organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1149

1-Benzoyl-3-methyl-3-pentyl­thio­urea

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 April 2011; accepted 9 April 2011; online 16 April 2011)

Two independent mol­ecules comprise the asymmetric unit of the title compound, C14H20N2OS. These differ in the relative orientations of the pentyl chains [C—C—C—C torsion angles = −176.7 (3) and 176.4 (3)°]. Significant twists are evident in each mol­ecule, the dihedral angles formed between the thio­urea and amide residues being 53.47 (17) and 55.81 (17)°. In the crystal, each mol­ecule self-associates via a centrosymmetric eight-membered {⋯HNC=S}2 synthon, and these are connected into a supra­molecular chain along [110] via C—H⋯O contacts. Disorder is noted for one of the independent mol­ecules in that two orientations (50:50) were resolved for its benzene ring.

Related literature

For the coordination potental of thio­urea derivatives, see: Pisiewicz et al. (2010[Pisiewicz, S., Rust, J., Lehmann, C. W. & Mohr, F. (2010). Polyhedron, 29, 1968-1972.]). For pharmaceutical applications of thio­ruea deriavives, see: Venkatachalam et al. (2004[Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275-4284.]); Bruce et al. (2007[Bruce, J. C., Revaprasadu, N. & Koch, K. R. (2007). New J. Chem. 31, 1647-1653.]). For applications of thio­urea derivatives in catalysis, see: Gunasekaran et al. (2010[Gunasekaran, N. & Karvembu, R. (2010). Inorg. Chem. Commun. 13, 952-955.], 2011[Gunasekaran, N., Remya, N., Radhakrishnan, S. & Karvembu, R. (2011). J. Coord. Chem. 64, 491-501.]). For closely related structures, see: Gunasekaran et al. (2010a[Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2113.],b[Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2572-o2573.],c[Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010c). Acta Cryst. E66, o2601.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N2OS

  • Mr = 264.38

  • Triclinic, [P \overline 1]

  • a = 9.0992 (6) Å

  • b = 10.5297 (6) Å

  • c = 16.4038 (8) Å

  • α = 75.784 (5)°

  • β = 77.831 (5)°

  • γ = 82.877 (5)°

  • V = 1484.98 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.853, Tmax = 1.000

  • 11884 measured reflections

  • 6585 independent reflections

  • 3555 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.184

  • S = 1.03

  • 6585 reflections

  • 321 parameters

  • 37 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.88 2.87 3.604 (2) 143
N3—H3⋯S2ii 0.88 2.72 3.449 (2) 141
C10—H10b⋯O2iii 0.97 2.55 3.397 (4) 146
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+2; (iii) -x+2, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and QMOL (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiourea derivatives exhibit remarkable coordination versatility towards metal cations (Pisiewicz et al., 2010). In continuation of structural studies of thiourea derivatives (Gunasekaran et al., 2010a; Gunasekaran et al., 2010b; Gunasekaran et al., 2010c), which have applications in the field of pharmaceuticals (Venkatachalam et al., 2004; Bruce et al., 2007) and catalysis (Gunasekaran et al., 2010; Gunasekaran et al., 2011), the crystal structure of the title compound, (I), was investigated.

Two independent molecules, Figs 1 and 2, comprise the asymmetric unit of (I). While similar, the molecules differ in the relative orientations of the pentyl groups, Fig. 3, as quantified in the values of the C10—C11—C12—C13 and C24—C25—C26—C27 torsion angles of -176.7 (3) and 176.4 (3) °, respectively, which indicate opposite orientations with respect to the remaining part of the respective molecules. While 50:50 disorder was found in the orientation of the phenyl ring in the second independent molecule, it is noted that the disordered rings are co-planar; dihedral angle = 6.9 (3) °. Significant twists are evident in each molecule with the dihedral angle formed between the thiourea and amide residues being 53.47 (17) ° [for S1,N1,N2,C7/O1,N1,C7,C7] and 55.81 (17) ° [for S2,N3,N4,C22/O2,N3,C21,C22]. Similarly, the terminal benzene ring is twisted out of the least-squares plane through the amide forming a C1—C6—C7—O1 torsion angle of -27.5 (4) °. For the second molecule, with disorder in the benzene ring, the C19—C20—C21—O2 and C19'—C20'—C21—O2 torsion angles are 154.8 (5) and 141.8 (6) °, respectively.

In the crystal packing, each independent molecule self-associates via a centrosymmetric eight-membered {···HNCS}2 synthon. The carbonyl-O2 atom forms an intermolecular C—H···O interaction that serves to link the centrosymmetric dimers into a linear supramolecular chain along [110], Fig. 4; the carbonyl-O1 atom is engaged in an intramolecular C—H···O contact.

Related literature top

For the coordination potental of thiourea derivatives, see: Pisiewicz et al. (2010). For pharmaceutical applications of thioruea deriavives, see: Venkatachalam et al. (2004); Bruce et al. (2007). For applications of thiourea derivatives in catalysis, see: Gunasekaran et al. (2010, 2011). For closely related structures, see: Gunasekaran et al. (2010a,b,c).

Experimental top

A solution of benzoyl chloride (0.7029 g, 5 mmol) in acetone (50 ml) was added drop-wise to a suspension of potassium thiocyanate (0.4859 g, 5 mmol) in anhydrous acetone (50 ml). The reaction mixture was heated under reflux for 45 min. and then cooled to room temperature. A solution of n-methylpentylamine (0.5060 g, 5 mmol) in acetone (30 ml) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added and the resulting white solid was filtered, washed with water and dried in vacuo. Crystals were grown at room temperature from its acetone solution. M.pt. 332–334 K; Yield 70%. FT—IR (KBr) ν(N—H) 3172, ν(CO) 1685, ν(CS) 1245 cm-1.

Refinement top

The H-atoms were placed in calculated positions (N—H = 0.88; C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(N, C). The phenyl ring of the second of the independent molecules is disordered over two postions. The occupancy could not be refined, so the disorder was assumed to be a 1:1 type. The rings were refined as rigid hexagons of 1.39 Å sides. The anisotropic displacement factors of the primed atoms were set to those of the unprimed ones, and were restrained to be nearly isotropic. The Ccarbonyl–Cphenyl distances were restrained to within 0.01 Å of each other.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMOL (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the first independent molecule of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. The molecular structure of the second independent molecule of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 3] Fig. 3. Overlay diagram showing the superimposition of the S1-containing molecule (red) with the S2-containing molecule (blue).
[Figure 4] Fig. 4. Supramolecular chain in (I) mediated by N—H···S hydrogen bonding and C—H···O contacts shown as orange and blue dashed lines, respectively.
1-Benzoyl-3-methyl-3-pentylthiourea top
Crystal data top
C14H20N2OSZ = 4
Mr = 264.38F(000) = 568
Triclinic, P1Dx = 1.183 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0992 (6) ÅCell parameters from 2904 reflections
b = 10.5297 (6) Åθ = 2.3–29.3°
c = 16.4038 (8) ŵ = 0.21 mm1
α = 75.784 (5)°T = 295 K
β = 77.831 (5)°Block, colourless
γ = 82.877 (5)°0.25 × 0.20 × 0.15 mm
V = 1484.98 (15) Å3
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
6585 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3555 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1313
Tmin = 0.853, Tmax = 1.000l = 2117
11884 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.071P)2 + 0.1338P]
where P = (Fo2 + 2Fc2)/3
6585 reflections(Δ/σ)max = 0.001
321 parametersΔρmax = 0.33 e Å3
37 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H20N2OSγ = 82.877 (5)°
Mr = 264.38V = 1484.98 (15) Å3
Triclinic, P1Z = 4
a = 9.0992 (6) ÅMo Kα radiation
b = 10.5297 (6) ŵ = 0.21 mm1
c = 16.4038 (8) ÅT = 295 K
α = 75.784 (5)°0.25 × 0.20 × 0.15 mm
β = 77.831 (5)°
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
6585 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3555 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 1.000Rint = 0.034
11884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06237 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
6585 reflectionsΔρmin = 0.27 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.61942 (10)0.45168 (7)0.37694 (5)0.0643 (3)
S20.53313 (10)1.00478 (8)0.86780 (5)0.0709 (3)
O10.9407 (2)0.6383 (2)0.43989 (13)0.0707 (6)
O20.9060 (2)1.1826 (2)0.88476 (13)0.0753 (6)
N10.6894 (3)0.6324 (2)0.44660 (14)0.0531 (6)
H10.59830.64980.47460.064*
N20.7833 (3)0.6553 (2)0.30138 (13)0.0522 (6)
N30.6572 (3)1.1566 (2)0.93652 (13)0.0548 (6)
H30.58491.15620.98160.066*
N40.6452 (2)1.2346 (2)0.79196 (13)0.0504 (5)
C10.8832 (4)0.6575 (3)0.61411 (19)0.0687 (9)
H1A0.97270.60930.59780.082*
C20.8564 (5)0.6965 (3)0.6908 (2)0.0818 (10)
H20.92710.67270.72650.098*
C30.7272 (5)0.7696 (3)0.7145 (2)0.0810 (11)
H3A0.71060.79610.76600.097*
C40.6215 (4)0.8042 (3)0.6629 (2)0.0735 (9)
H4A0.53370.85480.67890.088*
C50.6465 (4)0.7633 (3)0.58688 (18)0.0616 (8)
H50.57430.78540.55220.074*
C60.7779 (3)0.6897 (3)0.56196 (17)0.0531 (7)
C70.8127 (3)0.6516 (3)0.47817 (17)0.0537 (7)
C80.7042 (3)0.5864 (2)0.37203 (16)0.0492 (6)
C90.8225 (4)0.7902 (3)0.29168 (19)0.0658 (8)
H9A0.75950.82780.33590.099*
H9B0.80730.84200.23670.099*
H9C0.92630.78880.29600.099*
C100.8343 (3)0.6011 (3)0.22507 (17)0.0571 (7)
H10A0.84150.50600.24270.069*
H10B0.93460.62800.19820.069*
C110.7337 (3)0.6426 (3)0.16005 (17)0.0624 (8)
H11A0.71960.73770.14540.075*
H11B0.63570.60880.18480.075*
C120.7986 (4)0.5931 (3)0.07880 (18)0.0645 (8)
H12A0.89380.63110.05240.077*
H12B0.81890.49850.09420.077*
C130.6965 (4)0.6257 (4)0.0148 (2)0.0817 (10)
H13A0.67890.72040.00200.098*
H13B0.60020.59000.04170.098*
C140.7584 (5)0.5731 (4)0.0640 (2)0.1030 (14)
H14A0.68810.59700.10240.154*
H14B0.77410.47920.04800.154*
H14C0.85260.60970.09180.154*
C150.9809 (9)1.1289 (13)1.0465 (5)0.0735 (18)0.50
H151.05591.10121.00510.088*0.50
C161.0117 (6)1.1274 (10)1.1263 (5)0.089 (2)0.50
H161.10741.09871.13820.107*0.50
C170.8995 (7)1.1687 (8)1.1882 (3)0.087 (3)0.50
H170.92021.16771.24150.104*0.50
C180.7565 (6)1.2116 (8)1.1703 (4)0.082 (2)0.50
H180.68151.23931.21170.099*0.50
C190.7257 (8)1.2131 (11)1.0906 (5)0.0648 (19)0.50
H190.63001.24181.07870.078*0.50
C200.8379 (10)1.1718 (14)1.0287 (4)0.0552 (16)0.50
C15'0.9290 (9)1.1414 (12)1.0646 (5)0.0735 (18)0.50
H15'1.00831.10171.03140.088*0.50
C16'0.9421 (7)1.1526 (10)1.1454 (5)0.089 (2)0.50
H16'1.03011.12041.16620.107*0.50
C17'0.8235 (8)1.2120 (8)1.1952 (3)0.087 (3)0.50
H17'0.83231.21951.24920.104*0.50
C18'0.6918 (7)1.2602 (8)1.1641 (4)0.082 (2)0.50
H18'0.61251.29991.19730.099*0.50
C19'0.6788 (8)1.2490 (11)1.0833 (5)0.0648 (19)0.50
H19'0.59071.28121.06250.078*0.50
C20'0.7973 (11)1.1896 (13)1.0335 (4)0.0552 (16)0.50
C210.8010 (4)1.1734 (3)0.94459 (18)0.0573 (7)
C220.6179 (3)1.1403 (3)0.86181 (16)0.0498 (6)
C230.7007 (4)1.3610 (3)0.78851 (19)0.0654 (8)
H23A0.68461.37580.84530.098*
H23B0.64741.43020.75340.098*
H23C0.80651.35990.76450.098*
C240.6123 (3)1.2216 (3)0.71090 (17)0.0564 (7)
H24A0.58281.30800.67870.068*
H24B0.52741.16820.72300.068*
C250.7425 (3)1.1613 (3)0.65679 (17)0.0612 (8)
H25A0.77161.07410.68800.073*
H25B0.82801.21420.64420.073*
C260.7007 (4)1.1520 (3)0.57313 (18)0.0655 (8)
H26A0.61101.10410.58640.079*
H26B0.67641.23990.54120.079*
C270.8234 (4)1.0852 (3)0.51769 (19)0.0768 (9)
H27A0.84890.99770.54990.092*
H27B0.91261.13390.50360.092*
C280.7804 (5)1.0744 (4)0.4357 (2)0.0996 (13)
H28A0.86301.03150.40310.149*
H28B0.75691.16070.40290.149*
H28C0.69381.02420.44910.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0813 (6)0.0575 (4)0.0548 (5)0.0222 (4)0.0078 (4)0.0099 (3)
S20.0970 (7)0.0662 (5)0.0537 (5)0.0357 (5)0.0040 (4)0.0159 (4)
O10.0542 (14)0.1030 (16)0.0591 (13)0.0065 (12)0.0091 (11)0.0271 (12)
O20.0600 (14)0.1055 (17)0.0560 (13)0.0133 (12)0.0061 (11)0.0105 (12)
N10.0473 (14)0.0685 (14)0.0470 (13)0.0106 (11)0.0049 (10)0.0201 (11)
N20.0558 (14)0.0595 (13)0.0433 (12)0.0143 (11)0.0056 (10)0.0136 (11)
N30.0578 (15)0.0684 (14)0.0399 (12)0.0169 (12)0.0009 (10)0.0165 (11)
N40.0537 (14)0.0545 (13)0.0438 (12)0.0105 (11)0.0081 (10)0.0103 (10)
C10.079 (2)0.0736 (19)0.0589 (19)0.0030 (17)0.0228 (17)0.0192 (16)
C20.115 (3)0.081 (2)0.059 (2)0.011 (2)0.036 (2)0.0166 (18)
C30.120 (3)0.072 (2)0.0526 (19)0.020 (2)0.006 (2)0.0202 (17)
C40.082 (2)0.068 (2)0.067 (2)0.0166 (18)0.0057 (19)0.0202 (17)
C50.067 (2)0.0676 (18)0.0528 (17)0.0205 (16)0.0036 (15)0.0167 (14)
C60.0601 (19)0.0543 (15)0.0464 (15)0.0152 (14)0.0063 (14)0.0120 (13)
C70.0560 (19)0.0601 (17)0.0463 (15)0.0085 (14)0.0105 (14)0.0116 (13)
C80.0487 (16)0.0552 (15)0.0455 (15)0.0074 (13)0.0100 (12)0.0115 (12)
C90.074 (2)0.0660 (18)0.0574 (18)0.0282 (16)0.0030 (15)0.0107 (15)
C100.0505 (17)0.0713 (18)0.0497 (16)0.0064 (14)0.0026 (13)0.0190 (14)
C110.062 (2)0.0771 (19)0.0505 (17)0.0022 (16)0.0114 (14)0.0184 (15)
C120.075 (2)0.0686 (18)0.0514 (17)0.0088 (16)0.0110 (15)0.0160 (14)
C130.095 (3)0.094 (2)0.062 (2)0.000 (2)0.0252 (19)0.0226 (18)
C140.157 (4)0.100 (3)0.062 (2)0.013 (3)0.034 (2)0.025 (2)
C150.085 (6)0.069 (3)0.074 (3)0.011 (4)0.028 (4)0.016 (3)
C160.110 (6)0.086 (4)0.084 (4)0.017 (4)0.049 (5)0.011 (3)
C170.108 (7)0.101 (5)0.061 (3)0.042 (5)0.030 (4)0.008 (3)
C180.096 (6)0.097 (6)0.060 (3)0.043 (4)0.000 (3)0.023 (3)
C190.066 (5)0.077 (5)0.053 (2)0.026 (4)0.007 (2)0.012 (3)
C200.059 (5)0.055 (3)0.0513 (19)0.017 (3)0.014 (2)0.0020 (16)
C15'0.085 (6)0.069 (3)0.074 (3)0.011 (4)0.028 (4)0.016 (3)
C16'0.110 (6)0.086 (4)0.084 (4)0.017 (4)0.049 (5)0.011 (3)
C17'0.108 (7)0.101 (5)0.061 (3)0.042 (5)0.030 (4)0.008 (3)
C18'0.096 (6)0.097 (6)0.060 (3)0.043 (4)0.000 (3)0.023 (3)
C19'0.066 (5)0.077 (5)0.053 (2)0.026 (4)0.007 (2)0.012 (3)
C20'0.059 (5)0.055 (3)0.0513 (19)0.017 (3)0.014 (2)0.0020 (16)
C210.069 (2)0.0562 (16)0.0464 (16)0.0165 (15)0.0122 (15)0.0049 (13)
C220.0520 (17)0.0552 (15)0.0444 (15)0.0106 (13)0.0048 (12)0.0158 (13)
C230.077 (2)0.0569 (16)0.0643 (19)0.0220 (15)0.0176 (16)0.0047 (15)
C240.0570 (18)0.0629 (17)0.0504 (16)0.0062 (14)0.0157 (14)0.0096 (13)
C250.0575 (19)0.0749 (19)0.0518 (17)0.0068 (15)0.0125 (14)0.0126 (15)
C260.072 (2)0.0721 (19)0.0501 (17)0.0020 (16)0.0134 (15)0.0093 (15)
C270.083 (2)0.088 (2)0.0565 (19)0.0053 (19)0.0004 (17)0.0212 (17)
C280.142 (4)0.101 (3)0.053 (2)0.013 (3)0.015 (2)0.0249 (19)
Geometric parameters (Å, º) top
S1—C81.674 (3)C14—H14B0.9600
S2—C221.677 (3)C14—H14C0.9600
O1—C71.210 (3)C15—C161.3900
O2—C211.211 (3)C15—C201.3900
N1—C71.387 (3)C15—H150.9300
N1—C81.398 (3)C16—C171.3900
N1—H10.8800C16—H160.9300
N2—C81.324 (3)C17—C181.3900
N2—C101.466 (3)C17—H170.9300
N2—C91.470 (3)C18—C191.3900
N3—C211.379 (4)C18—H180.9300
N3—C221.401 (3)C19—C201.3900
N3—H30.8800C19—H190.9300
N4—C221.320 (3)C20—C211.483 (5)
N4—C241.464 (3)C15'—C16'1.3900
N4—C231.466 (3)C15'—C20'1.3900
C1—C61.374 (4)C15'—H15'0.9300
C1—C21.383 (4)C16'—C17'1.3900
C1—H1A0.9300C16'—H16'0.9300
C2—C31.362 (5)C17'—C18'1.3900
C2—H20.9300C17'—H17'0.9300
C3—C41.371 (5)C18'—C19'1.3900
C3—H3A0.9300C18'—H18'0.9300
C4—C51.383 (4)C19'—C20'1.3900
C4—H4A0.9300C19'—H19'0.9300
C5—C61.385 (4)C20'—C211.503 (5)
C5—H50.9300C23—H23A0.9600
C6—C71.485 (4)C23—H23B0.9600
C9—H9A0.9600C23—H23C0.9600
C9—H9B0.9600C24—C251.498 (4)
C9—H9C0.9600C24—H24A0.9700
C10—C111.500 (4)C24—H24B0.9700
C10—H10A0.9700C25—C261.528 (4)
C10—H10B0.9700C25—H25A0.9700
C11—C121.526 (4)C25—H25B0.9700
C11—H11A0.9700C26—C271.503 (4)
C11—H11B0.9700C26—H26A0.9700
C12—C131.495 (4)C26—H26B0.9700
C12—H12A0.9700C27—C281.511 (5)
C12—H12B0.9700C27—H27A0.9700
C13—C141.503 (4)C27—H27B0.9700
C13—H13A0.9700C28—H28A0.9600
C13—H13B0.9700C28—H28B0.9600
C14—H14A0.9600C28—H28C0.9600
C7—N1—C8122.5 (2)C15—C16—H16120.0
C7—N1—H1118.8C16—C17—C18120.0
C8—N1—H1118.8C16—C17—H17120.0
C8—N2—C10121.0 (2)C18—C17—H17120.0
C8—N2—C9123.9 (2)C17—C18—C19120.0
C10—N2—C9115.1 (2)C17—C18—H18120.0
C21—N3—C22124.8 (2)C19—C18—H18120.0
C21—N3—H3117.6C20—C19—C18120.0
C22—N3—H3117.6C20—C19—H19120.0
C22—N4—C24120.8 (2)C18—C19—H19120.0
C22—N4—C23124.7 (2)C19—C20—C15120.0
C24—N4—C23114.4 (2)C19—C20—C21118.7 (5)
C6—C1—C2120.2 (3)C15—C20—C21121.3 (5)
C6—C1—H1A119.9C16'—C15'—C20'120.0
C2—C1—H1A119.9C16'—C15'—H15'120.0
C3—C2—C1120.4 (3)C20'—C15'—H15'120.0
C3—C2—H2119.8C15'—C16'—C17'120.0
C1—C2—H2119.8C15'—C16'—H16'120.0
C2—C3—C4120.4 (3)C17'—C16'—H16'120.0
C2—C3—H3A119.8C18'—C17'—C16'120.0
C4—C3—H3A119.8C18'—C17'—H17'120.0
C3—C4—C5119.4 (3)C16'—C17'—H17'120.0
C3—C4—H4A120.3C19'—C18'—C17'120.0
C5—C4—H4A120.3C19'—C18'—H18'120.0
C6—C5—C4120.7 (3)C17'—C18'—H18'120.0
C6—C5—H5119.7C18'—C19'—C20'120.0
C4—C5—H5119.7C18'—C19'—H19'120.0
C1—C6—C5119.0 (3)C20'—C19'—H19'120.0
C1—C6—C7118.9 (3)C19'—C20'—C15'120.0
C5—C6—C7122.0 (3)C19'—C20'—C21126.0 (6)
O1—C7—N1122.1 (3)C15'—C20'—C21114.0 (6)
O1—C7—C6122.1 (3)O2—C21—N3122.2 (3)
N1—C7—C6115.8 (3)O2—C21—C20116.0 (5)
N2—C8—N1116.8 (2)N3—C21—C20121.6 (5)
N2—C8—S1124.5 (2)O2—C21—C20'128.5 (5)
N1—C8—S1118.72 (19)N3—C21—C20'109.1 (5)
N2—C9—H9A109.5C20—C21—C20'15.2 (6)
N2—C9—H9B109.5N4—C22—N3117.9 (2)
H9A—C9—H9B109.5N4—C22—S2124.2 (2)
N2—C9—H9C109.5N3—C22—S2117.86 (19)
H9A—C9—H9C109.5N4—C23—H23A109.5
H9B—C9—H9C109.5N4—C23—H23B109.5
N2—C10—C11114.3 (2)H23A—C23—H23B109.5
N2—C10—H10A108.7N4—C23—H23C109.5
C11—C10—H10A108.7H23A—C23—H23C109.5
N2—C10—H10B108.7H23B—C23—H23C109.5
C11—C10—H10B108.7N4—C24—C25113.6 (2)
H10A—C10—H10B107.6N4—C24—H24A108.9
C10—C11—C12112.1 (2)C25—C24—H24A108.9
C10—C11—H11A109.2N4—C24—H24B108.9
C12—C11—H11A109.2C25—C24—H24B108.9
C10—C11—H11B109.2H24A—C24—H24B107.7
C12—C11—H11B109.2C24—C25—C26110.7 (2)
H11A—C11—H11B107.9C24—C25—H25A109.5
C13—C12—C11113.5 (3)C26—C25—H25A109.5
C13—C12—H12A108.9C24—C25—H25B109.5
C11—C12—H12A108.9C26—C25—H25B109.5
C13—C12—H12B108.9H25A—C25—H25B108.1
C11—C12—H12B108.9C27—C26—C25113.6 (3)
H12A—C12—H12B107.7C27—C26—H26A108.8
C12—C13—C14113.4 (3)C25—C26—H26A108.8
C12—C13—H13A108.9C27—C26—H26B108.8
C14—C13—H13A108.9C25—C26—H26B108.8
C12—C13—H13B108.9H26A—C26—H26B107.7
C14—C13—H13B108.9C26—C27—C28113.3 (3)
H13A—C13—H13B107.7C26—C27—H27A108.9
C13—C14—H14A109.5C28—C27—H27A108.9
C13—C14—H14B109.5C26—C27—H27B108.9
H14A—C14—H14B109.5C28—C27—H27B108.9
C13—C14—H14C109.5H27A—C27—H27B107.7
H14A—C14—H14C109.5C27—C28—H28A109.5
H14B—C14—H14C109.5C27—C28—H28B109.5
C16—C15—C20120.0H28A—C28—H28B109.5
C16—C15—H15120.0C27—C28—H28C109.5
C20—C15—H15120.0H28A—C28—H28C109.5
C17—C16—C15120.0H28B—C28—H28C109.5
C17—C16—H16120.0
C6—C1—C2—C31.4 (5)C15'—C16'—C17'—C18'0.0
C1—C2—C3—C40.6 (5)C16'—C17'—C18'—C19'0.0
C2—C3—C4—C50.6 (5)C17'—C18'—C19'—C20'0.0
C3—C4—C5—C61.0 (5)C18'—C19'—C20'—C15'0.0
C2—C1—C6—C51.0 (4)C18'—C19'—C20'—C21178.4 (12)
C2—C1—C6—C7177.3 (3)C16'—C15'—C20'—C19'0.0
C4—C5—C6—C10.2 (4)C16'—C15'—C20'—C21178.6 (10)
C4—C5—C6—C7175.9 (3)C22—N3—C21—O24.2 (4)
C8—N1—C7—O15.1 (4)C22—N3—C21—C20171.5 (6)
C8—N1—C7—C6174.9 (2)C22—N3—C21—C20'179.1 (6)
C1—C6—C7—O127.5 (4)C19—C20—C21—O2154.8 (5)
C5—C6—C7—O1148.7 (3)C15—C20—C21—O225.8 (9)
C1—C6—C7—N1152.6 (3)C19—C20—C21—N329.3 (10)
C5—C6—C7—N131.3 (4)C15—C20—C21—N3150.1 (5)
C10—N2—C8—N1166.1 (2)C19—C20—C21—C20'7 (4)
C9—N2—C8—N115.9 (4)C15—C20—C21—C20'174 (5)
C10—N2—C8—S115.1 (4)C19'—C20'—C21—O2141.8 (6)
C9—N2—C8—S1162.9 (2)C15'—C20'—C21—O236.7 (9)
C7—N1—C8—N256.8 (3)C19'—C20'—C21—N332.8 (10)
C7—N1—C8—S1124.4 (2)C15'—C20'—C21—N3148.7 (5)
C8—N2—C10—C1196.6 (3)C19'—C20'—C21—C20179 (5)
C9—N2—C10—C1181.5 (3)C15'—C20'—C21—C201 (4)
N2—C10—C11—C12175.1 (2)C24—N4—C22—N3177.6 (2)
C10—C11—C12—C13176.4 (3)C23—N4—C22—N36.0 (4)
C11—C12—C13—C14178.2 (3)C24—N4—C22—S24.8 (4)
C20—C15—C16—C170.0C23—N4—C22—S2171.5 (2)
C15—C16—C17—C180.0C21—N3—C22—N459.2 (4)
C16—C17—C18—C190.0C21—N3—C22—S2123.0 (3)
C17—C18—C19—C200.0C22—N4—C24—C2591.2 (3)
C18—C19—C20—C150.0C23—N4—C24—C2592.1 (3)
C18—C19—C20—C21179.4 (11)N4—C24—C25—C26179.5 (2)
C16—C15—C20—C190.0C24—C25—C26—C27176.7 (3)
C16—C15—C20—C21179.4 (11)C25—C26—C27—C28179.1 (3)
C20'—C15'—C16'—C17'0.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.873.604 (2)143
N3—H3···S2ii0.882.723.449 (2)141
C10—H10b···O2iii0.972.553.397 (4)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H20N2OS
Mr264.38
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.0992 (6), 10.5297 (6), 16.4038 (8)
α, β, γ (°)75.784 (5), 77.831 (5), 82.877 (5)
V3)1484.98 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent Supernova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.853, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11884, 6585, 3555
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.184, 1.03
No. of reflections6585
No. of parameters321
No. of restraints37
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMOL (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.873.604 (2)143
N3—H3···S2ii0.882.723.449 (2)141
C10—H10b···O2iii0.972.553.397 (4)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x+2, y+2, z+1.
 

Footnotes

Additional correspondence author, e-mail: kar@nitt.edu.

Acknowledgements

NG thanks the NITT for a Fellowship. The authors also thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruce, J. C., Revaprasadu, N. & Koch, K. R. (2007). New J. Chem. 31, 1647–1653.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGunasekaran, N. & Karvembu, R. (2010). Inorg. Chem. Commun. 13, 952–955.  Web of Science CrossRef CAS Google Scholar
First citationGunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2572–o2573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010c). Acta Cryst. E66, o2601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunasekaran, N., Remya, N., Radhakrishnan, S. & Karvembu, R. (2011). J. Coord. Chem. 64, 491–501.  CrossRef CAS Google Scholar
First citationPisiewicz, S., Rust, J., Lehmann, C. W. & Mohr, F. (2010). Polyhedron, 29, 1968–1972.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1149
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds