organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1217

(E)-1-{4-[(E)-3-Chloro­benzyl­­idene­amino]­phen­yl}-3-(3-chloro­phen­yl)prop-2-en-1-one

aCollege of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
*Correspondence e-mail: cjm7895@163.com

(Received 10 April 2011; accepted 12 April 2011; online 29 April 2011)

In the title mol­ecule, C22H15Cl2NO, the dihedral angles between the central aromatic ring and the N- and C=O-bonded rings are 43.13 (13) and 0.80 (14)°, respectively. The dihedral angle between the terminal rings is 43.15 (14)°. The major twist occurs about the Car—N bond [Car—Car—N=C = 42.3 (4)°; ar is aromatic].

Related literature

For background to Schiff bases, see: Chimenti et al. (2009[Chimenti, F., Fioravanti, R., Bolasco, A., Chimenti, P., Secci, D., Rossi, F., Yanez, M., Orallo, F., Ortuso, F. & Alcaro, S. (2009). J. Med. Chem. 52, 2818-2824.]); Shi et al. (2007[Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558-564.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H15Cl2NO

  • Mr = 380.25

  • Monoclinic, P 21 /c

  • a = 17.454 (4) Å

  • b = 6.1110 (12) Å

  • c = 17.179 (3) Å

  • β = 100.32 (3)°

  • V = 1802.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.866, Tmax = 0.964

  • 3659 measured reflections

  • 3539 independent reflections

  • 2367 reflections with I > 2σ(I)

  • Rint = 0.021

  • 200 standard reflections every 3 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.145

  • S = 1.06

  • 3539 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been much research interest in Schiff base and chalcone compounds due to their biological activities (Shi et al., 2007; Chimenti et al., 2009). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1).

Related literature top

For background to Schiff bases, see: Chimenti et al. (2009); Shi et al. (2007). For reference bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared by stirring a mixture of 3-chlorobenzaldehyde (280 mg, 2 mmol) and 1-(4-aminophenyl)ethanone (135 mg, 1 mmol) in methanol (10 ml) for 4 h. After keeping the filtrate in air for 5 d, colorless block-shaped crystals of (I) were formed.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
(E)-1-{4-[(E)-3-Chlorobenzylideneamino]phenyl}- 3-(3-chlorophenyl)prop-2-en-1-one top
Crystal data top
C22H15Cl2NOF(000) = 784
Mr = 380.25Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 17.454 (4) Åθ = 9–12°
b = 6.1110 (12) ŵ = 0.37 mm1
c = 17.179 (3) ÅT = 293 K
β = 100.32 (3)°Block, colorless
V = 1802.7 (6) Å30.40 × 0.30 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2367 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 26.0°, θmin = 1.2°
ω/2θ scansh = 210
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.866, Tmax = 0.964l = 2021
3659 measured reflections200 standard reflections every 3 reflections
3539 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.6746P]
where P = (Fo2 + 2Fc2)/3
3539 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C22H15Cl2NOV = 1802.7 (6) Å3
Mr = 380.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.454 (4) ŵ = 0.37 mm1
b = 6.1110 (12) ÅT = 293 K
c = 17.179 (3) Å0.40 × 0.30 × 0.10 mm
β = 100.32 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2367 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.866, Tmax = 0.964200 standard reflections every 3 reflections
3659 measured reflections intensity decay: 1%
3539 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
3539 reflectionsΔρmin = 0.37 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.82827 (15)0.0032 (5)0.05196 (15)0.0486 (7)
C20.87296 (15)0.1135 (5)0.09848 (16)0.0524 (7)
H20.85850.25350.11670.063*
C30.93831 (17)0.0187 (6)0.11798 (18)0.0617 (8)
C40.96089 (19)0.1871 (6)0.0928 (2)0.0732 (9)
H41.00540.25010.10580.088*
C50.9159 (2)0.2994 (6)0.0476 (2)0.0802 (10)
H50.93010.44050.03070.096*
C60.85060 (18)0.2070 (5)0.02714 (19)0.0652 (8)
H60.82130.28550.00350.078*
C70.76114 (15)0.1165 (5)0.03071 (15)0.0515 (7)
H70.75570.26220.04620.062*
C80.70704 (15)0.0416 (5)0.00740 (15)0.0515 (7)
H80.70780.10400.02320.062*
C90.64549 (16)0.1899 (5)0.02472 (15)0.0498 (7)
C100.58642 (15)0.1109 (4)0.07094 (14)0.0428 (6)
C110.58854 (15)0.0934 (4)0.10662 (15)0.0488 (7)
H110.62850.19020.10170.059*
C120.53180 (15)0.1548 (5)0.14945 (15)0.0475 (6)
H120.53440.29100.17400.057*
C130.47135 (15)0.0137 (4)0.15568 (14)0.0429 (6)
C140.46980 (17)0.1910 (4)0.12070 (17)0.0551 (7)
H140.42990.28840.12540.066*
C150.52654 (16)0.2513 (5)0.07917 (16)0.0525 (7)
H150.52460.38930.05610.063*
C160.37984 (14)0.2508 (4)0.18899 (14)0.0441 (6)
H160.40070.35310.15860.053*
C170.31366 (15)0.3162 (4)0.22540 (14)0.0435 (6)
C180.28087 (16)0.5218 (5)0.20967 (16)0.0515 (7)
H180.30230.61870.17770.062*
C190.21688 (17)0.5833 (5)0.24099 (18)0.0591 (8)
H190.19580.72230.23070.071*
C200.18380 (17)0.4406 (5)0.28750 (18)0.0598 (8)
H200.14050.48190.30870.072*
C210.21605 (16)0.2352 (5)0.30206 (16)0.0522 (7)
C220.28056 (15)0.1702 (4)0.27221 (14)0.0456 (6)
H220.30170.03150.28310.055*
Cl10.99327 (5)0.1679 (2)0.17471 (6)0.0968 (4)
Cl20.17205 (5)0.05098 (15)0.35786 (5)0.0771 (3)
N10.40982 (12)0.0634 (4)0.19679 (12)0.0468 (5)
O10.64304 (12)0.3797 (4)0.00131 (13)0.0693 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0474 (15)0.0542 (17)0.0434 (14)0.0010 (13)0.0060 (12)0.0006 (13)
C20.0494 (15)0.0540 (17)0.0555 (16)0.0054 (13)0.0142 (13)0.0054 (14)
C30.0508 (17)0.073 (2)0.0626 (18)0.0045 (16)0.0147 (14)0.0011 (16)
C40.0557 (18)0.076 (2)0.088 (2)0.0150 (18)0.0127 (17)0.004 (2)
C50.080 (2)0.056 (2)0.101 (3)0.0187 (19)0.008 (2)0.006 (2)
C60.0644 (19)0.058 (2)0.074 (2)0.0058 (16)0.0129 (16)0.0152 (16)
C70.0545 (16)0.0551 (17)0.0463 (15)0.0052 (14)0.0128 (13)0.0080 (13)
C80.0561 (16)0.0539 (17)0.0465 (15)0.0015 (14)0.0147 (13)0.0061 (13)
C90.0544 (16)0.0524 (18)0.0433 (14)0.0001 (14)0.0105 (12)0.0051 (13)
C100.0476 (14)0.0451 (15)0.0367 (13)0.0012 (12)0.0101 (11)0.0005 (11)
C110.0463 (15)0.0496 (17)0.0521 (15)0.0084 (13)0.0134 (12)0.0080 (13)
C120.0504 (15)0.0467 (15)0.0462 (15)0.0026 (13)0.0112 (12)0.0085 (13)
C130.0509 (15)0.0417 (15)0.0379 (13)0.0044 (12)0.0127 (11)0.0077 (12)
C140.0620 (17)0.0414 (16)0.0688 (18)0.0072 (14)0.0305 (15)0.0025 (14)
C150.0658 (17)0.0367 (15)0.0588 (17)0.0037 (13)0.0216 (14)0.0044 (13)
C160.0491 (14)0.0444 (15)0.0410 (14)0.0059 (13)0.0145 (11)0.0018 (12)
C170.0463 (14)0.0418 (15)0.0432 (13)0.0053 (12)0.0102 (11)0.0051 (12)
C180.0541 (16)0.0446 (16)0.0576 (17)0.0030 (13)0.0151 (13)0.0005 (13)
C190.0590 (17)0.0460 (17)0.074 (2)0.0038 (14)0.0155 (15)0.0092 (15)
C200.0563 (17)0.059 (2)0.070 (2)0.0035 (15)0.0259 (15)0.0166 (16)
C210.0573 (17)0.0535 (18)0.0505 (16)0.0132 (14)0.0218 (13)0.0090 (13)
C220.0502 (15)0.0432 (15)0.0455 (14)0.0051 (12)0.0141 (12)0.0026 (12)
Cl10.0694 (6)0.1239 (9)0.1101 (8)0.0134 (6)0.0507 (5)0.0227 (7)
Cl20.0919 (6)0.0759 (6)0.0763 (5)0.0213 (5)0.0496 (5)0.0045 (4)
N10.0545 (13)0.0444 (13)0.0452 (12)0.0037 (11)0.0192 (10)0.0070 (10)
O10.0787 (15)0.0571 (13)0.0810 (15)0.0079 (11)0.0379 (12)0.0226 (11)
Geometric parameters (Å, º) top
C1—C61.387 (4)C12—C131.382 (4)
C1—C21.387 (4)C12—H120.9300
C1—C71.462 (4)C13—C141.386 (4)
C2—C31.373 (4)C13—N11.420 (3)
C2—H20.9300C14—C151.370 (4)
C3—C41.365 (5)C14—H140.9300
C3—Cl11.742 (3)C15—H150.9300
C4—C51.382 (5)C16—N11.256 (3)
C4—H40.9300C16—C171.464 (3)
C5—C61.373 (4)C16—H160.9300
C5—H50.9300C17—C181.387 (4)
C6—H60.9300C17—C221.394 (3)
C7—C81.323 (4)C18—C191.376 (4)
C7—H70.9300C18—H180.9300
C8—C91.476 (4)C19—C201.377 (4)
C8—H80.9300C19—H190.9300
C9—O11.225 (3)C20—C211.380 (4)
C9—C101.490 (3)C20—H200.9300
C10—C151.379 (4)C21—C221.377 (4)
C10—C111.388 (4)C21—Cl21.743 (3)
C11—C121.387 (3)C22—H220.9300
C11—H110.9300
C6—C1—C2118.1 (3)C13—C12—H12120.0
C6—C1—C7123.7 (3)C11—C12—H12120.0
C2—C1—C7118.2 (3)C12—C13—C14119.1 (2)
C3—C2—C1120.8 (3)C12—C13—N1124.1 (2)
C3—C2—H2119.6C14—C13—N1116.8 (2)
C1—C2—H2119.6C15—C14—C13120.5 (3)
C4—C3—C2121.1 (3)C15—C14—H14119.7
C4—C3—Cl1120.2 (2)C13—C14—H14119.7
C2—C3—Cl1118.7 (3)C14—C15—C10121.2 (3)
C3—C4—C5118.3 (3)C14—C15—H15119.4
C3—C4—H4120.8C10—C15—H15119.4
C5—C4—H4120.8N1—C16—C17123.3 (2)
C6—C5—C4121.4 (3)N1—C16—H16118.4
C6—C5—H5119.3C17—C16—H16118.4
C4—C5—H5119.3C18—C17—C22119.5 (2)
C5—C6—C1120.2 (3)C18—C17—C16119.6 (2)
C5—C6—H6119.9C22—C17—C16120.8 (2)
C1—C6—H6119.9C19—C18—C17120.5 (3)
C8—C7—C1129.4 (3)C19—C18—H18119.8
C8—C7—H7115.3C17—C18—H18119.8
C1—C7—H7115.3C18—C19—C20120.5 (3)
C7—C8—C9119.8 (3)C18—C19—H19119.8
C7—C8—H8120.1C20—C19—H19119.8
C9—C8—H8120.1C19—C20—C21118.8 (3)
O1—C9—C8119.9 (2)C19—C20—H20120.6
O1—C9—C10119.7 (3)C21—C20—H20120.6
C8—C9—C10120.4 (2)C22—C21—C20121.9 (3)
C15—C10—C11118.3 (2)C22—C21—Cl2119.3 (2)
C15—C10—C9117.6 (2)C20—C21—Cl2118.8 (2)
C11—C10—C9124.1 (2)C21—C22—C17118.8 (3)
C12—C11—C10120.8 (2)C21—C22—H22120.6
C12—C11—H11119.6C17—C22—H22120.6
C10—C11—H11119.6C16—N1—C13118.7 (2)
C13—C12—C11120.0 (2)
C6—C1—C2—C31.3 (4)C11—C12—C13—C141.9 (4)
C7—C1—C2—C3177.6 (3)C11—C12—C13—N1178.7 (2)
C1—C2—C3—C40.6 (5)C12—C13—C14—C151.3 (4)
C1—C2—C3—Cl1178.6 (2)N1—C13—C14—C15179.3 (3)
C2—C3—C4—C50.6 (5)C13—C14—C15—C100.1 (4)
Cl1—C3—C4—C5179.7 (3)C11—C10—C15—C140.7 (4)
C3—C4—C5—C60.9 (6)C9—C10—C15—C14179.9 (3)
C4—C5—C6—C10.2 (5)N1—C16—C17—C18175.9 (3)
C2—C1—C6—C50.9 (4)N1—C16—C17—C220.6 (4)
C7—C1—C6—C5177.9 (3)C22—C17—C18—C191.1 (4)
C6—C1—C7—C86.8 (5)C16—C17—C18—C19177.6 (3)
C2—C1—C7—C8174.4 (3)C17—C18—C19—C200.9 (4)
C1—C7—C8—C9177.9 (3)C18—C19—C20—C210.0 (4)
C7—C8—C9—O12.6 (4)C19—C20—C21—C220.7 (4)
C7—C8—C9—C10177.1 (2)C19—C20—C21—Cl2177.7 (2)
O1—C9—C10—C155.9 (4)C20—C21—C22—C170.5 (4)
C8—C9—C10—C15174.4 (2)Cl2—C21—C22—C17177.81 (19)
O1—C9—C10—C11173.4 (3)C18—C17—C22—C210.4 (4)
C8—C9—C10—C116.2 (4)C16—C17—C22—C21176.9 (2)
C15—C10—C11—C120.0 (4)C17—C16—N1—C13176.9 (2)
C9—C10—C11—C12179.4 (2)C12—C13—N1—C1642.3 (4)
C10—C11—C12—C131.3 (4)C14—C13—N1—C16138.3 (3)

Experimental details

Crystal data
Chemical formulaC22H15Cl2NO
Mr380.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.454 (4), 6.1110 (12), 17.179 (3)
β (°) 100.32 (3)
V3)1802.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.866, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
3659, 3539, 2367
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.145, 1.06
No. of reflections3539
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.37

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChimenti, F., Fioravanti, R., Bolasco, A., Chimenti, P., Secci, D., Rossi, F., Yanez, M., Orallo, F., Ortuso, F. & Alcaro, S. (2009). J. Med. Chem. 52, 2818–2824.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558–564.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1217
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds