organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1152

Redetermination of 3,5-di­methyl­phenol

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 5 April 2011; accepted 11 April 2011; online 16 April 2011)

The previous structure determination [Gillier-Pandraud et al. (1972[Gillier-Pandraud, H., Becker, P., Longchambon, F. & Antona, D. (1972). C. R. Acad. Sci. Ser. C, 275, 1495.]). C. R. Acad. Sci. Ser. C, 275, 1495] of the title compound, C8H10O, did not report atomic coordinates. There are two mol­ecules in the asymmetric unit, A and B, which both show approximate non-crystallographic Cs symmetry. The intra­cyclic C—C—C angles cover the range 118.74 (12)–121.76 (13)°. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, generating [001] C22(4) chains such that mol­ecules A and B alternate. There is no aromatic ππ stacking in the crystal as the shortest centroid–centroid distance is greater than 4.74 Å.

Related literature

The compound has been deposited with the CSD (refcode: DMPHNL) but no three-dimensional-coordinates are available (Gillier-Pandraud et al., 1972[Gillier-Pandraud, H., Becker, P., Longchambon, F. & Antona, D. (1972). C. R. Acad. Sci. Ser. C, 275, 1495.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10O

  • Mr = 122.16

  • Monoclinic, P 21 /c

  • a = 11.9807 (6) Å

  • b = 13.8725 (7) Å

  • c = 8.5378 (4) Å

  • β = 90.000 (2)°

  • V = 1419.00 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 200 K

  • 0.50 × 0.41 × 0.33 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 12884 measured reflections

  • 3392 independent reflections

  • 2998 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.143

  • S = 1.04

  • 3392 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.91 2.7463 (13) 171
O2—H2⋯O1ii 0.84 1.90 2.7327 (13) 172
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenol and derivatives are interesting bonding partners for a variety of transition metals and elements from the p-block of the periodic system. They can act as neutral or – upon deprotonation – as anionic monodentate ligands. Upon variation of the substituents on the aromatic system, a seemingly endless series of symmetric as well as asymmetric phenol derivatives featuring different steric pretenses and acidities of the hydroxyl-group are available. At the beginning of a larger study aimed at elucidating the coordination behaviour of various phenol-derivatives in dependence of pH-value and substitution pattern on the phenyl moiety, it seemed of interest to determine the crystal structure of the title compound to enable comparisons with metric parameters in envisioned coordination compounds. Although the structure has been deposited with the Cambridge Structural Database (Gillier-Pandraud et al., 1972), no three-dimensional-coordinates were provided.

The asymmetric unit comprises two molecules of the title compound which are nearly orientated perpendicular to each other. The least-squares planes defined by the C-atoms of the respective phenyl moieties intersect at an angle of 87.87 (4) °. Intracyclic C–C–C angles span a range of 119–122 ° with the biggest angles invariably found on the C-atoms bearing the hydroxyl group and the C-atoms in para-position to these, respectively. The H-atoms of both hydroxyl groups are approximately in plane with the aromatic systems (Fig. 1).

In the crystal structure, a set of cooperative hydrogen bonds connects the molecules to infinite chains along the crystallographic c-axis. Both molecules in the asymmetric unit participate alternately in these chains. In terms of graph-set analysis, the description of these intermolecular interactions necessitates a C22(4) descriptor on the binary level (Fig. 2). The closest distance between two centers of gravity was measured at 4.7437 (8) Å.

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

The compound has been deposited with the CSD (refcode: DMPHNL) but no three-dimensional-coordinates are available (Gillier-Pandraud et al., 1972). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The compound was obtained commercially (Fluka). Crystals suitable for the X-ray diffraction study were taken directly from the provided compound.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.98 Å for the methyl groups and C—H 0.95 Å for aromatic carbon atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) for aromatic carbon atoms. The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bonds to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)). The H atom of the hydroxyl groups were allowed to rotate with a fixed angle around the O—C bonds to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), their U(H) set to 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with anisotropic displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. Symmetry operators: i x, y, z + 1; ii x, y, z - 1.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 0 - 1] (anisotropic displacement ellipsoids drawn at 50% probability level).
3,5-Dimethylphenol top
Crystal data top
C8H10OF(000) = 528
Mr = 122.16Dx = 1.144 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8727 reflections
a = 11.9807 (6) Åθ = 2.3–28.3°
b = 13.8725 (7) ŵ = 0.07 mm1
c = 8.5378 (4) ÅT = 200 K
β = 90.000 (2)°Block, colourless
V = 1419.00 (12) Å30.50 × 0.41 × 0.33 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2998 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 28.0°, θmin = 3.3°
ϕ and ω scansh = 159
12884 measured reflectionsk = 1818
3392 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.556P]
where P = (Fo2 + 2Fc2)/3
3392 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C8H10OV = 1419.00 (12) Å3
Mr = 122.16Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.9807 (6) ŵ = 0.07 mm1
b = 13.8725 (7) ÅT = 200 K
c = 8.5378 (4) Å0.50 × 0.41 × 0.33 mm
β = 90.000 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2998 reflections with I > 2σ(I)
12884 measured reflectionsRint = 0.031
3392 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3392 reflectionsΔρmin = 0.25 e Å3
169 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16676 (9)0.32297 (7)0.83341 (11)0.0322 (2)
H10.18640.28330.76440.048*
C110.15120 (10)0.41221 (9)0.76595 (14)0.0263 (3)
C120.12708 (11)0.48876 (10)0.86483 (15)0.0294 (3)
H120.12240.47870.97470.035*
C130.10982 (12)0.58017 (10)0.80279 (17)0.0334 (3)
C140.11818 (12)0.59291 (10)0.64172 (17)0.0356 (3)
H140.10700.65540.59890.043*
C150.14249 (11)0.51675 (10)0.54173 (15)0.0320 (3)
C160.15847 (11)0.42544 (10)0.60545 (14)0.0292 (3)
H160.17440.37230.53900.035*
C170.08510 (17)0.66459 (12)0.9083 (2)0.0502 (4)
H1710.06530.64101.01290.075*
H1720.02270.70170.86510.075*
H1730.15120.70590.91550.075*
C180.15133 (14)0.53221 (12)0.36751 (17)0.0419 (4)
H1810.07720.54600.32460.063*
H1820.18130.47390.31810.063*
H1830.20120.58670.34650.063*
O20.24467 (8)0.31707 (7)0.13407 (11)0.0327 (2)
H20.22640.32130.03930.049*
C210.35593 (11)0.34152 (8)0.15086 (14)0.0269 (3)
C220.42454 (12)0.35771 (9)0.02291 (14)0.0293 (3)
H220.39510.35370.08020.035*
C230.53654 (12)0.37975 (10)0.04558 (15)0.0321 (3)
C240.57689 (12)0.38687 (10)0.19756 (16)0.0341 (3)
H240.65320.40260.21400.041*
C250.50780 (12)0.37150 (9)0.32656 (15)0.0318 (3)
C260.39652 (12)0.34879 (9)0.30206 (14)0.0295 (3)
H260.34830.33830.38870.035*
C270.61218 (14)0.39382 (12)0.09337 (17)0.0418 (4)
H2710.61910.33300.15080.063*
H2720.68610.41450.05720.063*
H2730.58070.44320.16250.063*
C280.55365 (15)0.37856 (12)0.49024 (17)0.0434 (4)
H2810.49180.38120.56520.065*
H2820.59890.43710.49980.065*
H2830.60010.32200.51230.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0423 (6)0.0306 (5)0.0236 (4)0.0077 (4)0.0022 (4)0.0006 (3)
C110.0237 (6)0.0303 (6)0.0249 (6)0.0020 (5)0.0022 (4)0.0009 (5)
C120.0298 (6)0.0339 (6)0.0244 (6)0.0006 (5)0.0002 (5)0.0023 (5)
C130.0327 (7)0.0312 (6)0.0362 (7)0.0009 (5)0.0021 (5)0.0036 (5)
C140.0360 (7)0.0316 (6)0.0392 (7)0.0001 (5)0.0024 (6)0.0060 (5)
C150.0268 (6)0.0412 (7)0.0281 (6)0.0004 (5)0.0006 (5)0.0054 (5)
C160.0279 (6)0.0360 (6)0.0238 (6)0.0041 (5)0.0006 (5)0.0016 (5)
C170.0630 (11)0.0348 (8)0.0526 (10)0.0025 (7)0.0076 (8)0.0098 (7)
C180.0440 (8)0.0520 (9)0.0297 (7)0.0017 (7)0.0027 (6)0.0105 (6)
O20.0341 (5)0.0389 (5)0.0252 (4)0.0077 (4)0.0050 (4)0.0058 (4)
C210.0318 (7)0.0234 (5)0.0255 (6)0.0033 (5)0.0018 (5)0.0020 (4)
C220.0380 (7)0.0294 (6)0.0206 (5)0.0045 (5)0.0022 (5)0.0000 (4)
C230.0381 (7)0.0319 (6)0.0261 (6)0.0051 (5)0.0019 (5)0.0000 (5)
C240.0326 (7)0.0381 (7)0.0315 (7)0.0070 (6)0.0038 (5)0.0001 (5)
C250.0403 (8)0.0305 (6)0.0246 (6)0.0039 (5)0.0050 (5)0.0002 (5)
C260.0377 (7)0.0288 (6)0.0220 (6)0.0032 (5)0.0003 (5)0.0020 (4)
C270.0408 (8)0.0537 (9)0.0309 (7)0.0084 (7)0.0069 (6)0.0002 (6)
C280.0518 (9)0.0508 (9)0.0278 (7)0.0088 (7)0.0122 (6)0.0003 (6)
Geometric parameters (Å, º) top
O1—C111.3780 (15)O2—C211.3828 (16)
O1—H10.8400O2—H20.8400
C11—C161.3853 (17)C21—C261.3832 (17)
C11—C121.3871 (17)C21—C221.3855 (18)
C12—C131.3897 (19)C22—C231.390 (2)
C12—H120.9500C22—H220.9500
C13—C141.390 (2)C23—C241.3881 (19)
C13—C171.507 (2)C23—C271.5056 (19)
C14—C151.389 (2)C24—C251.3942 (19)
C14—H140.9500C24—H240.9500
C15—C161.3918 (19)C25—C261.386 (2)
C15—C181.5066 (18)C25—C281.5048 (18)
C16—H160.9500C26—H260.9500
C17—H1710.9800C27—H2710.9800
C17—H1720.9800C27—H2720.9800
C17—H1730.9800C27—H2730.9800
C18—H1810.9800C28—H2810.9800
C18—H1820.9800C28—H2820.9800
C18—H1830.9800C28—H2830.9800
C11—O1—H1109.5C21—O2—H2109.5
O1—C11—C16121.60 (11)O2—C21—C26116.97 (11)
O1—C11—C12117.49 (11)O2—C21—C22122.00 (11)
C16—C11—C12120.90 (12)C26—C21—C22121.03 (12)
C11—C12—C13119.84 (12)C21—C22—C23119.91 (12)
C11—C12—H12120.1C21—C22—H22120.0
C13—C12—H12120.1C23—C22—H22120.0
C12—C13—C14118.84 (12)C24—C23—C22118.82 (12)
C12—C13—C17120.70 (13)C24—C23—C27121.18 (13)
C14—C13—C17120.45 (13)C22—C23—C27119.99 (12)
C15—C14—C13121.76 (13)C23—C24—C25121.38 (13)
C15—C14—H14119.1C23—C24—H24119.3
C13—C14—H14119.1C25—C24—H24119.3
C14—C15—C16118.74 (12)C26—C25—C24119.13 (12)
C14—C15—C18120.88 (13)C26—C25—C28120.41 (13)
C16—C15—C18120.38 (13)C24—C25—C28120.46 (13)
C11—C16—C15119.91 (12)C21—C26—C25119.71 (12)
C11—C16—H16120.0C21—C26—H26120.1
C15—C16—H16120.0C25—C26—H26120.1
C13—C17—H171109.5C23—C27—H271109.5
C13—C17—H172109.5C23—C27—H272109.5
H171—C17—H172109.5H271—C27—H272109.5
C13—C17—H173109.5C23—C27—H273109.5
H171—C17—H173109.5H271—C27—H273109.5
H172—C17—H173109.5H272—C27—H273109.5
C15—C18—H181109.5C25—C28—H281109.5
C15—C18—H182109.5C25—C28—H282109.5
H181—C18—H182109.5H281—C28—H282109.5
C15—C18—H183109.5C25—C28—H283109.5
H181—C18—H183109.5H281—C28—H283109.5
H182—C18—H183109.5H282—C28—H283109.5
O1—C11—C12—C13179.53 (12)O2—C21—C22—C23178.39 (12)
C16—C11—C12—C130.0 (2)C26—C21—C22—C231.3 (2)
C11—C12—C13—C140.6 (2)C21—C22—C23—C241.2 (2)
C11—C12—C13—C17179.15 (14)C21—C22—C23—C27177.78 (13)
C12—C13—C14—C150.4 (2)C22—C23—C24—C250.6 (2)
C17—C13—C14—C15179.05 (14)C27—C23—C24—C25178.36 (14)
C13—C14—C15—C160.2 (2)C23—C24—C25—C260.1 (2)
C13—C14—C15—C18179.91 (14)C23—C24—C25—C28179.34 (14)
O1—C11—C16—C15179.85 (12)O2—C21—C26—C25178.94 (12)
C12—C11—C16—C150.6 (2)C22—C21—C26—C250.76 (19)
C14—C15—C16—C110.7 (2)C24—C25—C26—C210.2 (2)
C18—C15—C16—C11179.39 (13)C28—C25—C26—C21179.28 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.912.7463 (13)171
O2—H2···O1ii0.841.902.7327 (13)172
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC8H10O
Mr122.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)11.9807 (6), 13.8725 (7), 8.5378 (4)
β (°)90, 90.000 (2), 90
V3)1419.00 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.41 × 0.33
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12884, 3392, 2998
Rint0.031
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 1.04
No. of reflections3392
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.912.7463 (13)171
O2—H2···O1ii0.841.902.7327 (13)172
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z1.
 

Acknowledgements

The authors thank Mrs Jenny Bell for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGillier-Pandraud, H., Becker, P., Longchambon, F. & Antona, D. (1972). C. R. Acad. Sci. Ser. C, 275, 1495.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1152
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds