metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m551-m552

(2,2′-Bi­pyridine-κ2N,N′)bis­­(N-iso­propyl-N-methyl­di­thio­carbamato-κ2S,S′)cadmium

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, bDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 3 April 2011; accepted 4 April 2011; online 7 April 2011)

The CdII atom in the title compound, [Cd(C5H10NS2)2(C10H8N2)], exists in an N2S4 donor set defined by two chelating dithio­carbamate anions as well as a 2,2′-bipyridine ligand. The coordination geometry approximates a trigonal prism. The crystal packing features weak C—H⋯S inter­actions, leading to linear supra­molecular chains along the a axis. The primary connections between these are by ππ stacking inter­actions [ring centroid distance between centrosymmetrically related pyridyl rings = 3.7455 (10) Å]. Overall, the crystal structure may be described as comprising double layers of mol­ecules that stack along the b axis.

Related literature

For related structures of pyridyl adducts of cadmium dithio­carbamtes, see: Song & Tiekink (2009[Song, J. C. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1669-m1670.]); Broker & Tiekink (2011[Broker, G. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m320-m321.]); Jamaluddin et al. (2011[Jamaluddin, N. A., Baba, I., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m384-m385.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C5H10NS2)2(C10H8N2)]

  • Mr = 565.10

  • Monoclinic, P 21 /n

  • a = 9.6061 (2) Å

  • b = 28.6277 (4) Å

  • c = 9.8187 (2) Å

  • β = 112.860 (2)°

  • V = 2488.07 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 150 K

  • 0.17 × 0.13 × 0.05 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.853, Tmax = 0.941

  • 53095 measured reflections

  • 5700 independent reflections

  • 5013 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.053

  • S = 1.03

  • 5700 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Cd—S1 2.6463 (5)
Cd—S2 2.7128 (5)
Cd—S3 2.6518 (5)
Cd—S4 2.6490 (5)
Cd—N3 2.4122 (14)
Cd—N4 2.4191 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯S2i 0.95 2.78 3.712 (2) 167
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of systematic structural studies of various pyridyl adducts of cadmium dithiocarbamates (Song & Tiekink, 2009; Broker & Tiekink, 2011; Jamaluddin et al., 2011), the title compound Cd[S2CN(Me)iPr)2]2(2,2'-bipyridine), (I), was investigated. The CdII atom is coordinated by two dithiocarbamate ligands, each essentially forming symmetric Cd—S bonds, and a symmetrically chelating 2,2'-bipyridine ligand, Fig. 1 and Table 1. The equivalence in the Cd—S bond distances is reflected in the narrow range of associated CS bond distances, i.e. 1.7168 (18) to 1.7290 (17) Å. A small twist is noted between the pyridyl rings of the 2,2'-bipyridine ligand as seen in the dihedral angle of 9.25 (9) ° formed between the rings. The N2S4 donor set defines a distorted trigonal prismatic geometry.

The crystal packing of (I) features linear supramolecular chains along the a axis that are sustained by C—H···S interactions, Fig. 2 and Table 2. Chains lie in the ac plane and inter-digitate via ππ interactions with centrosymmetrically related layers to form a double layer [ring centroid(N3-pyridyl)···ring centroid(N3-centroid)i = 3.7455 (10) Å for i: 2 - x, 1 - y, 1 - z]. Double layers stack along the b axis and are separated by hydrophobic interactions, Fig. 3.

Related literature top

For related structures of pyridyl adducts of cadmium dithiocarbamtes, see: Song & Tiekink (2009); Broker & Tiekink (2011); Jamaluddin et al. (2011).

Experimental top

The title compound was prepared using an in situ method by the addition of carbon disulfide (0.02 mol) to an ethanolic solution (20 ml) of methylisopropropylamine (0.02 mol) and 2,2-bipyridine (0.01 mol) in ethanol (20 ml). The mixture was stirred for 1 h at 277 K. The resulting solution was added drop-wise to a solution of cadmium(II) dichloride (0.01 mol) in ethanol (20 ml). The mixture was stirred 3 h. The yellowish precipitate was filtered, washed with cold ethanol and dried in a desiccator. Recrystallization was from ethanol:chloroform (1:2 v/v) to yield yellow prisms of (I). M.pt. 473.6–475.2 K. Elemental analysis. Found (calculated) for C22H32CdN4S4: C, 42.63 (42.51); H 4.48 (4.99); N 10.74 (9.91); S 21.80 (22.70) %. UV (CHCl3) λmax 283.5 and 261.0 nm (L(π) L(π*)). IR (KBr): ν(C—H) 2928 s; ν(CN) 1565 s; ν(N—C) 1468 m; ν(CS) 970 s; ν(Cd—S) 381 s cm-1.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain long the a axis in (I) mediated by C—H···S interactions (orange dashed lines) along the a axis.
[Figure 3] Fig. 3. A view in projection down the a axis of the crystal packing in (I) highlighting the ππ interactions (shown as purple dashed lines).
(2,2'-Bipyridine-κ2N,N')bis(N-isopropyl- N-methyldithiocarbamato-κ2S,S')cadmium top
Crystal data top
[Cd(C5H10NS2)2(C10H8N2)]F(000) = 1152
Mr = 565.10Dx = 1.509 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 26576 reflections
a = 9.6061 (2) Åθ = 2–29°
b = 28.6277 (4) ŵ = 1.23 mm1
c = 9.8187 (2) ÅT = 150 K
β = 112.860 (2)°Prism, yellow
V = 2488.07 (8) Å30.17 × 0.13 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
5700 independent reflections
Radiation source: fine-focus sealed tube5013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 16.1952 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 3737
Tmin = 0.853, Tmax = 0.941l = 1212
53095 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.023P)2 + 0.9719P]
where P = (Fo2 + 2Fc2)/3
5700 reflections(Δ/σ)max = 0.002
268 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cd(C5H10NS2)2(C10H8N2)]V = 2488.07 (8) Å3
Mr = 565.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6061 (2) ŵ = 1.23 mm1
b = 28.6277 (4) ÅT = 150 K
c = 9.8187 (2) Å0.17 × 0.13 × 0.05 mm
β = 112.860 (2)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
5700 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
5013 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.941Rint = 0.048
53095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.03Δρmax = 0.42 e Å3
5700 reflectionsΔρmin = 0.30 e Å3
268 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd1.074719 (14)0.619541 (4)0.837624 (13)0.02469 (5)
S11.13178 (5)0.638504 (17)1.11803 (5)0.02979 (10)
S21.37352 (5)0.615697 (17)1.01159 (5)0.03243 (10)
S30.88132 (5)0.688040 (16)0.71256 (5)0.03348 (11)
S41.10292 (5)0.651618 (17)0.59657 (5)0.03368 (11)
N11.42420 (16)0.63344 (5)1.29241 (16)0.0285 (3)
N20.91865 (17)0.72387 (5)0.47972 (17)0.0313 (3)
N31.09345 (17)0.54076 (5)0.75929 (16)0.0282 (3)
N40.87517 (16)0.56931 (5)0.84481 (16)0.0292 (3)
C11.32019 (19)0.62947 (6)1.15504 (19)0.0254 (3)
C21.5853 (2)0.63217 (9)1.3206 (2)0.0448 (5)
H2A1.61250.60091.29870.067*
H2B1.64440.63971.42450.067*
H2C1.60700.65511.25730.067*
C31.3829 (2)0.64480 (7)1.41991 (19)0.0296 (4)
H31.27200.63921.38810.036*
C41.4639 (3)0.61310 (9)1.5506 (3)0.0521 (6)
H4A1.44280.58041.51980.078*
H4B1.42810.61961.62960.078*
H4C1.57290.61881.58700.078*
C51.4115 (2)0.69603 (7)1.4595 (2)0.0414 (5)
H5A1.52060.70201.50160.062*
H5B1.36880.70421.53220.062*
H5C1.36370.71511.37050.062*
C60.96267 (19)0.69114 (6)0.58500 (19)0.0253 (3)
C70.7956 (2)0.75621 (7)0.4673 (3)0.0439 (5)
H7A0.70090.73880.44010.066*
H7B0.78530.77960.39120.066*
H7C0.81850.77180.56240.066*
C80.9824 (2)0.72780 (7)0.3644 (2)0.0374 (5)
H81.07220.70670.39310.045*
C91.0361 (3)0.77737 (8)0.3560 (2)0.0491 (6)
H9A0.94850.79800.31280.074*
H9B1.09530.77770.29420.074*
H9C1.09910.78830.45570.074*
C100.8681 (3)0.71105 (8)0.2173 (2)0.0455 (5)
H10A0.84150.67850.22640.068*
H10B0.91160.71330.14230.068*
H10C0.77720.73050.18800.068*
C111.1989 (2)0.52925 (7)0.7083 (2)0.0359 (4)
H111.27120.55220.71040.043*
C121.2078 (2)0.48551 (7)0.6527 (2)0.0405 (5)
H121.28370.47860.61620.049*
C131.1038 (2)0.45225 (7)0.6515 (2)0.0405 (5)
H131.10690.42180.61400.049*
C140.9948 (2)0.46353 (6)0.7053 (2)0.0349 (4)
H140.92260.44090.70590.042*
C150.99217 (19)0.50838 (6)0.75862 (18)0.0269 (4)
C160.87718 (19)0.52370 (6)0.81662 (18)0.0265 (4)
C170.7754 (2)0.58528 (7)0.8983 (2)0.0355 (4)
H170.77460.61770.91830.043*
C180.6735 (2)0.55653 (8)0.9256 (2)0.0394 (5)
H180.60340.56890.96270.047*
C190.6762 (2)0.50964 (8)0.8977 (2)0.0436 (5)
H190.60810.48900.91610.052*
C200.7787 (2)0.49272 (7)0.8427 (2)0.0387 (4)
H200.78190.46030.82300.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.02824 (7)0.02325 (7)0.02276 (7)0.00063 (5)0.01010 (5)0.00100 (5)
S10.0242 (2)0.0389 (3)0.0253 (2)0.00347 (18)0.00845 (17)0.00182 (18)
S20.0316 (2)0.0385 (3)0.0299 (2)0.00315 (19)0.01483 (19)0.00517 (19)
S30.0408 (3)0.0309 (2)0.0352 (3)0.0088 (2)0.0218 (2)0.00636 (19)
S40.0373 (2)0.0349 (2)0.0347 (2)0.01276 (19)0.0204 (2)0.01318 (19)
N10.0226 (7)0.0347 (8)0.0274 (8)0.0005 (6)0.0089 (6)0.0037 (6)
N20.0307 (8)0.0292 (8)0.0381 (9)0.0075 (6)0.0177 (7)0.0115 (6)
N30.0329 (8)0.0267 (8)0.0280 (8)0.0006 (6)0.0150 (6)0.0020 (6)
N40.0288 (8)0.0293 (8)0.0291 (8)0.0015 (6)0.0108 (6)0.0016 (6)
C10.0267 (8)0.0203 (8)0.0291 (9)0.0001 (6)0.0109 (7)0.0008 (6)
C20.0228 (9)0.0629 (14)0.0460 (12)0.0012 (9)0.0103 (9)0.0117 (10)
C30.0255 (8)0.0390 (10)0.0239 (9)0.0000 (7)0.0091 (7)0.0016 (7)
C40.0520 (14)0.0628 (15)0.0412 (13)0.0102 (11)0.0177 (11)0.0200 (11)
C50.0482 (12)0.0441 (12)0.0366 (11)0.0062 (9)0.0217 (9)0.0101 (9)
C60.0257 (8)0.0213 (8)0.0284 (9)0.0028 (6)0.0099 (7)0.0003 (7)
C70.0452 (12)0.0355 (11)0.0595 (14)0.0161 (9)0.0297 (11)0.0192 (10)
C80.0332 (10)0.0431 (11)0.0405 (11)0.0109 (8)0.0191 (9)0.0195 (9)
C90.0434 (12)0.0626 (15)0.0373 (12)0.0150 (11)0.0115 (10)0.0146 (10)
C100.0553 (13)0.0397 (12)0.0475 (13)0.0006 (10)0.0265 (11)0.0006 (9)
C110.0420 (11)0.0308 (10)0.0415 (11)0.0001 (8)0.0234 (9)0.0012 (8)
C120.0468 (12)0.0376 (11)0.0445 (12)0.0083 (9)0.0259 (10)0.0009 (9)
C130.0465 (12)0.0287 (10)0.0446 (12)0.0072 (9)0.0160 (10)0.0030 (8)
C140.0350 (10)0.0259 (9)0.0404 (11)0.0001 (8)0.0110 (8)0.0009 (8)
C150.0291 (9)0.0249 (9)0.0231 (8)0.0017 (7)0.0061 (7)0.0044 (7)
C160.0248 (8)0.0267 (9)0.0248 (9)0.0025 (7)0.0062 (7)0.0052 (7)
C170.0343 (10)0.0365 (10)0.0370 (11)0.0046 (8)0.0154 (8)0.0001 (8)
C180.0298 (10)0.0513 (13)0.0397 (11)0.0089 (9)0.0164 (8)0.0089 (9)
C190.0337 (10)0.0461 (12)0.0551 (13)0.0011 (9)0.0216 (10)0.0161 (10)
C200.0355 (10)0.0303 (10)0.0513 (12)0.0015 (8)0.0181 (9)0.0084 (9)
Geometric parameters (Å, º) top
Cd—S12.6463 (5)C5—H5C0.9800
Cd—S22.7128 (5)C7—H7A0.9800
Cd—S32.6518 (5)C7—H7B0.9800
Cd—S42.6490 (5)C7—H7C0.9800
Cd—N32.4122 (14)C8—C101.512 (3)
Cd—N42.4191 (15)C8—C91.523 (3)
S1—C11.7215 (18)C8—H81.0000
S2—C11.7212 (18)C9—H9A0.9800
S3—C61.7168 (18)C9—H9B0.9800
S4—C61.7290 (17)C9—H9C0.9800
N1—C11.335 (2)C10—H10A0.9800
N1—C21.463 (2)C10—H10B0.9800
N1—C31.488 (2)C10—H10C0.9800
N2—C61.336 (2)C11—C121.382 (3)
N2—C71.469 (2)C11—H110.9500
N2—C81.486 (2)C12—C131.377 (3)
N3—C111.334 (2)C12—H120.9500
N3—C151.342 (2)C13—C141.382 (3)
N4—C161.337 (2)C13—H130.9500
N4—C171.340 (2)C14—C151.390 (2)
C2—H2A0.9800C14—H140.9500
C2—H2B0.9800C15—C161.492 (2)
C2—H2C0.9800C16—C201.391 (3)
C3—C51.515 (3)C17—C181.382 (3)
C3—C41.516 (3)C17—H170.9500
C3—H31.0000C18—C191.372 (3)
C4—H4A0.9800C18—H180.9500
C4—H4B0.9800C19—C201.382 (3)
C4—H4C0.9800C19—H190.9500
C5—H5A0.9800C20—H200.9500
C5—H5B0.9800
N3—Cd—N467.15 (5)N2—C6—S3120.24 (13)
N3—Cd—S1120.84 (4)N2—C6—S4120.93 (13)
N4—Cd—S186.43 (4)S3—C6—S4118.83 (10)
N3—Cd—S489.60 (4)N2—C7—H7A109.5
N4—Cd—S4126.11 (4)N2—C7—H7B109.5
S1—Cd—S4143.780 (17)H7A—C7—H7B109.5
N3—Cd—S3132.02 (4)N2—C7—H7C109.5
N4—Cd—S391.86 (4)H7A—C7—H7C109.5
S1—Cd—S398.905 (15)H7B—C7—H7C109.5
S4—Cd—S368.057 (14)N2—C8—C10110.03 (16)
N3—Cd—S288.34 (4)N2—C8—C9111.10 (17)
N4—Cd—S2127.89 (4)C10—C8—C9112.31 (16)
S1—Cd—S267.192 (14)N2—C8—H8107.7
S4—Cd—S297.251 (15)C10—C8—H8107.7
S3—Cd—S2134.517 (16)C9—C8—H8107.7
C1—S1—Cd87.98 (6)C8—C9—H9A109.5
C1—S2—Cd85.84 (6)C8—C9—H9B109.5
C6—S3—Cd86.59 (6)H9A—C9—H9B109.5
C6—S4—Cd86.44 (6)C8—C9—H9C109.5
C1—N1—C2120.67 (15)H9A—C9—H9C109.5
C1—N1—C3121.93 (14)H9B—C9—H9C109.5
C2—N1—C3117.02 (14)C8—C10—H10A109.5
C6—N2—C7120.58 (15)C8—C10—H10B109.5
C6—N2—C8122.85 (15)H10A—C10—H10B109.5
C7—N2—C8116.46 (14)C8—C10—H10C109.5
C11—N3—C15118.85 (16)H10A—C10—H10C109.5
C11—N3—Cd120.81 (12)H10B—C10—H10C109.5
C15—N3—Cd120.24 (11)N3—C11—C12123.01 (18)
C16—N4—C17118.99 (16)N3—C11—H11118.5
C16—N4—Cd119.95 (11)C12—C11—H11118.5
C17—N4—Cd120.30 (12)C13—C12—C11118.27 (19)
N1—C1—S2120.15 (13)C13—C12—H12120.9
N1—C1—S1120.87 (13)C11—C12—H12120.9
S2—C1—S1118.97 (10)C12—C13—C14119.36 (18)
N1—C2—H2A109.5C12—C13—H13120.3
N1—C2—H2B109.5C14—C13—H13120.3
H2A—C2—H2B109.5C13—C14—C15119.15 (18)
N1—C2—H2C109.5C13—C14—H14120.4
H2A—C2—H2C109.5C15—C14—H14120.4
H2B—C2—H2C109.5N3—C15—C14121.37 (17)
N1—C3—C5110.28 (15)N3—C15—C16115.97 (15)
N1—C3—C4111.39 (16)C14—C15—C16122.66 (16)
C5—C3—C4112.32 (17)N4—C16—C20121.27 (17)
N1—C3—H3107.5N4—C16—C15116.02 (15)
C5—C3—H3107.5C20—C16—C15122.70 (16)
C4—C3—H3107.5N4—C17—C18122.76 (19)
C3—C4—H4A109.5N4—C17—H17118.6
C3—C4—H4B109.5C18—C17—H17118.6
H4A—C4—H4B109.5C19—C18—C17118.32 (19)
C3—C4—H4C109.5C19—C18—H18120.8
H4A—C4—H4C109.5C17—C18—H18120.8
H4B—C4—H4C109.5C18—C19—C20119.48 (19)
C3—C5—H5A109.5C18—C19—H19120.3
C3—C5—H5B109.5C20—C19—H19120.3
H5A—C5—H5B109.5C19—C20—C16119.17 (19)
C3—C5—H5C109.5C19—C20—H20120.4
H5A—C5—H5C109.5C16—C20—H20120.4
H5B—C5—H5C109.5
N3—Cd—S1—C172.53 (7)Cd—S2—C1—S11.23 (9)
N4—Cd—S1—C1133.16 (7)Cd—S1—C1—N1179.36 (14)
S4—Cd—S1—C170.74 (6)Cd—S1—C1—S21.26 (9)
S3—Cd—S1—C1135.51 (6)C1—N1—C3—C5100.74 (19)
S2—Cd—S1—C10.76 (6)C2—N1—C3—C572.2 (2)
N3—Cd—S2—C1123.88 (7)C1—N1—C3—C4133.84 (18)
N4—Cd—S2—C164.86 (7)C2—N1—C3—C453.2 (2)
S1—Cd—S2—C10.76 (6)C7—N2—C6—S32.8 (2)
S4—Cd—S2—C1146.73 (6)C8—N2—C6—S3178.74 (14)
S3—Cd—S2—C180.51 (6)C7—N2—C6—S4177.74 (15)
N3—Cd—S3—C669.81 (7)C8—N2—C6—S41.8 (2)
N4—Cd—S3—C6130.23 (7)Cd—S3—C6—N2176.65 (14)
S1—Cd—S3—C6143.09 (6)Cd—S3—C6—S42.79 (9)
S4—Cd—S3—C61.72 (6)Cd—S4—C6—N2176.64 (14)
S2—Cd—S3—C676.43 (6)Cd—S4—C6—S32.79 (9)
N3—Cd—S4—C6138.13 (7)C6—N2—C8—C10106.5 (2)
N4—Cd—S4—C677.20 (7)C7—N2—C8—C1069.5 (2)
S1—Cd—S4—C672.77 (6)C6—N2—C8—C9128.48 (19)
S3—Cd—S4—C61.71 (6)C7—N2—C8—C955.5 (2)
S2—Cd—S4—C6133.59 (6)C15—N3—C11—C120.9 (3)
N4—Cd—N3—C11175.46 (15)Cd—N3—C11—C12175.40 (15)
S1—Cd—N3—C11113.83 (13)N3—C11—C12—C130.7 (3)
S4—Cd—N3—C1145.48 (14)C11—C12—C13—C140.0 (3)
S3—Cd—N3—C11104.86 (14)C12—C13—C14—C150.4 (3)
S2—Cd—N3—C1151.79 (14)C11—N3—C15—C140.4 (3)
N4—Cd—N3—C150.80 (12)Cd—N3—C15—C14175.94 (13)
S1—Cd—N3—C1569.92 (13)C11—N3—C15—C16179.77 (16)
S4—Cd—N3—C15130.78 (12)Cd—N3—C15—C163.45 (19)
S3—Cd—N3—C1571.39 (13)C13—C14—C15—N30.3 (3)
S2—Cd—N3—C15131.96 (12)C13—C14—C15—C16179.07 (17)
N3—Cd—N4—C165.64 (12)C17—N4—C16—C200.5 (3)
S1—Cd—N4—C16120.06 (12)Cd—N4—C16—C20169.56 (13)
S4—Cd—N4—C1677.17 (13)C17—N4—C16—C15179.46 (15)
S3—Cd—N4—C16141.13 (12)Cd—N4—C16—C159.43 (19)
S2—Cd—N4—C1662.79 (14)N3—C15—C16—N48.4 (2)
N3—Cd—N4—C17175.54 (15)C14—C15—C16—N4171.00 (16)
S1—Cd—N4—C1749.84 (13)N3—C15—C16—C20170.60 (16)
S4—Cd—N4—C17112.93 (13)C14—C15—C16—C2010.0 (3)
S3—Cd—N4—C1748.97 (14)C16—N4—C17—C180.1 (3)
S2—Cd—N4—C17107.11 (13)Cd—N4—C17—C18170.09 (14)
C2—N1—C1—S27.9 (2)N4—C17—C18—C190.6 (3)
C3—N1—C1—S2179.35 (13)C17—C18—C19—C200.5 (3)
C2—N1—C1—S1171.46 (15)C18—C19—C20—C160.1 (3)
C3—N1—C1—S11.3 (2)N4—C16—C20—C190.5 (3)
Cd—S2—C1—N1179.38 (14)C15—C16—C20—C19179.47 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···S2i0.952.783.712 (2)167
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C5H10NS2)2(C10H8N2)]
Mr565.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)9.6061 (2), 28.6277 (4), 9.8187 (2)
β (°) 112.860 (2)
V3)2488.07 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.17 × 0.13 × 0.05
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.853, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
53095, 5700, 5013
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.03
No. of reflections5700
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd—S12.6463 (5)Cd—S42.6490 (5)
Cd—S22.7128 (5)Cd—N32.4122 (14)
Cd—S32.6518 (5)Cd—N42.4191 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···S2i0.952.783.712 (2)167
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: aibi@ukm.my.

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08–27-111), the Ministry of Higher Education (UKM-ST-06-FRGS0092–2010), Universiti Putra Malaysia and the University of Malaya for supporting this study.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m320–m321.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJamaluddin, N. A., Baba, I., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m384–m385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J. C. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1669–m1670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m551-m552
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds