metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m555-m556

(N-Butyl-N-phenyl­di­thio­carbamato-κS)tri­phenyl­tin(IV)

aEnvironmental Health Programme, Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia, bSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, cDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 3 April 2011; accepted 4 April 2011; online 7 April 2011)

The title compound, [Sn(C6H5)3(C11H14NS2)], features a tetra­hedrally coordinated Sn atom, as the dithio­carbamate ligand coordinates in a monodentate fashion. Due to the proximity of the non-coordinating thione S atom, distortions from ideal tetra­hedral geometry about the metal atom are evident with the widest C—Sn—S angle being 117.26 (5)°. In the crystal, mol­ecules are linked by C—H⋯S inter­actions, which generate helical supra­molecular chains along the b axis.

Related literature

For a review on the applications and structural chemistry of tin dithio­carbamates, see: Tiekink (2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). For a recently reported related structure, see: Awang et al. (2010[Awang, N., Baba, I., Yamin, B. M., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1144.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C11H14NS2)]

  • Mr = 574.34

  • Monoclinic, P 21 /n

  • a = 10.0488 (1) Å

  • b = 18.0008 (2) Å

  • c = 15.2054 (2) Å

  • β = 102.442 (1)°

  • V = 2685.85 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 150 K

  • 0.24 × 0.22 × 0.10 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.781, Tmax = 0.894

  • 34109 measured reflections

  • 6099 independent reflections

  • 5277 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.060

  • S = 1.02

  • 6099 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn—S1 2.4772 (5)
Sn—S2 3.1048 (5)
Sn—C12 2.1286 (18)
Sn—C18 2.1380 (19)
Sn—C24 2.1521 (18)
S1—C1 1.758 (2)
S2—C1 1.675 (2)
C12—Sn—C18 113.76 (7)
C12—Sn—C24 107.51 (7)
C18—Sn—C24 107.45 (7)
C12—Sn—S1 117.26 (5)
C18—Sn—S1 115.54 (5)
C24—Sn—S1 92.18 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯S2i 0.95 2.83 3.612 (2) 140
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Their potential as anti-cancer agents, anti-microbials and insecticides, and as convenient synthetic precursors for tin sulfide nanoparticles, attract continued attention to organotin dithiocarbamates (Tiekink, 2008). As part of on-going of structural studies of triphenyltin(IV) dithiocarbamates (Awang et al., 2010), the analysis of the title compound, (I), was undertaken.

The molecular structure, Fig. 1, features Sn coordinated by the dithiocarbamate ligand and three ipso-C atoms of three benzene rings. The dithiocarbamte ligand coordinates essentially in a monodentate fashion, an assignment supported by the large disparity in the C—S bond distances, Table 1. The coordination geometry is based on a tetrahedron with the range of tetrahedral angles being 92.18 (5) to 117.26 (5) °. The wider angles are ascribed to the influence of the proximate S2 atom. The crystal packing of (I) features helical supramolecular chains along the b axis that is sustained by C—H···S interactions, Fig. 2 and Table 2.

Related literature top

For a review on the applications and structural chemistry of tin dithiocarbamates, see: Tiekink (2008). For a recently reported related structure, see: Awang et al. (2010).

Experimental top

The title compound was prepared using an in situ method by the addition of carbon disulfide (0.01 mol) to an ethanolic solution of N-butylphenylamine (0.01 mol). The mixture was stirred for 1 h at 277 K. The solution was then added drop-wise to a solution of triphenyltin(IV) chloride (0.01 mol) in ethanol (20 ml). The mixture was stirred for 1 h. The white precipitate that formed was filtered, washed with cold ethanol and dried in a desiccator. Crystallization was carried out by using an ethanol:chloroform (1:1 v/v) mixture to yield colourless prisms of (I). Yield: 34%. M.pt. 374–375 K. Elemental analysis. Found (calculated) for C29H29NS2Sn: C, 60.54 (60.64); H 5.08 (5.09); N 2.34 (2.44); S 11.31 (11.17); Sn 20.19 (20.66) %. UV (CHCl3) λmax 252 nm (L(π) L(π*)). IR (KBr): ν(C—H) 2960 m; ν(CN) 1477 m; ν(N—C) 1139 s; ν(CS) 997 s; ν(Cd—S) 356 s cm-1.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain in (I) mediated by C—H···S interactions (orange dashed lines) along the b axis in (I).
(N-Butyl-N-phenyldithiocarbamato-κS)triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C11H14NS2)]F(000) = 1168
Mr = 574.34Dx = 1.420 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 18395 reflections
a = 10.0488 (1) Åθ = 2–29°
b = 18.0008 (2) ŵ = 1.12 mm1
c = 15.2054 (2) ÅT = 150 K
β = 102.442 (1)°Prism, colourless
V = 2685.85 (5) Å30.24 × 0.22 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
6099 independent reflections
Radiation source: fine-focus sealed tube5277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.1952 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2323
Tmin = 0.781, Tmax = 0.894l = 1919
34109 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.6995P]
where P = (Fo2 + 2Fc2)/3
6099 reflections(Δ/σ)max = 0.003
299 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Sn(C6H5)3(C11H14NS2)]V = 2685.85 (5) Å3
Mr = 574.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0488 (1) ŵ = 1.12 mm1
b = 18.0008 (2) ÅT = 150 K
c = 15.2054 (2) Å0.24 × 0.22 × 0.10 mm
β = 102.442 (1)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
6099 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
5277 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.894Rint = 0.044
34109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
6099 reflectionsΔρmin = 0.27 e Å3
299 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.636843 (12)0.514323 (7)0.706567 (8)0.02366 (5)
S10.74819 (5)0.56428 (3)0.85614 (3)0.03110 (11)
S20.60687 (5)0.42144 (3)0.87326 (3)0.03087 (11)
N10.72072 (18)0.50776 (9)1.01112 (11)0.0316 (4)
C10.6917 (2)0.49591 (10)0.92221 (13)0.0280 (4)
C20.6806 (2)0.45399 (12)1.07424 (13)0.0366 (5)
H2A0.59410.42991.04450.044*
H2B0.66420.48111.12760.044*
C30.7875 (2)0.39454 (12)1.10512 (14)0.0392 (5)
H3A0.87130.41801.14040.047*
H3B0.81060.37051.05180.047*
C40.7378 (3)0.33576 (13)1.16269 (15)0.0471 (6)
H4A0.65240.31351.12800.057*
H4B0.71720.35971.21680.057*
C50.8423 (3)0.27455 (16)1.19190 (19)0.0671 (8)
H5A0.86680.25251.13860.101*
H5B0.80350.23621.22470.101*
H5C0.92390.29551.23120.101*
C60.7940 (2)0.57343 (12)1.05062 (13)0.0338 (5)
C70.7210 (2)0.63472 (12)1.06800 (14)0.0365 (5)
H70.62420.63371.05440.044*
C80.7902 (3)0.69796 (13)1.10562 (15)0.0442 (5)
H80.74070.74031.11780.053*
C90.9303 (3)0.69916 (15)1.12510 (15)0.0518 (6)
H90.97750.74271.14980.062*
C101.0025 (3)0.63747 (16)1.10886 (17)0.0578 (7)
H101.09930.63841.12280.069*
C110.9344 (2)0.57402 (15)1.07221 (15)0.0485 (6)
H110.98420.53121.06200.058*
C120.71232 (19)0.41209 (10)0.66655 (12)0.0258 (4)
C130.8499 (2)0.40110 (12)0.67362 (15)0.0377 (5)
H130.91180.44000.69620.045*
C140.8999 (2)0.33402 (12)0.64823 (16)0.0442 (5)
H140.99520.32740.65400.053*
C150.8124 (3)0.27783 (12)0.61507 (15)0.0421 (5)
H150.84650.23190.59860.050*
C160.6745 (3)0.28803 (12)0.60564 (17)0.0498 (6)
H160.61320.24940.58110.060*
C170.6240 (2)0.35448 (12)0.63171 (15)0.0404 (5)
H170.52850.36070.62570.048*
C180.41962 (19)0.52313 (10)0.67250 (13)0.0263 (4)
C190.3332 (2)0.47347 (11)0.70304 (14)0.0329 (4)
H190.37090.43360.74130.039*
C200.1932 (2)0.48155 (13)0.67828 (17)0.0439 (6)
H200.13570.44770.70040.053*
C210.1365 (2)0.53874 (15)0.62151 (17)0.0489 (6)
H210.04030.54460.60520.059*
C220.2205 (2)0.58712 (13)0.58878 (15)0.0426 (5)
H220.18190.62560.54850.051*
C230.3614 (2)0.57999 (11)0.61427 (13)0.0328 (4)
H230.41840.61400.59190.039*
C240.71761 (18)0.60219 (10)0.63749 (12)0.0260 (4)
C250.7478 (2)0.59142 (12)0.55345 (14)0.0388 (5)
H250.72820.54500.52380.047*
C260.8063 (3)0.64789 (14)0.51222 (16)0.0510 (6)
H260.82710.63950.45500.061*
C270.8344 (2)0.71606 (13)0.55379 (16)0.0472 (6)
H270.87370.75460.52520.057*
C280.8049 (3)0.72759 (12)0.63682 (16)0.0455 (6)
H280.82420.77430.66590.055*
C290.7472 (2)0.67142 (11)0.67806 (14)0.0383 (5)
H290.72720.68020.73550.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02646 (8)0.02098 (8)0.02380 (8)0.00103 (5)0.00594 (5)0.00096 (5)
S10.0410 (3)0.0271 (2)0.0234 (2)0.0021 (2)0.0029 (2)0.00049 (19)
S20.0389 (3)0.0250 (2)0.0299 (2)0.0037 (2)0.0100 (2)0.00173 (19)
N10.0396 (10)0.0330 (9)0.0223 (8)0.0080 (7)0.0072 (7)0.0010 (7)
C10.0301 (10)0.0281 (10)0.0259 (10)0.0106 (8)0.0061 (8)0.0028 (8)
C20.0456 (12)0.0418 (12)0.0253 (10)0.0110 (10)0.0138 (9)0.0053 (9)
C30.0446 (13)0.0421 (12)0.0316 (11)0.0116 (10)0.0101 (10)0.0074 (9)
C40.0654 (16)0.0486 (14)0.0314 (11)0.0150 (12)0.0196 (11)0.0083 (10)
C50.087 (2)0.0596 (17)0.0554 (17)0.0233 (16)0.0181 (15)0.0239 (14)
C60.0410 (12)0.0404 (12)0.0194 (9)0.0069 (9)0.0051 (8)0.0001 (8)
C70.0408 (12)0.0376 (12)0.0317 (11)0.0069 (9)0.0091 (9)0.0032 (9)
C80.0604 (15)0.0376 (12)0.0352 (12)0.0068 (11)0.0111 (11)0.0012 (10)
C90.0596 (16)0.0566 (15)0.0342 (12)0.0082 (13)0.0009 (11)0.0076 (11)
C100.0419 (14)0.078 (2)0.0483 (15)0.0000 (13)0.0023 (12)0.0180 (14)
C110.0415 (13)0.0615 (16)0.0389 (13)0.0146 (11)0.0005 (10)0.0115 (11)
C120.0340 (10)0.0218 (9)0.0230 (9)0.0014 (8)0.0090 (8)0.0004 (7)
C130.0342 (11)0.0316 (11)0.0468 (13)0.0021 (9)0.0076 (10)0.0081 (9)
C140.0435 (13)0.0396 (12)0.0501 (14)0.0115 (10)0.0111 (11)0.0039 (11)
C150.0688 (16)0.0272 (11)0.0359 (12)0.0091 (11)0.0238 (11)0.0014 (9)
C160.0684 (17)0.0299 (12)0.0554 (15)0.0169 (11)0.0226 (13)0.0156 (11)
C170.0415 (12)0.0348 (12)0.0482 (13)0.0096 (9)0.0171 (10)0.0120 (10)
C180.0270 (9)0.0280 (10)0.0234 (9)0.0008 (7)0.0046 (8)0.0057 (7)
C190.0310 (10)0.0334 (11)0.0344 (11)0.0019 (8)0.0073 (9)0.0015 (9)
C200.0322 (11)0.0515 (14)0.0491 (14)0.0063 (10)0.0111 (10)0.0004 (11)
C210.0295 (11)0.0597 (15)0.0526 (15)0.0049 (11)0.0017 (11)0.0041 (12)
C220.0413 (12)0.0402 (12)0.0402 (12)0.0093 (10)0.0045 (10)0.0001 (10)
C230.0393 (11)0.0291 (10)0.0276 (10)0.0006 (9)0.0023 (9)0.0013 (8)
C240.0265 (9)0.0249 (9)0.0253 (9)0.0006 (7)0.0025 (8)0.0026 (7)
C250.0540 (14)0.0325 (11)0.0312 (11)0.0070 (10)0.0122 (10)0.0023 (9)
C260.0723 (17)0.0504 (15)0.0358 (12)0.0063 (13)0.0237 (12)0.0062 (11)
C270.0547 (14)0.0398 (13)0.0481 (14)0.0105 (11)0.0131 (12)0.0156 (11)
C280.0639 (15)0.0261 (11)0.0432 (13)0.0108 (10)0.0046 (12)0.0037 (9)
C290.0588 (14)0.0265 (10)0.0308 (11)0.0036 (10)0.0122 (10)0.0013 (8)
Geometric parameters (Å, º) top
Sn—S12.4772 (5)C12—C131.377 (3)
Sn—S23.1048 (5)C12—C171.393 (3)
Sn—C122.1286 (18)C13—C141.394 (3)
Sn—C182.1380 (19)C13—H130.9500
Sn—C242.1521 (18)C14—C151.364 (3)
S1—C11.758 (2)C14—H140.9500
S2—C11.675 (2)C15—C161.374 (3)
N1—C11.337 (2)C15—H150.9500
N1—C61.453 (3)C16—C171.390 (3)
N1—C21.479 (3)C16—H160.9500
C2—C31.517 (3)C17—H170.9500
C2—H2A0.9900C18—C191.394 (3)
C2—H2B0.9900C18—C231.396 (3)
C3—C41.524 (3)C19—C201.384 (3)
C3—H3A0.9900C19—H190.9500
C3—H3B0.9900C20—C211.385 (3)
C4—C51.521 (3)C20—H200.9500
C4—H4A0.9900C21—C221.378 (3)
C4—H4B0.9900C21—H210.9500
C5—H5A0.9800C22—C231.391 (3)
C5—H5B0.9800C22—H220.9500
C5—H5C0.9800C23—H230.9500
C6—C111.378 (3)C24—C251.389 (3)
C6—C71.382 (3)C24—C291.394 (3)
C7—C81.391 (3)C25—C261.390 (3)
C7—H70.9500C25—H250.9500
C8—C91.375 (3)C26—C271.381 (3)
C8—H80.9500C26—H260.9500
C9—C101.377 (4)C27—C281.373 (3)
C9—H90.9500C27—H270.9500
C10—C111.385 (4)C28—C291.382 (3)
C10—H100.9500C28—H280.9500
C11—H110.9500C29—H290.9500
C12—Sn—C18113.76 (7)C13—C12—C17118.00 (18)
C12—Sn—C24107.51 (7)C13—C12—Sn121.01 (14)
C18—Sn—C24107.45 (7)C17—C12—Sn120.99 (15)
C12—Sn—S1117.26 (5)C12—C13—C14121.2 (2)
C18—Sn—S1115.54 (5)C12—C13—H13119.4
C24—Sn—S192.18 (5)C14—C13—H13119.4
C1—S1—Sn97.64 (7)C15—C14—C13120.1 (2)
C1—N1—C6121.91 (17)C15—C14—H14119.9
C1—N1—C2121.41 (18)C13—C14—H14119.9
C6—N1—C2116.68 (16)C16—C15—C14119.7 (2)
N1—C1—S2123.79 (16)C16—C15—H15120.2
N1—C1—S1116.04 (15)C14—C15—H15120.2
S2—C1—S1120.16 (12)C15—C16—C17120.5 (2)
N1—C2—C3112.88 (17)C15—C16—H16119.8
N1—C2—H2A109.0C17—C16—H16119.8
C3—C2—H2A109.0C16—C17—C12120.5 (2)
N1—C2—H2B109.0C16—C17—H17119.8
C3—C2—H2B109.0C12—C17—H17119.8
H2A—C2—H2B107.8C19—C18—C23118.40 (18)
C2—C3—C4111.70 (18)C19—C18—Sn123.25 (14)
C2—C3—H3A109.3C23—C18—Sn118.31 (14)
C4—C3—H3A109.3C20—C19—C18120.8 (2)
C2—C3—H3B109.3C20—C19—H19119.6
C4—C3—H3B109.3C18—C19—H19119.6
H3A—C3—H3B107.9C19—C20—C21120.4 (2)
C3—C4—C5112.3 (2)C19—C20—H20119.8
C3—C4—H4A109.1C21—C20—H20119.8
C5—C4—H4A109.1C22—C21—C20119.5 (2)
C3—C4—H4B109.1C22—C21—H21120.2
C5—C4—H4B109.1C20—C21—H21120.2
H4A—C4—H4B107.9C21—C22—C23120.5 (2)
C4—C5—H5A109.5C21—C22—H22119.8
C4—C5—H5B109.5C23—C22—H22119.8
H5A—C5—H5B109.5C22—C23—C18120.4 (2)
C4—C5—H5C109.5C22—C23—H23119.8
H5A—C5—H5C109.5C18—C23—H23119.8
H5B—C5—H5C109.5C25—C24—C29117.65 (18)
C11—C6—C7120.5 (2)C25—C24—Sn121.76 (14)
C11—C6—N1120.44 (19)C29—C24—Sn120.53 (14)
C7—C6—N1119.07 (19)C24—C25—C26120.7 (2)
C6—C7—C8119.5 (2)C24—C25—H25119.7
C6—C7—H7120.2C26—C25—H25119.7
C8—C7—H7120.2C27—C26—C25120.5 (2)
C9—C8—C7120.0 (2)C27—C26—H26119.7
C9—C8—H8120.0C25—C26—H26119.7
C7—C8—H8120.0C28—C27—C26119.5 (2)
C8—C9—C10120.2 (2)C28—C27—H27120.3
C8—C9—H9119.9C26—C27—H27120.3
C10—C9—H9119.9C29—C28—C27120.1 (2)
C9—C10—C11120.2 (2)C29—C28—H28120.0
C9—C10—H10119.9C27—C28—H28120.0
C11—C10—H10119.9C28—C29—C24121.6 (2)
C6—C11—C10119.6 (2)C28—C29—H29119.2
C6—C11—H11120.2C24—C29—H29119.2
C10—C11—H11120.2
C12—Sn—S1—C168.43 (8)C13—C14—C15—C160.9 (4)
C18—Sn—S1—C170.03 (8)C14—C15—C16—C171.6 (4)
C24—Sn—S1—C1179.43 (8)C15—C16—C17—C121.0 (4)
C6—N1—C1—S2179.67 (14)C13—C12—C17—C160.4 (3)
C2—N1—C1—S20.9 (3)Sn—C12—C17—C16179.86 (17)
C6—N1—C1—S10.3 (2)C12—Sn—C18—C1958.98 (18)
C2—N1—C1—S1179.14 (14)C24—Sn—C18—C19177.86 (16)
Sn—S1—C1—N1173.43 (14)S1—Sn—C18—C1980.93 (16)
Sn—S1—C1—S26.51 (12)C12—Sn—C18—C23118.75 (14)
C1—N1—C2—C388.8 (2)C24—Sn—C18—C230.13 (16)
C6—N1—C2—C390.7 (2)S1—Sn—C18—C23101.34 (14)
N1—C2—C3—C4174.46 (18)C23—C18—C19—C201.8 (3)
C2—C3—C4—C5178.3 (2)Sn—C18—C19—C20179.52 (16)
C1—N1—C6—C1187.1 (2)C18—C19—C20—C210.9 (4)
C2—N1—C6—C1192.3 (2)C19—C20—C21—C220.8 (4)
C1—N1—C6—C794.2 (2)C20—C21—C22—C231.7 (4)
C2—N1—C6—C786.3 (2)C21—C22—C23—C180.8 (3)
C11—C6—C7—C81.5 (3)C19—C18—C23—C220.9 (3)
N1—C6—C7—C8179.84 (18)Sn—C18—C23—C22178.78 (15)
C6—C7—C8—C90.1 (3)C12—Sn—C24—C2529.77 (18)
C7—C8—C9—C101.1 (4)C18—Sn—C24—C2593.05 (17)
C8—C9—C10—C110.5 (4)S1—Sn—C24—C25149.29 (16)
C7—C6—C11—C102.1 (3)C12—Sn—C24—C29147.32 (16)
N1—C6—C11—C10179.2 (2)C18—Sn—C24—C2989.86 (17)
C9—C10—C11—C61.1 (4)S1—Sn—C24—C2927.81 (16)
C18—Sn—C12—C13172.10 (15)C29—C24—C25—C260.5 (3)
C24—Sn—C12—C1353.25 (18)Sn—C24—C25—C26176.71 (18)
S1—Sn—C12—C1348.72 (17)C24—C25—C26—C270.6 (4)
C18—Sn—C12—C177.36 (19)C25—C26—C27—C280.5 (4)
C24—Sn—C12—C17126.21 (16)C26—C27—C28—C290.2 (4)
S1—Sn—C12—C17131.82 (15)C27—C28—C29—C240.1 (4)
C17—C12—C13—C141.1 (3)C25—C24—C29—C280.2 (3)
Sn—C12—C13—C14179.44 (17)Sn—C24—C29—C28177.00 (17)
C12—C13—C14—C150.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···S2i0.952.833.612 (2)140
Symmetry code: (i) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C11H14NS2)]
Mr574.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)10.0488 (1), 18.0008 (2), 15.2054 (2)
β (°) 102.442 (1)
V3)2685.85 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.24 × 0.22 × 0.10
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.781, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
34109, 6099, 5277
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.02
No. of reflections6099
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Sn—S12.4772 (5)Sn—C242.1521 (18)
Sn—S23.1048 (5)S1—C11.758 (2)
Sn—C122.1286 (18)S2—C11.675 (2)
Sn—C182.1380 (19)
C12—Sn—C18113.76 (7)C12—Sn—S1117.26 (5)
C12—Sn—C24107.51 (7)C18—Sn—S1115.54 (5)
C18—Sn—C24107.45 (7)C24—Sn—S192.18 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···S2i0.952.833.612 (2)140
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: aibi@ukm.my.

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08–27-111), the Ministry of Higher Education (UKM-ST-06-FRGS0092–2010), Universiti Putra Malaysia and the University of Malaya for supporting this study.

References

First citationAwang, N., Baba, I., Yamin, B. M., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m555-m556
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds