organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1148

3-Cyclo­hexyl-1-(3,5-di­nitro­benzo­yl)thio­urea

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 April 2011; accepted 9 April 2011; online 16 April 2011)

The structure of the title thio­urea derivative, C14H16N4O5S, features an almost planar central C2N2OS fragment (r.m.s. deviation = 0.005 Å), an arrangement stabilized by an intra­molecular N—H⋯O hydrogen bond. The terminal rings are twisted out of this plane, the dihedral angle formed with the benzene ring being 33.22 (10)°. The cyclo­hexyl ring is disordered, with two orientations (50:50) being resolved. The mean plane passing through the atoms of each disordered component forms dihedral angles of 65.7 (2) and 82.4 (3)° with the central plane. Centrosymmetric dimers mediated by an eight-membered {⋯HNC=S}2 synthon occur in the crystal.

Related literature

For the biological activity of thio­urea derivatives, see: Venkatachalam et al. (2004[Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275-4284.]); Saeed et al. (2011[Saeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74-84.]). For related thio­urea structures, see: Gunasekaran et al. (2010[Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2601.]); Saeed et al. (2010[Saeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o980.]); Dzulkifli et al. (2011[Dzulkifli, N. N., Farina, Y., Yamin, B. M., Baba, I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o872.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N4O5S

  • Mr = 352.37

  • Monoclinic, P 21 /c

  • a = 12.3404 (7) Å

  • b = 9.0506 (5) Å

  • c = 14.6534 (6) Å

  • β = 90.385 (5)°

  • V = 1636.57 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent Technologies SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.955, Tmax = 0.977

  • 7954 measured reflections

  • 3649 independent reflections

  • 1948 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.211

  • S = 1.01

  • 3649 reflections

  • 271 parameters

  • 25 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 1.89 2.639 (4) 142
N1—H1′⋯O1 0.88 1.99 2.639 (4) 130
N2—H2⋯S1i 0.88 2.65 3.449 (3) 152
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Continuing structural studies (Gunasekaran et al. 2010; Saeed et al. 2010; Dzulkifli et al., 2011) of thiourea derivatives are motivated by their biological potential (Venkatachalam et al., 2004; Saeed et al., 2011) and led to the investigation of the title compound, (I).

The molecular structure of (I), Fig. 1, is highly twisted with dihedral angles formed between the central chromophore (r.m.s. = 0.0054 Å for C7,C8,N1,N2,O1 & S1) and the benzene ring being 33.22 (10) °. Two orientations of equal weight were found for the cyclohexyl ring, each with a chair conformation, and these make angles of 65.74 (24) and 82.42 (30) °, respectively, with the central plane. The N—H atoms are anti as are the S and O atoms. As a consequence, the N1—H atom forms an intramolecular hydrogen bond with the carbonyl-O1 atom to close a pseudo six-membered ring, Table 1; there are two values cited owing to the disorder in the molecule. The nitro groups are effectively co-planar with the benzene ring to which they are bonded as seen in the values of the O2—N3—C11—C10 and O4—N4—C13—C12 torsion angles of 1.2 (5) and -7.0 (5) °, respectively.

The most prominent feature of the crystal packing is the formation of centrosymmetric eight-membered {···HNCS}2 synthon leading to dimeric aggregates, Fig. 2 and Table 1.

Related literature top

For the biological activity of thiourea derivatives, see: Venkatachalam et al. (2004); Saeed et al. (2011). For related thiourea structures, see: Gunasekaran et al. (2010); Saeed et al. (2010); Dzulkifli et al. (2011).

Experimental top

A solution of 3,5-dinitrobenzoyl chloride (0.01 mol) in anhydrous acetone (75 ml) and 3% tetrabutylammonium bromide (TBAB), as a phase-transfer catalyst (PTC), in anhydrous acetone was added drop-wise to a suspension of dry potassium thiocyanate (0.01 mol) in acetone (50 ml). The reaction mixture was refluxed for 50 min. After cooling to room temperature, a solution of cyclohexylamine (0.01 mol) in anhydrous acetone (25 ml) was added drop-wise and the resulting mixture refluxed for 3 h. Hydrochloric acid (0.1 N, 300 ml) was added and the solution was filtered. The solid product was washed with water and purified by re-crystallization from ethanol; Yield: 1.50 g (88%) and M.pt. 409 K. IR (KBr, cm-1): 3215 ν(NH), 1673 (C=O), 1527 (benzene ring), 1138 ν(CS). Anal. Calcd. for C14H16N4O5S: C, 47.72; H, 4.58; N, 15.90; S, 9.10%. Found: C, 47.51; H, 4.75; N, 15.88; S, 9.11%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.93 to 0.97 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The two amino H-atoms were similarly placed [N–H 0.88 Å, Uiso(H) 1.2Ueq(N)]. The cyclohexyl ring is disordered over two positions; the disorder could not be refined, and was assumed to be a 1:1 type of disorder. The 1,2-related C–C distances were restrained to 1.54±0.01 Å and the 1,3-related ones to 2.51±0.01 Å. The pair of N–Ccyclohexyl and NC'cyclohexyl distances were restrained to within 0.01 Å of each other.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level. Only one orientation of the disordered cyclohexyl ring is shown.
[Figure 2] Fig. 2. Supramolecular dimer in (I) mediated by N—H···S hydrogen bonding shown as orange dashed lines. Only one orientation of the disordered cyclohexyl ring is shown.
3-Cyclohexyl-1-(3,5-dinitrobenzoyl)thiourea top
Crystal data top
C14H16N4O5SF(000) = 736
Mr = 352.37Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2522 reflections
a = 12.3404 (7) Åθ = 2.6–29.2°
b = 9.0506 (5) ŵ = 0.23 mm1
c = 14.6534 (6) ÅT = 295 K
β = 90.385 (5)°Prism, colorless
V = 1636.57 (15) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
3649 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1948 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 1116
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 119
Tmin = 0.955, Tmax = 0.977l = 1918
7954 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0901P)2 + 0.5204P]
where P = (Fo2 + 2Fc2)/3
3649 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.22 e Å3
25 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H16N4O5SV = 1636.57 (15) Å3
Mr = 352.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3404 (7) ŵ = 0.23 mm1
b = 9.0506 (5) ÅT = 295 K
c = 14.6534 (6) Å0.20 × 0.15 × 0.10 mm
β = 90.385 (5)°
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
3649 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1948 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.977Rint = 0.024
7954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06125 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
3649 reflectionsΔρmin = 0.28 e Å3
271 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.41365 (9)0.64167 (12)0.59283 (6)0.0914 (4)
O10.2058 (2)0.5972 (4)0.33847 (18)0.1069 (9)
O20.1940 (3)0.2554 (4)0.0798 (2)0.1410 (13)
O30.3315 (3)0.2306 (4)0.0052 (3)0.1351 (13)
O40.6723 (3)0.4548 (4)0.0872 (2)0.1237 (11)
O50.6733 (2)0.6067 (4)0.2004 (2)0.1140 (10)
N10.2226 (2)0.6699 (3)0.5124 (2)0.0864 (9)
H10.18810.66290.45980.104*0.50
H1'0.17770.66140.46570.104*0.50
N20.3606 (2)0.5812 (3)0.42290 (16)0.0689 (7)
H20.42940.55640.41970.083*
N30.2883 (4)0.2769 (4)0.0621 (3)0.0964 (10)
N40.6288 (3)0.5175 (4)0.1510 (2)0.0907 (9)
C10.1543 (7)0.7215 (9)0.5861 (6)0.074 (3)0.50
H1A0.19900.77350.63130.088*0.50
C20.0991 (8)0.5900 (9)0.6317 (6)0.084 (3)0.50
H2A0.15290.52030.65370.101*0.50
H2B0.05200.53980.58850.101*0.50
C30.0323 (6)0.6513 (8)0.7122 (4)0.094 (2)0.50
H3A0.00550.57090.74200.113*0.50
H3B0.08070.69640.75670.113*0.50
C40.0488 (6)0.7647 (9)0.6791 (5)0.106 (3)0.50
H4A0.10090.71710.63890.127*0.50
H4B0.08790.80400.73090.127*0.50
C50.0049 (6)0.8899 (8)0.6289 (5)0.098 (3)0.50
H5A0.05320.94270.67000.117*0.50
H5B0.04960.95860.60690.117*0.50
C60.0701 (8)0.8278 (11)0.5471 (5)0.091 (3)0.50
H6A0.02220.77640.50510.109*0.50
H6B0.10540.90750.51460.109*0.50
C1'0.1883 (7)0.7287 (12)0.6020 (6)0.121 (6)0.50
H1B0.25300.76920.63210.145*0.50
C2'0.1393 (7)0.6133 (12)0.6672 (7)0.101 (4)0.50
H2C0.18910.53120.67470.121*0.50
H2D0.12770.65760.72670.121*0.50
C3'0.0326 (8)0.5580 (10)0.6290 (9)0.149 (6)0.50
H3C0.00250.48460.66990.179*0.50
H3D0.04480.51120.57040.179*0.50
C4'0.0484 (6)0.6857 (12)0.6172 (9)0.146 (5)0.50
H4C0.06350.73000.67600.175*0.50
H4D0.11590.64870.59170.175*0.50
C5'0.0006 (8)0.8018 (12)0.5529 (10)0.150 (5)0.50
H5C0.01070.75860.49300.180*0.50
H5D0.04920.88420.54670.180*0.50
C6'0.1077 (7)0.8568 (10)0.5890 (8)0.106 (3)0.50
H6C0.09680.90630.64690.127*0.50
H6D0.13760.92810.54660.127*0.50
C70.3244 (3)0.6318 (3)0.5079 (2)0.0695 (8)
C80.3013 (3)0.5664 (4)0.3450 (2)0.0755 (9)
C90.3604 (3)0.5071 (4)0.2637 (2)0.0701 (8)
C100.3015 (3)0.4227 (4)0.2026 (2)0.0757 (9)
H100.22880.40250.21310.091*
C110.3514 (3)0.3689 (3)0.1262 (2)0.0753 (9)
C120.4585 (3)0.3965 (3)0.1073 (2)0.0751 (9)
H120.49160.35820.05560.090*
C130.5142 (3)0.4833 (3)0.1684 (2)0.0700 (8)
C140.4681 (3)0.5400 (3)0.2462 (2)0.0691 (8)
H140.50820.59880.28600.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0966 (7)0.1080 (8)0.0695 (5)0.0228 (6)0.0037 (5)0.0177 (5)
O10.0737 (17)0.145 (3)0.1016 (18)0.0229 (17)0.0108 (14)0.0007 (17)
O20.127 (3)0.161 (3)0.135 (3)0.052 (3)0.019 (2)0.027 (2)
O30.144 (3)0.126 (3)0.136 (3)0.003 (2)0.014 (2)0.066 (2)
O40.117 (2)0.121 (2)0.134 (2)0.0209 (19)0.045 (2)0.043 (2)
O50.108 (2)0.131 (2)0.1037 (19)0.0431 (19)0.0195 (17)0.0334 (18)
N10.0751 (18)0.095 (2)0.0897 (19)0.0212 (16)0.0215 (15)0.0104 (16)
N20.0680 (15)0.0767 (16)0.0620 (14)0.0098 (13)0.0057 (12)0.0030 (12)
N30.111 (3)0.080 (2)0.098 (2)0.012 (2)0.019 (2)0.0087 (18)
N40.102 (2)0.086 (2)0.0843 (19)0.0157 (19)0.0192 (18)0.0099 (17)
C10.058 (5)0.071 (6)0.093 (5)0.015 (4)0.026 (4)0.001 (4)
C20.097 (8)0.077 (5)0.078 (6)0.007 (6)0.011 (6)0.005 (5)
C30.115 (6)0.100 (5)0.069 (4)0.024 (5)0.029 (4)0.017 (4)
C40.085 (5)0.131 (8)0.103 (6)0.007 (5)0.020 (5)0.071 (6)
C50.085 (5)0.095 (6)0.114 (6)0.018 (4)0.022 (5)0.037 (5)
C60.070 (6)0.099 (7)0.103 (7)0.023 (6)0.007 (5)0.006 (5)
C1'0.088 (8)0.119 (11)0.157 (11)0.041 (7)0.051 (7)0.032 (8)
C2'0.087 (7)0.128 (8)0.087 (7)0.004 (6)0.009 (5)0.007 (6)
C3'0.106 (8)0.160 (12)0.180 (12)0.038 (8)0.043 (8)0.069 (10)
C4'0.071 (5)0.162 (10)0.203 (13)0.001 (7)0.014 (7)0.077 (10)
C5'0.099 (8)0.124 (9)0.227 (15)0.010 (8)0.057 (9)0.049 (10)
C6'0.090 (7)0.092 (7)0.136 (9)0.007 (5)0.004 (6)0.000 (6)
C70.076 (2)0.0639 (18)0.0689 (18)0.0095 (16)0.0127 (16)0.0061 (14)
C80.077 (2)0.076 (2)0.073 (2)0.0066 (18)0.0027 (17)0.0090 (16)
C90.083 (2)0.0665 (18)0.0607 (16)0.0028 (17)0.0076 (15)0.0113 (15)
C100.078 (2)0.0711 (19)0.077 (2)0.0019 (17)0.0112 (17)0.0110 (17)
C110.096 (3)0.0574 (18)0.0726 (19)0.0027 (18)0.0183 (18)0.0045 (15)
C120.102 (3)0.0593 (18)0.0641 (18)0.0011 (18)0.0014 (18)0.0019 (15)
C130.083 (2)0.0607 (17)0.0665 (18)0.0054 (16)0.0008 (16)0.0053 (15)
C140.084 (2)0.0631 (18)0.0598 (16)0.0052 (16)0.0035 (16)0.0051 (14)
Geometric parameters (Å, º) top
S1—C71.659 (4)C5—H5B0.9700
O1—C81.215 (4)C6—H6A0.9700
O2—N31.210 (5)C6—H6B0.9700
O3—N31.200 (4)C1'—C6'1.539 (8)
O4—N41.221 (4)C1'—C2'1.542 (8)
O5—N41.213 (4)C1'—H1B0.9800
N1—C71.305 (4)C2'—C3'1.512 (8)
N1—C11.452 (6)C2'—H2C0.9700
N1—C1'1.481 (8)C2'—H2D0.9700
N1—H10.8800C3'—C4'1.537 (9)
N1—H1'0.8800C3'—H3C0.9700
N2—C81.358 (4)C3'—H3D0.9700
N2—C71.402 (4)C4'—C5'1.537 (8)
N2—H20.8800C4'—H4C0.9700
N3—C111.474 (5)C4'—H4D0.9700
N4—C131.471 (5)C5'—C6'1.505 (8)
C1—C61.524 (8)C5'—H5C0.9700
C1—C21.527 (8)C5'—H5D0.9700
C1—H1A0.9800C6'—H6C0.9700
C2—C31.547 (7)C6'—H6D0.9700
C2—H2A0.9700C8—C91.501 (5)
C2—H2B0.9700C9—C101.380 (5)
C3—C41.511 (8)C9—C141.388 (4)
C3—H3A0.9700C10—C111.370 (5)
C3—H3B0.9700C10—H100.9300
C4—C51.507 (7)C11—C121.375 (5)
C4—H4A0.9700C12—C131.372 (5)
C4—H4B0.9700C12—H120.9300
C5—C61.552 (8)C13—C141.376 (4)
C5—H5A0.9700C14—H140.9300
C7—N1—C1133.3 (5)C2'—C1'—H1B107.3
C7—N1—C1'114.9 (5)C3'—C2'—C1'109.8 (7)
C7—N1—H1113.3C3'—C2'—H2C109.7
C1—N1—H1113.3C1'—C2'—H2C109.7
C7—N1—H1'122.6C3'—C2'—H2D109.7
C1'—N1—H1'122.6C1'—C2'—H2D109.7
C8—N2—C7127.2 (3)H2C—C2'—H2D108.2
C8—N2—H2116.4C2'—C3'—C4'110.9 (7)
C7—N2—H2116.4C2'—C3'—H3C109.5
O3—N3—O2123.5 (4)C4'—C3'—H3C109.5
O3—N3—C11119.1 (4)C2'—C3'—H3D109.5
O2—N3—C11117.4 (4)C4'—C3'—H3D109.5
O5—N4—O4124.5 (3)H3C—C3'—H3D108.1
O5—N4—C13117.9 (3)C3'—C4'—C5'109.0 (7)
O4—N4—C13117.6 (3)C3'—C4'—H4C109.9
N1—C1—C6108.7 (6)C5'—C4'—H4C109.9
N1—C1—C2109.8 (6)C3'—C4'—H4D109.9
C6—C1—C2110.6 (7)C5'—C4'—H4D109.9
N1—C1—H1A109.3H4C—C4'—H4D108.3
C6—C1—H1A109.3C6'—C5'—C4'111.1 (7)
C2—C1—H1A109.3C6'—C5'—H5C109.4
C1—C2—C3107.2 (5)C4'—C5'—H5C109.4
C1—C2—H2A110.3C6'—C5'—H5D109.4
C3—C2—H2A110.3C4'—C5'—H5D109.4
C1—C2—H2B110.3H5C—C5'—H5D108.0
C3—C2—H2B110.3C5'—C6'—C1'111.1 (7)
H2A—C2—H2B108.5C5'—C6'—H6C109.4
C4—C3—C2110.7 (5)C1'—C6'—H6C109.4
C4—C3—H3A109.5C5'—C6'—H6D109.4
C2—C3—H3A109.5C1'—C6'—H6D109.4
C4—C3—H3B109.5H6C—C6'—H6D108.0
C2—C3—H3B109.5N1—C7—N2116.4 (3)
H3A—C3—H3B108.1N1—C7—S1125.6 (3)
C5—C4—C3112.0 (6)N2—C7—S1118.0 (2)
C5—C4—H4A109.2O1—C8—N2124.1 (3)
C3—C4—H4A109.2O1—C8—C9119.7 (3)
C5—C4—H4B109.2N2—C8—C9116.2 (3)
C3—C4—H4B109.2C10—C9—C14120.0 (3)
H4A—C4—H4B107.9C10—C9—C8117.2 (3)
C4—C5—C6109.7 (6)C14—C9—C8122.8 (3)
C4—C5—H5A109.7C11—C10—C9119.2 (3)
C6—C5—H5A109.7C11—C10—H10120.4
C4—C5—H5B109.7C9—C10—H10120.4
C6—C5—H5B109.7C10—C11—C12122.6 (3)
H5A—C5—H5B108.2C10—C11—N3118.8 (4)
C1—C6—C5107.1 (5)C12—C11—N3118.6 (3)
C1—C6—H6A110.3C13—C12—C11116.7 (3)
C5—C6—H6A110.3C13—C12—H12121.6
C1—C6—H6B110.3C11—C12—H12121.6
C5—C6—H6B110.3C12—C13—C14123.1 (3)
H6A—C6—H6B108.5C12—C13—N4119.0 (3)
N1—C1'—C6'110.4 (8)C14—C13—N4117.9 (3)
N1—C1'—C2'115.0 (8)C13—C14—C9118.3 (3)
C6'—C1'—C2'109.4 (6)C13—C14—H14120.8
N1—C1'—H1B107.3C9—C14—H14120.8
C6'—C1'—H1B107.3
C7—N1—C1—C6147.6 (6)C8—N2—C7—N10.6 (5)
C1'—N1—C1—C6134 (2)C8—N2—C7—S1179.3 (3)
C7—N1—C1—C291.4 (9)C7—N2—C8—O10.6 (6)
C1'—N1—C1—C2105 (2)C7—N2—C8—C9179.1 (3)
N1—C1—C2—C3177.3 (7)O1—C8—C9—C1031.7 (5)
C6—C1—C2—C362.8 (10)N2—C8—C9—C10148.0 (3)
C1—C2—C3—C457.7 (10)O1—C8—C9—C14145.0 (4)
C2—C3—C4—C556.9 (9)N2—C8—C9—C1435.3 (4)
C3—C4—C5—C657.5 (9)C14—C9—C10—C111.7 (5)
N1—C1—C6—C5175.5 (8)C8—C9—C10—C11178.6 (3)
C2—C1—C6—C563.9 (10)C9—C10—C11—C120.5 (5)
C4—C5—C6—C159.6 (10)C9—C10—C11—N3179.1 (3)
C7—N1—C1'—C6'141.7 (5)O3—N3—C11—C10179.4 (4)
C1—N1—C1'—C6'49.4 (18)O2—N3—C11—C101.2 (5)
C7—N1—C1'—C2'94.0 (7)O3—N3—C11—C121.1 (5)
C1—N1—C1'—C2'74.9 (19)O2—N3—C11—C12179.3 (4)
N1—C1'—C2'—C3'66.7 (10)C10—C11—C12—C130.8 (5)
C6'—C1'—C2'—C3'58.1 (11)N3—C11—C12—C13179.6 (3)
C1'—C2'—C3'—C4'59.8 (12)C11—C12—C13—C140.9 (5)
C2'—C3'—C4'—C5'58.6 (13)C11—C12—C13—N4179.4 (3)
C3'—C4'—C5'—C6'57.3 (14)O5—N4—C13—C12172.3 (3)
C4'—C5'—C6'—C1'57.8 (13)O4—N4—C13—C127.0 (5)
N1—C1'—C6'—C5'69.9 (10)O5—N4—C13—C148.0 (5)
C2'—C1'—C6'—C5'57.5 (11)O4—N4—C13—C14172.6 (3)
C1—N1—C7—N2177.5 (5)C12—C13—C14—C90.3 (5)
C1'—N1—C7—N2177.5 (5)N4—C13—C14—C9179.4 (3)
C1—N1—C7—S13.8 (7)C10—C9—C14—C131.6 (5)
C1'—N1—C7—S11.1 (6)C8—C9—C14—C13178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.892.639 (4)142
N1—H1···O10.881.992.639 (4)130
N2—H2···S1i0.882.653.449 (3)152
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H16N4O5S
Mr352.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.3404 (7), 9.0506 (5), 14.6534 (6)
β (°) 90.385 (5)
V3)1636.57 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent Technologies SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.955, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
7954, 3649, 1948
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.211, 1.01
No. of reflections3649
No. of parameters271
No. of restraints25
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.892.639 (4)142
N1—H1'···O10.881.992.639 (4)130
N2—H2···S1i0.882.653.449 (3)152
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: sohail262001@yahoo.com.

Acknowledgements

The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for the allocation of research and analytical laboratory facilities. The authors also thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDzulkifli, N. N., Farina, Y., Yamin, B. M., Baba, I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o872.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o980.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1148
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds