metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m553-m554

Bis(N-iso­propyl-N-methyl­di­thio­carbamato-κ2S,S′)(1,10-phenanthroline-κ2N,N′)zinc

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, bDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 3 April 2011; accepted 4 April 2011; online 7 April 2011)

The ZnII atom in the title compound, [Zn(C5H10NS2)2(C12H8N2)], exists in a distorted cis-octa­hedral N2S4 donor set defined by two chelating dithio­carbamate anions as well as a 1,10-phenanthroline ligand. Each of the ligands coordinates in a symmetric mode. The crystal packing is stabilized by weak C—H⋯S, C—H⋯π(ZnS2C) and ππ [ring centroid distance between centrosymmetrically related pyridyl rings = 3.5955 (13) Å] inter­actions.

Related literature

For the use of the parent zinc compound and nitro­gen adducts as precursors for ZnS nanoparticles, see: Motevalli et al. (1996[Motevalli, M., O'Brien, P., Walsh, J. R. & Watson, I. M. (1996). Polyhedron, 15, 2801-2808.]); Malik et al. (1997[Malik, M. A., Motevalli, M., O'Brien, P. & Walsh, J. R. (1997). Inorg. Chem. 36, 1263-1264.]). For background to supra­molecular polymers of zinc-triad dithio­carbamates and related structures, see: Benson et al. (2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-940.]); Jamaluddin et al. (2011[Jamaluddin, N. A., Baba, I., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m384-m385.]). For a description of C—H⋯π(MS2C) inter­actions, see: Tiekink & Zukerman-Schpector (2011[Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. doi:10.1039/c1cc11173f.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5H10NS2)2(C12H8N2)]

  • Mr = 542.09

  • Monoclinic, P 21 /n

  • a = 11.8015 (3) Å

  • b = 16.6316 (4) Å

  • c = 13.7505 (3) Å

  • β = 101.738 (2)°

  • V = 2642.48 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 150 K

  • 0.25 × 0.20 × 0.12 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.777, Tmax = 0.860

  • 33394 measured reflections

  • 6001 independent reflections

  • 4814 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.093

  • S = 1.04

  • 6001 reflections

  • 286 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Zn—S1 2.4782 (6)
Zn—S2 2.5408 (7)
Zn—S3 2.5031 (6)
Zn—S4 2.5132 (7)
Zn—N3 2.1939 (18)
Zn—N4 2.1970 (19)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the Zn,S1,S2,C1 chelate ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7b⋯S2i 0.98 2.79 3.734 (3) 162
C13—H13⋯S4ii 0.95 2.82 3.634 (2) 145
C21—H21⋯S1iii 0.95 2.84 3.684 (3) 149
C20—H20⋯Cg1iv 0.95 2.74 3.687 (2) 173
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound Zn[S2CN(Me)iPr)2]2(1,10-phenanthroline), (I), was investigated as a part of on-going studies of zinc-triad dithiocarbamates and their adducts (Benson et al., 2007; Jamaluddin et al., 2011). The dinuclear parent {Zn[S2CN(Me)iPr]2}2 compound and its nitrogen-based adducts have proven useful as synthetic precursors for ZnS nanoparticles (Motevalli et al., 1996; Malik et al., 1997).

The Zn atom in (I), Fig. 1, is chelated by two symmetrically coordinating dithiocarbamate ligands, Table 1, and also symmetrically by the 1,10-phenanthroline ligand. The symmetric mode of coordination of the dithiocarbamate ligands is reflected in the narrow range of associated C S bond distances, i.e. 1.718 (2) to 1.724 (2) Å, which are in fact experimentally equivalent. The N2S4 donor set defines a distorted octahedron with distortions readily explained in terms of the restricted bite distances of the chelating ligands.

The crystal structure is stabilized by weak intermolecular interactions. These include C—H···S and C—H···π(ZnS2C), Table 2, and ππ interactions. The C—H···π(ZnS2C) contacts have precedents in the crystal chemistry of metal dithiocarbamates (Tiekink & Zukerman-Schpector, 2011). The ππ interactions occur between centrosymmetrically related pyridyl rings [ring centroid(N3,C11–C15)···ring centroid(N3,C11–C15)i = 3.5955 (13) Å for i: 1 - x, 1 - y, 1 - z]. A view of the unit-cell contents is shown in Fig. 2 where it can be seen that globally, the crystal packing comprises alternating layers of ZnS2CN/1,10-phenanthroline residues and alkyl groups.

Related literature top

For the use of the parent zinc compound and nitrogen adducts as precursors for ZnS nanoparticles, see: Motevalli et al. (1996); Malik et al. (1997). For background to supramolecular polymers of zinc-triad dithiocarbamates and related structures, see: Benson et al. (2007); Jamaluddin et al. (2011). For a description of C—H···π(MS2C) interactions, see: Tiekink & Zukerman-Schpector (2011).

Experimental top

The title compound was prepared using an in situ method by the addition of carbon disulfide (0.02 mol) to an ethanolic solution (20 ml) of isopropropyl(methyl)amine (0.02 mol) and 2,2'-bipyridine (0.01 mol) in ethanol (20 ml). The mixture was stirred for 1 h at 277 K. The resulting solution was added drop-wise to a solution of zinc(II) dichloride (0.01 mol) in ethanol (20 ml). The mixture was stirred for a further 2 h. The yellow precipitate was filtered and washed with cold ethanol, and dried in a desiccator. Crystallization was carried using an ethanol:chloroform (1:2 v/v) solvent system to yield pale yellow prisms of (I); M.pt. 420–421 K. Elemental analysis. Found (calculated) for C22H32CdN4S4: C, 46.49 (46.36); H 5.13 (5.45); N 10.74 (10.81) %. UV (CHCl3) λmax 306.5 nm (L(π) L(π*)). IR (KBr): ν(C—H) 2928 s; ν(CN) 1564 s; ν(N—C) 1473 s; ν(CS) 976 s; ν(Cd—S) 384 s cm-1.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). Disorder was noted in the N-alkyl groups of both dithiocarbamate ligands. However, multiple sites could not be resolved. The C7 atom was refined with the ISOR command in SHELX76 (Sheldrick, 2008) in order to obtain a reasonable displacement ellipsoid. The crystallographic assignment of atom types (in response to a level B alert concerning a Hirshfeld test difference for the N2—C7 bond) was substantiated by the elemental analysis and spectroscopy.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents for (I). The intermolecular C—H···S, C—H···π(ZnS2C) and ππ contacts are shown as orange, blue and purple dashed lines, respectively.
Bis(N-isopropyl-N-methyldithiocarbamato- κ2S,S')(1,10-phenanthroline-κ2N,N')zinc top
Crystal data top
[Zn(C5H10NS2)2(C12H8N2)]F(000) = 1128
Mr = 542.09Dx = 1.363 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11977 reflections
a = 11.8015 (3) Åθ = 2–29°
b = 16.6316 (4) ŵ = 1.26 mm1
c = 13.7505 (3) ÅT = 150 K
β = 101.738 (2)°Prism, pale-yellow
V = 2642.48 (11) Å30.25 × 0.20 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
6001 independent reflections
Radiation source: fine-focus sealed tube4814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 16.1952 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2121
Tmin = 0.777, Tmax = 0.860l = 1717
33394 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0376P)2 + 1.5727P]
where P = (Fo2 + 2Fc2)/3
6001 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.66 e Å3
6 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Zn(C5H10NS2)2(C12H8N2)]V = 2642.48 (11) Å3
Mr = 542.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8015 (3) ŵ = 1.26 mm1
b = 16.6316 (4) ÅT = 150 K
c = 13.7505 (3) Å0.25 × 0.20 × 0.12 mm
β = 101.738 (2)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
6001 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4814 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.860Rint = 0.064
33394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0366 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.04Δρmax = 0.66 e Å3
6001 reflectionsΔρmin = 0.50 e Å3
286 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.74542 (2)0.617296 (16)0.733396 (19)0.02087 (9)
S10.88167 (5)0.51904 (4)0.82966 (4)0.02410 (14)
S20.94125 (6)0.63431 (4)0.68609 (4)0.02614 (15)
S30.74451 (5)0.71890 (4)0.86753 (4)0.02513 (15)
S40.57158 (5)0.59097 (4)0.80817 (4)0.02474 (14)
N11.08885 (19)0.52534 (15)0.78012 (17)0.0349 (5)
N20.55956 (18)0.70121 (13)0.94727 (15)0.0289 (5)
N30.68974 (16)0.53855 (11)0.60453 (13)0.0188 (4)
N40.65988 (16)0.69879 (11)0.61528 (14)0.0206 (4)
C10.9824 (2)0.55502 (15)0.76623 (17)0.0239 (5)
C21.1701 (3)0.5547 (2)0.7204 (3)0.0553 (9)
H2A1.13400.55120.64970.083*
H2B1.24040.52180.73380.083*
H2C1.19010.61080.73770.083*
C31.1290 (3)0.45930 (18)0.8512 (2)0.0450 (8)
H31.06790.45130.89110.054*
C41.1391 (4)0.3815 (2)0.7977 (4)0.0847 (14)
H4A1.06500.36920.75340.127*
H4B1.15940.33800.84630.127*
H4C1.19950.38650.75860.127*
C51.2390 (3)0.4817 (2)0.9235 (3)0.0609 (10)
H5A1.30380.48220.88880.091*
H5B1.25430.44220.97740.091*
H5C1.23020.53510.95100.091*
C60.6178 (2)0.67345 (14)0.88098 (16)0.0214 (5)
C70.5997 (3)0.77392 (18)1.0047 (2)0.0433 (7)
H7A0.67620.76401.04630.065*
H7B0.54500.78781.04700.065*
H7C0.60460.81850.95910.065*
C80.4491 (2)0.66584 (18)0.9609 (2)0.0331 (6)
H80.43750.61440.92250.040*
C90.3502 (3)0.7211 (2)0.9181 (3)0.0684 (11)
H9A0.35860.77180.95510.103*
H9B0.27680.69560.92340.103*
H9C0.35070.73170.84810.103*
C100.4521 (3)0.6458 (2)1.0693 (2)0.0504 (8)
H10A0.52270.61551.09640.076*
H10B0.38430.61331.07430.076*
H10C0.45130.69571.10710.076*
C110.7038 (2)0.45954 (14)0.60029 (17)0.0229 (5)
H110.73850.43190.65930.027*
C120.6698 (2)0.41511 (14)0.51280 (17)0.0231 (5)
H120.68060.35850.51300.028*
C130.6210 (2)0.45394 (14)0.42725 (17)0.0216 (5)
H130.59810.42460.36720.026*
C140.60452 (19)0.53794 (14)0.42823 (16)0.0196 (5)
C150.64063 (18)0.57743 (13)0.51983 (16)0.0168 (4)
C160.62276 (19)0.66277 (13)0.52604 (16)0.0176 (5)
C170.56638 (19)0.70521 (14)0.44123 (16)0.0200 (5)
C180.5324 (2)0.66342 (15)0.34901 (17)0.0254 (5)
H180.49590.69210.29140.031*
C190.5516 (2)0.58322 (15)0.34272 (16)0.0245 (5)
H190.52950.55680.28050.029*
C200.5474 (2)0.78788 (14)0.45176 (18)0.0243 (5)
H200.50830.81850.39680.029*
C210.5854 (2)0.82358 (15)0.54158 (19)0.0270 (5)
H210.57340.87950.54970.032*
C220.6422 (2)0.77763 (14)0.62167 (18)0.0258 (5)
H220.66940.80360.68350.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02263 (16)0.02294 (16)0.01688 (14)0.00262 (11)0.00360 (10)0.00228 (11)
S10.0225 (3)0.0270 (3)0.0237 (3)0.0021 (2)0.0069 (2)0.0075 (2)
S20.0278 (3)0.0285 (3)0.0229 (3)0.0016 (3)0.0070 (2)0.0066 (3)
S30.0233 (3)0.0283 (3)0.0248 (3)0.0056 (2)0.0073 (2)0.0095 (3)
S40.0247 (3)0.0272 (3)0.0226 (3)0.0051 (2)0.0054 (2)0.0087 (2)
N10.0247 (12)0.0447 (14)0.0387 (12)0.0059 (10)0.0144 (10)0.0145 (11)
N20.0262 (12)0.0332 (12)0.0304 (11)0.0037 (9)0.0131 (9)0.0135 (10)
N30.0195 (10)0.0179 (10)0.0192 (9)0.0016 (8)0.0045 (7)0.0008 (8)
N40.0206 (10)0.0198 (10)0.0213 (9)0.0018 (8)0.0039 (8)0.0047 (8)
C10.0251 (13)0.0258 (13)0.0217 (11)0.0010 (10)0.0071 (9)0.0021 (10)
C20.0346 (18)0.078 (3)0.061 (2)0.0119 (16)0.0263 (15)0.0265 (19)
C30.0325 (16)0.0416 (18)0.065 (2)0.0149 (13)0.0184 (14)0.0241 (16)
C40.080 (3)0.049 (2)0.119 (4)0.018 (2)0.007 (3)0.003 (2)
C50.041 (2)0.078 (3)0.061 (2)0.0160 (18)0.0045 (16)0.027 (2)
C60.0208 (12)0.0241 (13)0.0191 (11)0.0006 (9)0.0034 (9)0.0035 (9)
C70.0447 (11)0.0438 (11)0.0440 (10)0.0024 (8)0.0150 (8)0.0098 (8)
C80.0276 (15)0.0411 (16)0.0346 (14)0.0039 (12)0.0155 (11)0.0053 (12)
C90.036 (2)0.089 (3)0.084 (3)0.0108 (19)0.0224 (18)0.031 (2)
C100.061 (2)0.056 (2)0.0398 (17)0.0082 (17)0.0231 (15)0.0037 (15)
C110.0230 (13)0.0221 (12)0.0233 (11)0.0035 (10)0.0042 (9)0.0040 (10)
C120.0241 (13)0.0176 (12)0.0282 (12)0.0024 (9)0.0070 (10)0.0021 (10)
C130.0216 (12)0.0206 (12)0.0236 (11)0.0012 (9)0.0071 (9)0.0044 (10)
C140.0176 (12)0.0210 (12)0.0209 (11)0.0019 (9)0.0053 (9)0.0024 (9)
C150.0141 (11)0.0177 (11)0.0191 (10)0.0002 (9)0.0048 (8)0.0000 (9)
C160.0161 (11)0.0167 (11)0.0205 (11)0.0011 (9)0.0049 (8)0.0014 (9)
C170.0170 (12)0.0200 (12)0.0222 (11)0.0004 (9)0.0022 (9)0.0007 (9)
C180.0283 (14)0.0245 (13)0.0207 (11)0.0016 (10)0.0019 (10)0.0023 (10)
C190.0281 (14)0.0278 (14)0.0164 (11)0.0034 (10)0.0013 (9)0.0021 (10)
C200.0224 (13)0.0212 (13)0.0285 (12)0.0014 (10)0.0029 (10)0.0043 (10)
C210.0286 (14)0.0175 (12)0.0364 (14)0.0033 (10)0.0104 (11)0.0019 (10)
C220.0296 (14)0.0216 (13)0.0262 (12)0.0021 (10)0.0058 (10)0.0060 (10)
Geometric parameters (Å, º) top
Zn—S12.4782 (6)C7—H7A0.9800
Zn—S22.5408 (7)C7—H7B0.9800
Zn—S32.5031 (6)C7—H7C0.9800
Zn—S42.5132 (7)C8—C91.508 (4)
Zn—N32.1939 (18)C8—C101.521 (4)
Zn—N42.1970 (19)C8—H81.0000
S1—C11.719 (2)C9—H9A0.9800
S2—C11.724 (2)C9—H9B0.9800
S3—C61.718 (2)C9—H9C0.9800
S4—C61.720 (2)C10—H10A0.9800
N1—C11.326 (3)C10—H10B0.9800
N1—C21.467 (3)C10—H10C0.9800
N1—C31.483 (3)C11—C121.399 (3)
N2—C61.331 (3)C11—H110.9500
N2—C71.469 (3)C12—C131.363 (3)
N2—C81.476 (3)C12—H120.9500
N3—C111.327 (3)C13—C141.411 (3)
N3—C151.355 (3)C13—H130.9500
N4—C221.334 (3)C14—C151.407 (3)
N4—C161.356 (3)C14—C191.429 (3)
C2—H2A0.9800C15—C161.440 (3)
C2—H2B0.9800C16—C171.409 (3)
C2—H2C0.9800C17—C201.405 (3)
C3—C41.506 (5)C17—C181.430 (3)
C3—C51.512 (5)C18—C191.359 (4)
C3—H31.0000C18—H180.9500
C4—H4A0.9800C19—H190.9500
C4—H4B0.9800C20—C211.362 (3)
C4—H4C0.9800C20—H200.9500
C5—H5A0.9800C21—C221.395 (3)
C5—H5B0.9800C21—H210.9500
C5—H5C0.9800C22—H220.9500
N3—Zn—N475.76 (7)N2—C7—H7A109.5
N3—Zn—S195.33 (5)N2—C7—H7B109.5
N4—Zn—S1162.22 (5)H7A—C7—H7B109.5
N3—Zn—S3162.30 (5)N2—C7—H7C109.5
N4—Zn—S393.33 (5)H7A—C7—H7C109.5
S1—Zn—S398.69 (2)H7B—C7—H7C109.5
N3—Zn—S495.23 (5)N2—C8—C9110.0 (2)
N4—Zn—S496.85 (5)N2—C8—C10111.5 (2)
S1—Zn—S499.30 (2)C9—C8—C10112.2 (3)
S3—Zn—S471.94 (2)N2—C8—H8107.7
N3—Zn—S289.90 (5)C9—C8—H8107.7
N4—Zn—S292.70 (5)C10—C8—H8107.7
S1—Zn—S271.65 (2)C8—C9—H9A109.5
S3—Zn—S2104.71 (2)C8—C9—H9B109.5
S4—Zn—S2170.02 (2)H9A—C9—H9B109.5
C1—S1—Zn86.57 (8)C8—C9—H9C109.5
C1—S2—Zn84.50 (8)H9A—C9—H9C109.5
C6—S3—Zn85.22 (8)H9B—C9—H9C109.5
C6—S4—Zn84.85 (8)C8—C10—H10A109.5
C1—N1—C2120.2 (2)C8—C10—H10B109.5
C1—N1—C3122.5 (2)H10A—C10—H10B109.5
C2—N1—C3117.3 (2)C8—C10—H10C109.5
C6—N2—C7119.9 (2)H10A—C10—H10C109.5
C6—N2—C8122.8 (2)H10B—C10—H10C109.5
C7—N2—C8117.2 (2)N3—C11—C12123.0 (2)
C11—N3—C15118.04 (19)N3—C11—H11118.5
C11—N3—Zn127.37 (15)C12—C11—H11118.5
C15—N3—Zn114.51 (14)C13—C12—C11119.3 (2)
C22—N4—C16117.9 (2)C13—C12—H12120.4
C22—N4—Zn127.77 (15)C11—C12—H12120.4
C16—N4—Zn114.32 (15)C12—C13—C14119.7 (2)
N1—C1—S1121.99 (19)C12—C13—H13120.1
N1—C1—S2120.82 (19)C14—C13—H13120.1
S1—C1—S2117.15 (14)C15—C14—C13117.0 (2)
N1—C2—H2A109.5C15—C14—C19119.5 (2)
N1—C2—H2B109.5C13—C14—C19123.5 (2)
H2A—C2—H2B109.5N3—C15—C14123.0 (2)
N1—C2—H2C109.5N3—C15—C16117.49 (19)
H2A—C2—H2C109.5C14—C15—C16119.45 (19)
H2B—C2—H2C109.5N4—C16—C17122.6 (2)
N1—C3—C4111.2 (3)N4—C16—C15117.71 (19)
N1—C3—C5111.6 (3)C17—C16—C15119.66 (19)
C4—C3—C5112.9 (3)C20—C17—C16117.6 (2)
N1—C3—H3106.9C20—C17—C18123.0 (2)
C4—C3—H3106.9C16—C17—C18119.4 (2)
C5—C3—H3106.9C19—C18—C17120.9 (2)
C3—C4—H4A109.5C19—C18—H18119.6
C3—C4—H4B109.5C17—C18—H18119.6
H4A—C4—H4B109.5C18—C19—C14121.0 (2)
C3—C4—H4C109.5C18—C19—H19119.5
H4A—C4—H4C109.5C14—C19—H19119.5
H4B—C4—H4C109.5C21—C20—C17119.3 (2)
C3—C5—H5A109.5C21—C20—H20120.3
C3—C5—H5B109.5C17—C20—H20120.3
H5A—C5—H5B109.5C20—C21—C22119.6 (2)
C3—C5—H5C109.5C20—C21—H21120.2
H5A—C5—H5C109.5C22—C21—H21120.2
H5B—C5—H5C109.5N4—C22—C21122.9 (2)
N2—C6—S4121.87 (19)N4—C22—H22118.5
N2—C6—S3120.21 (18)C21—C22—H22118.5
S4—C6—S3117.92 (14)
N3—Zn—S1—C185.85 (10)C2—N1—C3—C556.7 (4)
N4—Zn—S1—C127.03 (19)C7—N2—C6—S4177.3 (2)
S3—Zn—S1—C1104.98 (8)C8—N2—C6—S42.4 (3)
S4—Zn—S1—C1177.95 (8)C7—N2—C6—S33.8 (3)
S2—Zn—S1—C12.27 (8)C8—N2—C6—S3178.72 (19)
N3—Zn—S2—C193.38 (9)Zn—S4—C6—N2178.5 (2)
N4—Zn—S2—C1169.12 (9)Zn—S4—C6—S32.66 (13)
S1—Zn—S2—C12.27 (8)Zn—S3—C6—N2178.4 (2)
S3—Zn—S2—C196.72 (8)Zn—S3—C6—S42.67 (13)
S4—Zn—S2—C127.68 (16)C6—N2—C8—C9106.7 (3)
N3—Zn—S3—C643.33 (19)C7—N2—C8—C968.4 (3)
N4—Zn—S3—C694.43 (9)C6—N2—C8—C10128.3 (3)
S1—Zn—S3—C698.71 (8)C7—N2—C8—C1056.7 (3)
S4—Zn—S3—C61.70 (8)C15—N3—C11—C120.3 (3)
S2—Zn—S3—C6171.90 (8)Zn—N3—C11—C12176.88 (17)
N3—Zn—S4—C6165.83 (9)N3—C11—C12—C130.7 (4)
N4—Zn—S4—C689.58 (9)C11—C12—C13—C140.6 (3)
S1—Zn—S4—C697.88 (8)C12—C13—C14—C150.1 (3)
S3—Zn—S4—C61.70 (8)C12—C13—C14—C19178.4 (2)
S2—Zn—S4—C673.51 (16)C11—N3—C15—C140.2 (3)
N4—Zn—N3—C11179.2 (2)Zn—N3—C15—C14176.82 (17)
S1—Zn—N3—C1116.4 (2)C11—N3—C15—C16178.2 (2)
S3—Zn—N3—C11125.9 (2)Zn—N3—C15—C164.8 (2)
S4—Zn—N3—C1183.45 (19)C13—C14—C15—N30.3 (3)
S2—Zn—N3—C1187.97 (19)C19—C14—C15—N3178.9 (2)
N4—Zn—N3—C154.09 (15)C13—C14—C15—C16178.1 (2)
S1—Zn—N3—C15160.28 (15)C19—C14—C15—C160.5 (3)
S3—Zn—N3—C1557.4 (3)C22—N4—C16—C170.3 (3)
S4—Zn—N3—C1599.85 (15)Zn—N4—C16—C17179.72 (17)
S2—Zn—N3—C1588.72 (15)C22—N4—C16—C15179.2 (2)
N3—Zn—N4—C22177.8 (2)Zn—N4—C16—C151.5 (3)
S1—Zn—N4—C22120.7 (2)N3—C15—C16—N42.2 (3)
S3—Zn—N4—C2211.9 (2)C14—C15—C16—N4179.3 (2)
S4—Zn—N4—C2284.1 (2)N3—C15—C16—C17176.6 (2)
S2—Zn—N4—C2293.0 (2)C14—C15—C16—C171.9 (3)
N3—Zn—N4—C162.91 (15)N4—C16—C17—C200.9 (3)
S1—Zn—N4—C1658.6 (3)C15—C16—C17—C20177.9 (2)
S3—Zn—N4—C16168.78 (15)N4—C16—C17—C18178.4 (2)
S4—Zn—N4—C1696.59 (15)C15—C16—C17—C182.8 (3)
S2—Zn—N4—C1686.31 (15)C20—C17—C18—C19179.3 (2)
C2—N1—C1—S1176.6 (2)C16—C17—C18—C191.4 (4)
C3—N1—C1—S10.1 (4)C17—C18—C19—C141.0 (4)
C2—N1—C1—S25.7 (4)C15—C14—C19—C182.0 (4)
C3—N1—C1—S2177.6 (2)C13—C14—C19—C18176.5 (2)
Zn—S1—C1—N1178.6 (2)C16—C17—C20—C211.2 (3)
Zn—S1—C1—S23.58 (13)C18—C17—C20—C21178.1 (2)
Zn—S2—C1—N1178.6 (2)C17—C20—C21—C220.2 (4)
Zn—S2—C1—S13.50 (12)C16—N4—C22—C211.4 (4)
C1—N1—C3—C4106.4 (3)Zn—N4—C22—C21179.31 (18)
C2—N1—C3—C470.4 (4)C20—C21—C22—N41.1 (4)
C1—N1—C3—C5126.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the Zn,S1,S2,C1 chelate ring.
D—H···AD—HH···AD···AD—H···A
C7—H7b···S2i0.982.793.734 (3)162
C13—H13···S4ii0.952.823.634 (2)145
C21—H21···S1iii0.952.843.684 (3)149
C20—H20···Cg1iv0.952.743.687 (2)173
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C5H10NS2)2(C12H8N2)]
Mr542.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.8015 (3), 16.6316 (4), 13.7505 (3)
β (°) 101.738 (2)
V3)2642.48 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.25 × 0.20 × 0.12
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.777, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
33394, 6001, 4814
Rint0.064
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.04
No. of reflections6001
No. of parameters286
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.50

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn—S12.4782 (6)Zn—S42.5132 (7)
Zn—S22.5408 (7)Zn—N32.1939 (18)
Zn—S32.5031 (6)Zn—N42.1970 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the Zn,S1,S2,C1 chelate ring.
D—H···AD—HH···AD···AD—H···A
C7—H7b···S2i0.982.793.734 (3)162
C13—H13···S4ii0.952.823.634 (2)145
C21—H21···S1iii0.952.843.684 (3)149
C20—H20···Cg1iv0.952.743.687 (2)173
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x1/2, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: aibi@ukm.my.

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08–27-111), the Ministry of Higher Education (UKM-ST-06-FRGS0092–2010), Universiti Putra Malaysia and the University of Malaya for supporting this study.

References

First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJamaluddin, N. A., Baba, I., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m384–m385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMalik, M. A., Motevalli, M., O'Brien, P. & Walsh, J. R. (1997). Inorg. Chem. 36, 1263–1264.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationMotevalli, M., O'Brien, P., Walsh, J. R. & Watson, I. M. (1996). Polyhedron, 15, 2801–2808.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. doi:10.1039/c1cc11173f.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m553-m554
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds