18B0.9700
C12—C131.377 (3)C19—H190.9800
C13—C141.374 (3)C20—H20A0.9700
C2—H20.9800C20—H20B0.9700
C3—H3A0.9700C21—H21A0.9700
C3—H3B0.9700C21—H21B0.9700
C4—H4A0.9700C22—H22A0.9700
C4—H4B0.9700C22—H22B0.9700
C5—H50.9800C23—H230.9300
C6—H6A0.9700C25—H250.9300
C6—H6B0.9700C26—H260.9300
C7—H7B0.9700C27—H270.9300
C7—H7A0.9700C28—H280.9300
C1—O1—H1109.00C14—C13—H13121.00
C15—O3—H3109.00C10—C14—H14120.00
C8—N1—C9118.10 (18)C13—C14—H14120.00
C11—N2—C12117.77 (17)O3—C15—C16113.09 (17)
C22—N3—C23118.38 (17)O4—C15—C16125.25 (17)
C25—N4—C26117.31 (18)O3—C15—O4121.64 (18)
O1—C1—C2112.17 (18)C15—C16—C17112.64 (17)
O1—C1—O2122.44 (18)C17—C16—C21110.89 (16)
O2—C1—C2125.39 (18)C15—C16—C21111.62 (16)
C3—C2—C7110.11 (17)C16—C17—C18110.72 (18)
C1—C2—C3112.50 (16)C17—C18—C19111.56 (17)
C1—C2—C7110.97 (16)C18—C19—C22111.83 (17)
C2—C3—C4111.33 (17)C20—C19—C22110.96 (19)
C3—C4—C5113.16 (15)C18—C19—C20110.42 (19)
C4—C5—C8112.17 (15)C19—C20—C21112.3 (2)
C4—C5—C6110.54 (16)C16—C21—C20111.28 (19)
C6—C5—C8110.27 (15)N3—C22—C19112.70 (17)
C5—C6—C7111.90 (15)N3—C23—C24121.85 (18)
C2—C7—C6110.87 (16)C23—C24—C28122.30 (17)
N1—C8—C5112.45 (15)C25—C24—C28117.35 (17)
N1—C9—C10122.50 (19)C23—C24—C25120.31 (18)
C11—C10—C14117.84 (15)N4—C25—C24123.8 (2)
C9—C10—C14122.51 (16)N4—C26—C27123.3 (2)
C9—C10—C11119.64 (18)C26—C27—C28118.6 (2)
N2—C11—C10123.18 (19)C24—C28—C27119.66 (18)
N2—C12—C13123.16 (18)C15—C16—H16107.00
C12—C13—C14118.89 (19)C17—C16—H16107.00
C10—C14—C13119.16 (17)C21—C16—H16107.00
C1—C2—H2108.00C16—C17—H17A110.00
C3—C2—H2108.00C16—C17—H17B109.00
C7—C2—H2108.00C18—C17—H17A109.00
C4—C3—H3A109.00C18—C17—H17B110.00
C4—C3—H3B109.00H17A—C17—H17B108.00
C2—C3—H3B109.00C17—C18—H18A109.00
C2—C3—H3A109.00C17—C18—H18B109.00
H3A—C3—H3B108.00C19—C18—H18A109.00
C3—C4—H4A109.00C19—C18—H18B109.00
C3—C4—H4B109.00H18A—C18—H18B108.00
C5—C4—H4B109.00C18—C19—H19108.00
C5—C4—H4A109.00C20—C19—H19108.00
H4A—C4—H4B108.00C22—C19—H19108.00
C8—C5—H5108.00C19—C20—H20A109.00
C6—C5—H5108.00C19—C20—H20B109.00
C4—C5—H5108.00C21—C20—H20A109.00
C7—C6—H6A109.00C21—C20—H20B109.00
C5—C6—H6A109.00H20A—C20—H20B108.00
H6A—C6—H6B108.00C16—C21—H21A109.00
C7—C6—H6B109.00C16—C21—H21B109.00
C5—C6—H6B109.00C20—C21—H21A109.00
C2—C7—H7A109.00C20—C21—H21B109.00
C2—C7—H7B109.00H21A—C21—H21B108.00
C6—C7—H7A109.00N3—C22—H22A109.00
C6—C7—H7B109.00N3—C22—H22B109.00
H7A—C7—H7B108.00C19—C22—H22A109.00
C5—C8—H8B109.00C19—C22—H22B109.00
H8A—C8—H8B108.00H22A—C22—H22B108.00
C5—C8—H8A109.00N3—C23—H23119.00
N1—C8—H8B109.00C24—C23—H23119.00
N1—C8—H8A109.00N4—C25—H25118.00
N1—C9—H9119.00C24—C25—H25118.00
C10—C9—H9119.00N4—C26—H26118.00
N2—C11—H11118.00C27—C26—H26118.00
C10—C11—H11118.00C26—C27—H27121.00
N2—C12—H12118.00C28—C27—H27121.00
C13—C12—H12118.00C24—C28—H28120.00
C12—C13—H13121.00C27—C28—H28120.00
C9—N1—C8—C5129.8 (2)C11—C10—C14—C130.5 (3)
C8—N1—C9—C10177.13 (18)C9—C10—C14—C13179.63 (19)
C12—N2—C11—C100.7 (3)N2—C12—C13—C140.3 (3)
C11—N2—C12—C130.4 (3)C12—C13—C14—C100.7 (3)
C22—N3—C23—C24173.32 (19)O3—C15—C16—C17177.02 (19)
C23—N3—C22—C19144.5 (2)O3—C15—C16—C2157.5 (2)
C26—N4—C25—C241.0 (3)O4—C15—C16—C171.4 (3)
C25—N4—C26—C270.5 (3)O4—C15—C16—C21124.1 (3)
O1—C1—C2—C3177.38 (19)C15—C16—C17—C18178.30 (18)
O1—C1—C2—C758.8 (2)C21—C16—C17—C1855.8 (2)
O2—C1—C2—C32.5 (3)C15—C16—C21—C20178.56 (17)
O2—C1—C2—C7121.4 (2)C17—C16—C21—C2055.0 (2)
C1—C2—C3—C4179.77 (18)C16—C17—C18—C1956.6 (2)
C1—C2—C7—C6177.12 (16)C17—C18—C19—C2055.7 (2)
C3—C2—C7—C657.7 (2)C17—C18—C19—C22179.75 (17)
C7—C2—C3—C455.4 (2)C18—C19—C20—C2155.0 (3)
C2—C3—C4—C553.6 (2)C22—C19—C20—C21179.5 (2)
C3—C4—C5—C652.2 (2)C18—C19—C22—N379.5 (2)
C3—C4—C5—C8175.74 (17)C20—C19—C22—N3156.8 (2)
C4—C5—C8—N166.0 (2)C19—C20—C21—C1655.1 (3)
C4—C5—C6—C754.0 (2)N3—C23—C24—C25173.0 (2)
C6—C5—C8—N1170.34 (18)N3—C23—C24—C289.5 (3)
C8—C5—C6—C7178.61 (18)C23—C24—C25—N4178.5 (2)
C5—C6—C7—C257.7 (2)C28—C24—C25—N40.9 (3)
N1—C9—C10—C11174.7 (2)C23—C24—C28—C27177.8 (2)
N1—C9—C10—C144.5 (3)C25—C24—C28—C270.3 (3)
C9—C10—C11—N2178.96 (19)N4—C26—C27—C280.0 (4)
C14—C10—C11—N20.2 (3)C26—C27—C28—C240.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.821.872.682 (2)171
O3—H3···N2ii0.821.892.685 (2)164
C11—H11···O2iii0.932.563.478 (3)168
C13—H13···O2iv0.932.573.316 (3)137
C27—H27···O4v0.932.453.280 (3)148
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y, z+1; (v) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H18N2O2
Mr246.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.7580 (6), 11.2504 (6), 18.8088 (7)
β (°) 94.720 (2)
V3)2690.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
24311, 6635, 3908
Rint0.034
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.207, 1.05
No. of reflections6635
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.821.872.682 (2)171
O3—H3···N2ii0.821.892.685 (2)164
C11—H11···O2iii0.932.563.478 (3)168
C13—H13···O2iv0.932.573.316 (3)137
C27—H27···O4v0.932.453.280 (3)148
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y, z+1; (v) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244–1248.  CrossRef CAS Google Scholar
First citationShahzadi, S., Ali, S., Parvez, M., Badshah, A., Ahmed, E. & Malik, A. (2007). Russ. J. Inorg. Chem. 52, 386–393.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1058
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds