organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1064

2-Eth­­oxy-6-[(3-methyl­pyridin-2-yl)­imino­meth­yl]phenol

aCollege of Chemistry and Biology Engineering, Yichun University, Yichun 336000, People's Republic of China
*Correspondence e-mail: yuanxiaoling_ycu@126.com

(Received 31 March 2011; accepted 31 March 2011; online 7 April 2011)

The title Schiff base compound, C15H16N2O2, was prepared by the condensation reaction of equimolar quanti­ties of 3-eth­oxy­salicyl­aldehyde with 2-amino-3-methyl­pyridine in methanol. The dihedral angle between the benzene ring and the pyridine ring is 2.6 (2)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring.

Related literature

For background to Schiff bases, see: Sinha et al. (2008[Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160-165.]); Sonmez et al. (2010[Sonmez, M., Celebi, M. & Berber, I. (2010). Eur. J. Med. Chem. 45, 1935-1940.]); Mohamed et al. (2010[Mohamed, G. G., Zayed, M. A. & Abdallah, S. M. (2010). J. Mol. Struct. 979, 62-71.]). For related structures, see: Wang & Shi (2008[Wang, N. & Shi, Q. (2008). Chin. J. Struct. Chem. 27, 191-194.]); Zhao et al. (2010[Zhao, L., Cao, D. & Cui, J. (2010). Acta Cryst. E66, o2204.]); Karadağ et al. (2011)[Karadağ, A. T., Atalay, Ş. & Genç, H. (2011). Acta Cryst. E67, o95.]; Bingöl Alpaslan et al. (2010[Bingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O2

  • Mr = 256.30

  • Monoclinic, P 21 /n

  • a = 4.820 (1) Å

  • b = 38.385 (3) Å

  • c = 7.207 (2) Å

  • β = 96.381 (2)°

  • V = 1325.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.987

  • 7773 measured reflections

  • 2849 independent reflections

  • 1265 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.200

  • S = 1.03

  • 2849 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.590 (3) 146

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much effort has been paid on the preparation, structures, and applications of Schiff bases (Sinha et al., 2008; Sonmez et al., 2010; Mohamed et al., 2010). As a continuation of the work on the crystal structures of Schiff bases, the title new Schiff base compound, Fig. 1, is reported.

The whole molecule of the compound is approximately planar, with a mean deviation from the least squares plane through all 19 non-hydrogen atoms of 0.036 (2) Å; the dihedral angle between the C1–C6 benzene ring and the C8–C12/N2 pyridine ring is 2.6 (2)°. There is an intramolecular O1—H1···N1 hydrogen bond (Table 1), which helps the formation of the planarity of the molecule. The bond lengths and angles are comparable to those found in the similar Schiff base compounds (Wang & Shi, 2008; Zhao et al., 2010; Karadağ et al., 2011; Bingöl Alpaslan et al., 2010).

Related literature top

For background to Schiff bases, see: Sinha et al. (2008); Sonmez et al. (2010); Mohamed et al. (2010). For related structures, see: Wang & Shi (2008); Zhao et al. (2010); Karadağ et al. (2011); Bingöl Alpaslan et al. (2010).

Experimental top

Reagents and solvents used were of commercially available quality. A methanol solution (10 ml) of 2-amino-3-methylpyridine (0.1 mmol, 10.8 mg) was added to a stirred methanol solution (10 ml) of 3-ethoxysalicylaldehyde (0.1 mmol, 16.6 mg). After stirring for about 30 min at room temperature, the clear yellow solution was left to stand still in air. Yellow block-shaped crystals of the title compound were formed after slow evaporation of the solvent for a few days.

Refinement top

H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, O—H distance of 0.82 Å, and with Uiso(H) set to 1.2Ueq(C) and 1.5Ueq(O1, C13 and C15).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 30% probability ellipsoids.
2-Ethoxy-6-[(3-methylpyridin-2-yl)iminomethyl]phenol top
Crystal data top
C15H16N2O2F(000) = 544
Mr = 256.30Dx = 1.285 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 776 reflections
a = 4.820 (1) Åθ = 2.5–24.5°
b = 38.385 (3) ŵ = 0.09 mm1
c = 7.207 (2) ÅT = 298 K
β = 96.381 (2)°Block, yellow
V = 1325.1 (5) Å30.17 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2849 independent reflections
Radiation source: fine-focus sealed tube1265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scanθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.985, Tmax = 0.987k = 4949
7773 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.153P]
where P = (Fo2 + 2Fc2)/3
2849 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H16N2O2V = 1325.1 (5) Å3
Mr = 256.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.820 (1) ŵ = 0.09 mm1
b = 38.385 (3) ÅT = 298 K
c = 7.207 (2) Å0.17 × 0.15 × 0.15 mm
β = 96.381 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2849 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1265 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.987Rint = 0.061
7773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
2849 reflectionsΔρmin = 0.18 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6449 (5)0.84753 (6)0.0653 (4)0.0495 (7)
N20.9399 (6)0.80518 (7)0.2233 (4)0.0604 (8)
O10.3096 (5)0.89291 (6)0.1048 (3)0.0609 (7)
H10.42070.87670.09570.091*
O20.0665 (5)0.94125 (6)0.0911 (3)0.0691 (7)
C10.3479 (6)0.88351 (8)0.2257 (5)0.0508 (8)
C20.2310 (6)0.90021 (8)0.0638 (4)0.0458 (8)
C30.0320 (7)0.92615 (8)0.0768 (5)0.0550 (9)
C40.0520 (7)0.93435 (9)0.2466 (5)0.0656 (10)
H40.18760.95140.25430.079*
C50.0632 (8)0.91749 (10)0.4080 (5)0.0728 (11)
H50.00570.92340.52290.087*
C60.2592 (7)0.89243 (9)0.3978 (5)0.0625 (10)
H60.33510.88110.50580.075*
C70.5550 (7)0.85676 (8)0.2183 (5)0.0530 (9)
H70.62600.84580.32860.064*
C80.8476 (6)0.82108 (8)0.0640 (5)0.0482 (8)
C90.9424 (7)0.81326 (8)0.1071 (5)0.0504 (8)
C101.1400 (7)0.78743 (9)0.1066 (5)0.0603 (10)
H101.20960.78130.21740.072*
C111.2348 (7)0.77076 (9)0.0558 (6)0.0666 (10)
H111.36800.75320.05680.080*
C121.1299 (7)0.78039 (9)0.2162 (5)0.0653 (10)
H121.19500.76900.32630.078*
C130.8314 (7)0.83182 (9)0.2831 (4)0.0679 (10)
H13A0.92250.82310.38550.102*
H13B0.86690.85630.26890.102*
H13C0.63400.82790.30740.102*
C140.2849 (7)0.96607 (9)0.0914 (5)0.0684 (11)
H14A0.22200.98610.01650.082*
H14B0.44390.95590.03990.082*
C150.3642 (9)0.97670 (11)0.2899 (6)0.0961 (14)
H15A0.20140.98470.34280.144*
H15B0.49950.99510.29430.144*
H15C0.44270.95710.36000.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0489 (16)0.0531 (16)0.0459 (17)0.0050 (13)0.0022 (13)0.0040 (13)
N20.0553 (18)0.0665 (19)0.0593 (19)0.0105 (15)0.0065 (15)0.0123 (15)
O10.0654 (17)0.0663 (16)0.0507 (14)0.0180 (12)0.0054 (12)0.0023 (12)
O20.0625 (15)0.0719 (16)0.0740 (17)0.0234 (13)0.0129 (13)0.0121 (13)
C10.0462 (19)0.051 (2)0.054 (2)0.0012 (16)0.0037 (16)0.0032 (17)
C20.0430 (19)0.0484 (19)0.046 (2)0.0020 (15)0.0049 (16)0.0013 (15)
C30.047 (2)0.053 (2)0.065 (2)0.0026 (16)0.0078 (18)0.0068 (18)
C40.058 (2)0.064 (2)0.077 (3)0.0098 (18)0.018 (2)0.004 (2)
C50.074 (3)0.084 (3)0.064 (3)0.013 (2)0.022 (2)0.006 (2)
C60.065 (2)0.077 (2)0.045 (2)0.008 (2)0.0060 (18)0.0018 (19)
C70.056 (2)0.058 (2)0.0441 (19)0.0016 (17)0.0005 (17)0.0029 (16)
C80.0435 (19)0.0469 (19)0.053 (2)0.0002 (15)0.0015 (16)0.0034 (16)
C90.0461 (19)0.052 (2)0.052 (2)0.0050 (16)0.0003 (16)0.0011 (16)
C100.059 (2)0.061 (2)0.061 (2)0.0038 (18)0.0065 (19)0.0075 (18)
C110.059 (2)0.059 (2)0.082 (3)0.0140 (18)0.012 (2)0.004 (2)
C120.065 (2)0.069 (2)0.063 (2)0.016 (2)0.0108 (19)0.021 (2)
C130.073 (3)0.081 (3)0.049 (2)0.007 (2)0.0033 (19)0.0014 (19)
C140.051 (2)0.060 (2)0.094 (3)0.0129 (18)0.007 (2)0.006 (2)
C150.099 (3)0.091 (3)0.094 (3)0.045 (3)0.007 (3)0.008 (3)
Geometric parameters (Å, º) top
N1—C71.279 (4)C7—H70.9300
N1—C81.410 (4)C8—C91.394 (4)
N2—C121.326 (4)C9—C101.375 (4)
N2—C81.332 (4)C9—C131.500 (4)
O1—C21.342 (3)C10—C111.367 (4)
O1—H10.8200C10—H100.9300
O2—C31.378 (4)C11—C121.363 (5)
O2—C141.420 (4)C11—H110.9300
C1—C21.394 (4)C12—H120.9300
C1—C61.399 (4)C13—H13A0.9600
C1—C71.437 (4)C13—H13B0.9600
C2—C31.393 (4)C13—H13C0.9600
C3—C41.368 (5)C14—C151.496 (5)
C4—C51.392 (5)C14—H14A0.9700
C4—H40.9300C14—H14B0.9700
C5—C61.356 (4)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—N1—C8120.5 (3)C10—C9—C13121.7 (3)
C12—N2—C8117.5 (3)C8—C9—C13121.6 (3)
C2—O1—H1109.5C11—C10—C9120.3 (3)
C3—O2—C14117.8 (3)C11—C10—H10119.8
C2—C1—C6119.6 (3)C9—C10—H10119.8
C2—C1—C7121.0 (3)C12—C11—C10118.6 (3)
C6—C1—C7119.3 (3)C12—C11—H11120.7
O1—C2—C3118.4 (3)C10—C11—H11120.7
O1—C2—C1122.2 (3)N2—C12—C11123.4 (3)
C3—C2—C1119.3 (3)N2—C12—H12118.3
C4—C3—O2125.6 (3)C11—C12—H12118.3
C4—C3—C2120.0 (3)C9—C13—H13A109.5
O2—C3—C2114.5 (3)C9—C13—H13B109.5
C3—C4—C5120.7 (3)H13A—C13—H13B109.5
C3—C4—H4119.7C9—C13—H13C109.5
C5—C4—H4119.7H13A—C13—H13C109.5
C6—C5—C4120.0 (3)H13B—C13—H13C109.5
C6—C5—H5120.0O2—C14—C15107.2 (3)
C4—C5—H5120.0O2—C14—H14A110.3
C5—C6—C1120.4 (3)C15—C14—H14A110.3
C5—C6—H6119.8O2—C14—H14B110.3
C1—C6—H6119.8C15—C14—H14B110.3
N1—C7—C1122.2 (3)H14A—C14—H14B108.5
N1—C7—H7118.9C14—C15—H15A109.5
C1—C7—H7118.9C14—C15—H15B109.5
N2—C8—C9123.5 (3)H15A—C15—H15B109.5
N2—C8—N1119.3 (3)C14—C15—H15C109.5
C9—C8—N1117.2 (3)H15A—C15—H15C109.5
C10—C9—C8116.6 (3)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.590 (3)146

Experimental details

Crystal data
Chemical formulaC15H16N2O2
Mr256.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)4.820 (1), 38.385 (3), 7.207 (2)
β (°) 96.381 (2)
V3)1325.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.985, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
7773, 2849, 1265
Rint0.061
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.200, 1.03
No. of reflections2849
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.590 (3)146
 

Acknowledgements

This work was supported by Yichun University.

References

First citationBingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaradağ, A. T., Atalay, Ş. & Genç, H. (2011). Acta Cryst. E67, o95.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMohamed, G. G., Zayed, M. A. & Abdallah, S. M. (2010). J. Mol. Struct. 979, 62–71.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSonmez, M., Celebi, M. & Berber, I. (2010). Eur. J. Med. Chem. 45, 1935–1940.  Web of Science PubMed Google Scholar
First citationWang, N. & Shi, Q. (2008). Chin. J. Struct. Chem. 27, 191–194.  CAS Google Scholar
First citationZhao, L., Cao, D. & Cui, J. (2010). Acta Cryst. E66, o2204.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1064
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds