metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[dinitratocopper(II)]-μ-4,4′′-bis­­(1H-benzimidazol-1-yl)-1,1′:4′,1′′-terphen­yl]

aDepartment of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
*Correspondence e-mail: lihuiwf@gmail.com

(Received 10 April 2011; accepted 11 April 2011; online 16 April 2011)

In the title one-dimensional coordination polymer, [Cu(NO3)2(C32H22N4)]n, the Cu2+ ion (site symmetry 2) is coordinated by two nitrate O atoms and two N atoms from two 4,4′-bis­(benzoimidazol-1-yl)terphenyl (L) ligands in a distorted cis-CuN2O2 square-planar coordination geometry. An alternative description of the metal coordination geometry, if long Cu—O contacts to the bonded nitrate anions are considered, is an extremely distorted cis-CuN2O4 octa­hedron. The complete L ligand is generated by crystallographic twofold symmetry and connects the metal ions into infinite chains propagating in [10[\overline{1}]]. The dihedral angle between the benzimidazole ring system and the adjacent benzene (B) ring is 51.12 (11)° and the dihedral angle between the B ring and the central ring is 19.45 (13)°.

Related literature

For background to benzimidazole-derived ligands in coordin­ation polymers, see: Jin et al. (2006[Jin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039-5041.]); Li et al. (2010[Li, Z. X., Hu, T. L., Ma, H., Zeng, Y. F., Li, C. J., Tong, M. L. & Bu, X. H. (2010). Cryst. Growth Des. 10, 1138-1144.]); Su et al. (2003[Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595-8613.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C32H22N4)]

  • Mr = 650.10

  • Monoclinic, C 2/c

  • a = 14.960 (3) Å

  • b = 15.237 (3) Å

  • c = 12.139 (2) Å

  • β = 103.94 (3)°

  • V = 2685.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.839, Tmax = 0.877

  • 13493 measured reflections

  • 2371 independent reflections

  • 2181 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.09

  • 2371 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.985 (2)
Cu1—O1 2.025 (2)
Cu1—O3 2.452 (3)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzimidazole has been well used in crystal engineering, and a large number of benzimidazole-containing flexible ligands have been extensively studied (Su et al.,2003; Jin et al.,2006). However, to our knowledge, the research on benzoimidazole ligands bearing rigid spacers is still less developed (Li et al.,2010).

Single-crystal X-ray diffraction analysis reveals that the title compound (I) crystallizes in the monoclinic space group C2/c. The geometry of the Cu(II) ion is surrounded by two benzoiimidazole rings of individual L ligands and two nitrate anions, which illustrates a distorted square coordination environment (Fig. 1). Notably, as shown in Fig. 2, the four-coordinated Cu(II) center is bridged by the linear ligand L to form an infinite one-dimensional architecture.

Related literature top

For background to benzimidazole-derived ligands in coordination polymers, see: Jin et al. (2006); Li et al. (2010); Su et al. (2003).

Experimental top

A mixture of CH3OH and CHCl3 (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of 4,4'-Bis(benzoimidazol-1-yl)terphenyl (L, 0.06 mmol) in CHCl3 (6 ml). Then, a solution of Cu(NO3)2 (0.02 mmol) in CH3OH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After ca three weeks, green block single crystals appeared at the boundary. Yield: ~30% (based on L).

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing for (I).
catena-Poly[[dinitratocopper(II)]-µ-4,4''-bis(1H- benzimidazol-1-yl)-1,1':4',1''-terphenyl] top
Crystal data top
[Cu(NO3)2(C32H22N4)]F(000) = 1332
Mr = 650.10Dx = 1.608 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4661 reflections
a = 14.960 (3) Åθ = 1.9–28.7°
b = 15.237 (3) ŵ = 0.88 mm1
c = 12.139 (2) ÅT = 293 K
β = 103.94 (3)°Block, green
V = 2685.7 (9) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2371 independent reflections
Radiation source: fine-focus sealed tube2181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1818
Tmin = 0.839, Tmax = 0.877l = 1414
13493 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0735P)2 + 6.1716P]
where P = (Fo2 + 2Fc2)/3
2371 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Cu(NO3)2(C32H22N4)]V = 2685.7 (9) Å3
Mr = 650.10Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.960 (3) ŵ = 0.88 mm1
b = 15.237 (3) ÅT = 293 K
c = 12.139 (2) Å0.20 × 0.18 × 0.15 mm
β = 103.94 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2371 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2181 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.877Rint = 0.044
13493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.09Δρmax = 0.37 e Å3
2371 reflectionsΔρmin = 0.77 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00001.08431 (3)0.75000.0158 (2)
N10.90976 (16)1.00076 (15)0.7873 (2)0.0147 (5)
N20.79830 (16)0.95918 (15)0.8684 (2)0.0127 (5)
N31.00584 (19)1.19959 (17)0.5927 (2)0.0228 (6)
C10.86254 (19)1.01906 (19)0.8646 (2)0.0149 (6)
H1A0.87331.06840.91100.018*
C20.87224 (19)0.92203 (18)0.7368 (2)0.0124 (6)
C30.89502 (19)0.87094 (19)0.6515 (2)0.0144 (6)
H3A0.94230.88720.61800.017*
C40.8443 (2)0.79544 (19)0.6192 (2)0.0176 (6)
H4A0.85870.75940.56410.021*
C50.7707 (2)0.77168 (19)0.6684 (3)0.0177 (6)
H5A0.73650.72170.64230.021*
C60.74853 (18)0.82031 (18)0.7533 (2)0.0135 (6)
H6A0.70090.80410.78620.016*
C70.80152 (19)0.89544 (18)0.7875 (2)0.0119 (6)
C80.73918 (18)0.96045 (18)0.9471 (2)0.0114 (6)
C90.7327 (2)0.8866 (2)1.0116 (3)0.0189 (7)
H9A0.76670.83651.00550.023*
C100.6748 (2)0.88846 (19)1.0852 (3)0.0180 (6)
H10A0.66960.83861.12730.022*
C110.62384 (18)0.96369 (18)1.0978 (2)0.0113 (6)
C120.63268 (18)1.03720 (18)1.0321 (2)0.0112 (6)
H12A0.60001.08801.03910.013*
C130.68927 (19)1.03586 (18)0.9565 (2)0.0116 (6)
H13A0.69371.08500.91270.014*
C140.56072 (18)0.96408 (18)1.1761 (2)0.0108 (6)
C150.52982 (19)1.04264 (18)1.2139 (2)0.0129 (6)
H15A0.54941.09581.19030.015*
C160.52938 (19)0.88512 (19)1.2128 (2)0.0126 (6)
H16A0.54780.83201.18750.015*
O11.06322 (14)1.18409 (14)0.68862 (19)0.0224 (5)
O21.01639 (19)1.26531 (16)0.5384 (2)0.0373 (6)
O30.94347 (17)1.14482 (17)0.5587 (2)0.0352 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0152 (3)0.0149 (3)0.0202 (3)0.0000.0099 (2)0.000
N10.0161 (12)0.0147 (12)0.0160 (12)0.0024 (10)0.0092 (10)0.0034 (10)
N20.0140 (12)0.0135 (12)0.0132 (12)0.0014 (9)0.0084 (10)0.0008 (9)
N30.0290 (15)0.0182 (14)0.0267 (15)0.0031 (11)0.0172 (13)0.0032 (12)
C10.0163 (14)0.0151 (14)0.0151 (14)0.0004 (11)0.0070 (12)0.0004 (12)
C20.0091 (13)0.0161 (14)0.0119 (14)0.0013 (10)0.0024 (11)0.0011 (11)
C30.0115 (13)0.0217 (15)0.0117 (14)0.0037 (11)0.0061 (11)0.0003 (12)
C40.0203 (15)0.0170 (15)0.0152 (15)0.0047 (12)0.0037 (12)0.0035 (12)
C50.0196 (15)0.0118 (14)0.0202 (16)0.0010 (12)0.0020 (12)0.0021 (12)
C60.0097 (13)0.0134 (13)0.0182 (15)0.0005 (11)0.0050 (12)0.0044 (11)
C70.0130 (13)0.0130 (13)0.0108 (14)0.0031 (11)0.0053 (11)0.0014 (11)
C80.0100 (13)0.0145 (14)0.0127 (14)0.0015 (11)0.0085 (11)0.0011 (11)
C90.0200 (16)0.0161 (15)0.0262 (17)0.0077 (12)0.0164 (13)0.0053 (13)
C100.0199 (15)0.0145 (15)0.0239 (16)0.0048 (12)0.0140 (13)0.0085 (12)
C110.0103 (13)0.0148 (14)0.0097 (13)0.0005 (11)0.0040 (11)0.0004 (11)
C120.0112 (13)0.0119 (14)0.0113 (13)0.0003 (10)0.0044 (11)0.0013 (11)
C130.0140 (13)0.0118 (13)0.0100 (13)0.0020 (11)0.0048 (11)0.0015 (11)
C140.0096 (13)0.0156 (14)0.0086 (13)0.0006 (10)0.0046 (11)0.0010 (11)
C150.0134 (13)0.0118 (14)0.0156 (14)0.0011 (11)0.0078 (12)0.0019 (11)
C160.0142 (13)0.0130 (14)0.0129 (14)0.0015 (11)0.0080 (12)0.0003 (11)
O10.0206 (11)0.0194 (11)0.0294 (12)0.0026 (9)0.0102 (10)0.0009 (9)
O20.0480 (16)0.0246 (13)0.0474 (16)0.0038 (11)0.0273 (13)0.0133 (12)
O30.0337 (14)0.0330 (14)0.0357 (14)0.0083 (11)0.0020 (12)0.0044 (11)
Geometric parameters (Å, º) top
Cu1—N11.985 (2)C5—C61.373 (4)
Cu1—N1i1.985 (2)C5—H5A0.9300
Cu1—O1i2.025 (2)C6—C71.398 (4)
Cu1—O12.025 (2)C6—H6A0.9300
Cu1—O32.452 (3)C8—C91.388 (4)
Cu1—O3i2.452 (3)C8—C131.390 (4)
N1—C11.333 (4)C9—C101.386 (4)
N1—C21.401 (4)C9—H9A0.9300
N2—C11.334 (4)C10—C111.406 (4)
N2—C71.390 (4)C10—H10A0.9300
N2—C81.450 (3)C11—C121.400 (4)
N3—O21.230 (3)C11—C141.493 (4)
N3—O31.246 (4)C12—C131.390 (4)
N3—O11.291 (4)C12—H12A0.9300
C1—H1A0.9300C13—H13A0.9300
C2—C31.401 (4)C14—C151.400 (4)
C2—C71.406 (4)C14—C161.402 (4)
C3—C41.382 (4)C15—C15ii1.394 (5)
C3—H3A0.9300C15—H15A0.9300
C4—C51.420 (4)C16—C16ii1.404 (5)
C4—H4A0.9300C16—H16A0.9300
N1—Cu1—N1i100.24 (14)C7—C6—H6A121.9
N1—Cu1—O1i89.66 (9)N2—C7—C6131.9 (3)
N1i—Cu1—O1i165.63 (9)N2—C7—C2105.4 (2)
N1—Cu1—O1165.63 (9)C6—C7—C2122.6 (3)
N1i—Cu1—O189.66 (9)C9—C8—C13120.8 (3)
O1i—Cu1—O182.68 (12)C9—C8—N2119.8 (2)
C1—N1—C2105.2 (2)C13—C8—N2119.4 (2)
C1—N1—Cu1122.08 (19)C10—C9—C8119.1 (3)
C2—N1—Cu1132.22 (19)C10—C9—H9A120.5
C1—N2—C7107.8 (2)C8—C9—H9A120.5
C1—N2—C8124.9 (2)C9—C10—C11121.8 (3)
C7—N2—C8127.2 (2)C9—C10—H10A119.1
O2—N3—O3123.4 (3)C11—C10—H10A119.1
O2—N3—O1119.3 (3)C12—C11—C10117.5 (3)
O3—N3—O1117.3 (2)C12—C11—C14121.4 (2)
N1—C1—N2112.9 (3)C10—C11—C14121.0 (2)
N1—C1—H1A123.5C13—C12—C11121.4 (3)
N2—C1—H1A123.5C13—C12—H12A119.3
C3—C2—N1131.0 (3)C11—C12—H12A119.3
C3—C2—C7120.4 (3)C8—C13—C12119.4 (3)
N1—C2—C7108.6 (2)C8—C13—H13A120.3
C4—C3—C2117.2 (3)C12—C13—H13A120.3
C4—C3—H3A121.4C15—C14—C16117.9 (3)
C2—C3—H3A121.4C15—C14—C11121.4 (2)
C3—C4—C5121.4 (3)C16—C14—C11120.7 (2)
C3—C4—H4A119.3C15ii—C15—C14121.21 (16)
C5—C4—H4A119.3C15ii—C15—H15A119.4
C6—C5—C4122.0 (3)C14—C15—H15A119.4
C6—C5—H5A119.0C14—C16—C16ii120.89 (16)
C4—C5—H5A119.0C14—C16—H16A119.6
C5—C6—C7116.3 (3)C16ii—C16—H16A119.6
C5—C6—H6A121.9N3—O1—Cu1101.61 (16)
N1i—Cu1—N1—C1147.7 (3)N1—C2—C7—C6178.1 (2)
O1i—Cu1—N1—C121.8 (2)C1—N2—C8—C9128.1 (3)
O1—Cu1—N1—C179.4 (4)C7—N2—C8—C949.3 (4)
N1i—Cu1—N1—C241.6 (2)C1—N2—C8—C1352.2 (4)
O1i—Cu1—N1—C2148.9 (3)C7—N2—C8—C13130.4 (3)
O1—Cu1—N1—C291.3 (4)C13—C8—C9—C100.6 (4)
C2—N1—C1—N20.1 (3)N2—C8—C9—C10179.1 (3)
Cu1—N1—C1—N2173.00 (18)C8—C9—C10—C111.2 (5)
C7—N2—C1—N10.3 (3)C9—C10—C11—C120.7 (4)
C8—N2—C1—N1177.6 (2)C9—C10—C11—C14179.0 (3)
C1—N1—C2—C3179.0 (3)C10—C11—C12—C130.4 (4)
Cu1—N1—C2—C39.1 (5)C14—C11—C12—C13178.0 (3)
C1—N1—C2—C70.1 (3)C9—C8—C13—C120.4 (4)
Cu1—N1—C2—C7171.8 (2)N2—C8—C13—C12179.9 (2)
N1—C2—C3—C4179.9 (3)C11—C12—C13—C80.9 (4)
C7—C2—C3—C41.0 (4)C12—C11—C14—C1519.7 (4)
C2—C3—C4—C51.5 (4)C10—C11—C14—C15161.9 (3)
C3—C4—C5—C62.7 (4)C12—C11—C14—C16159.3 (3)
C4—C5—C6—C71.0 (4)C10—C11—C14—C1619.0 (4)
C1—N2—C7—C6177.8 (3)C16—C14—C15—C15ii0.4 (5)
C8—N2—C7—C64.5 (5)C11—C14—C15—C15ii179.4 (3)
C1—N2—C7—C20.3 (3)C15—C14—C16—C16ii1.5 (5)
C8—N2—C7—C2177.4 (3)C11—C14—C16—C16ii179.5 (3)
C5—C6—C7—N2179.4 (3)O2—N3—O1—Cu1170.1 (2)
C5—C6—C7—C21.6 (4)O3—N3—O1—Cu111.7 (3)
C3—C2—C7—N2179.0 (3)N1—Cu1—O1—N328.9 (4)
N1—C2—C7—N20.2 (3)N1i—Cu1—O1—N3105.01 (17)
C3—C2—C7—C62.7 (4)O1i—Cu1—O1—N387.19 (17)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+1, y, z+5/2.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C32H22N4)]
Mr650.10
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.960 (3), 15.237 (3), 12.139 (2)
β (°) 103.94 (3)
V3)2685.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.839, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
13493, 2371, 2181
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.09
No. of reflections2371
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.77

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.985 (2)Cu1—O32.452 (3)
Cu1—O12.025 (2)
 

Acknowledgements

We thank the College Research Program of Yuncheng University [2008114] for funding.

References

First citationJin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039–5041.  Web of Science CSD CrossRef Google Scholar
First citationLi, Z. X., Hu, T. L., Ma, H., Zeng, Y. F., Li, C. J., Tong, M. L. & Bu, X. H. (2010). Cryst. Growth Des. 10, 1138–1144.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595–8613.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds