organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1162

1-(3,5-Di­nitro­benzo­yl)-3,3-di­propyl­thio­urea

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 11 April 2011; accepted 11 April 2011; online 16 April 2011)

The title thio­urea derivative, C14H18N4O5S, features two substantial twists between its component fragments: the dihedral angle between the SN2C (thio­urea) and ONC2 (amide) residues is 48.89 (7)° and that between the benzene ring and the amide residue is 30.27 (7)°. In the crystal, mol­ecules are linked by bifurcated N—H⋯(O,S) hydrogen bonds, generating [001] supra­molecular chains.

Related literature

For the biological activity of thio­urea derivatives, see: Venkatachalam et al., (2004[Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275-4284.]); Saeed et al. (2011[Saeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74-84.]). For related thio­urea structures, see: Gunasekaran et al. (2010[Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2601.]); Saeed et al. (2010[Saeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o980.]); Dzulkifli et al. (2011[Dzulkifli, N. N., Farina, Y., Yamin, B. M., Baba, I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o872.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N4O5S

  • Mr = 354.38

  • Monoclinic, P 21 /c

  • a = 7.9406 (4) Å

  • b = 21.2839 (10) Å

  • c = 9.5967 (4) Å

  • β = 94.379 (4)°

  • V = 1617.17 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.933, Tmax = 0.977

  • 8055 measured reflections

  • 3614 independent reflections

  • 2878 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.154

  • S = 1.02

  • 3614 reflections

  • 221 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.87 (1) 2.53 (2) 3.264 (3) 142 (2)
N2—H2⋯S1i 0.87 (1) 2.69 (2) 3.436 (2) 144 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The biological potential of thiourea derivatives (Venkatachalam et al., 2004; Saeed et al., 2011) motivates structural studies of these compounds (Gunasekaran et al. 2010; Saeed et al. 2010; Dzulkifli et al., 2011). Herein, the crystal and molecular structure of the title thiourea derivative, (I), is described.

The molecular structure of (I), Fig. 1, shows a significant twist around the central atoms as seen in the value of the dihedral angle formed between the least-squares planes through the S1,N1,N2,C7 (thiourea) and O1,N2,C8,C9 (amide) atoms of 48.89 (7) °. Further, the benzene ring is twisted out of the plane of the carbonyl residue as indicated by the O1—C8—C9—C10 torsion angle of 147.1 (2) °. With respect to the S1,N1,N2,C7 plane, the n-propyl groups lie to either side. Whereas the O2-nitro group is co-planar with the benzene ring to which it is bonded, the O2—N3—C11—C10 torsion angle = -4.2 (3) °, the O4-nitro group is slightly twisted out of the plane as seen in the value of the O4—N4—C13—C12 torsion angle of -9.3 (3) °.

The crystal packing is dominated by N—H···O,S hydrogen bonds as the N1—H H atoms is bifurcated, Table 1. These result in the formation of six-membered {···H···OCNCS} synthons and linear supramolecular chains along the c direction, Fig. 2.

Related literature top

For the biological activity of thiourea derivatives, see: Venkatachalam et al., (2004); Saeed et al. (2011). For related thiourea structures, see: Gunasekaran et al. (2010); Saeed et al. (2010); Dzulkifli et al. (2011).

Experimental top

A solution of 3,5-dinitrobenzoyl chloride (0.01 mol) in anhydrous acetone (75 ml) and 3% tetrabutylammonium bromide (TBAB) as a phase-transfer catalyst (PTC) in anhydrous acetone was added drop-wise to a suspension of dry potassium thiocyanate (0.01 mol) in acetone (50 ml) and the reaction mixture was refluxed for 50 min. After cooling to room temperature, a solution of dipropyl amine (0.01 mol) in anhydrous acetone (25 ml) was added drop-wise and the resulting mixture refluxed for 3 h. Hydrochloric acid (0.1 N, 300 ml) was added and the solution was filtered. The solid product was washed with water and purified by re-crystallization from ethyl acetate to yield light-yellow prisms of (I). Yield: 1.29 g (82%); M.pt. 407–408 K. IR (KBr, cm-1): 3173 ν(NH), 1690 ν(CO), 1536 ν(benzene ring), 1180 ν(CS). Anal. Calcd. for C14H18N4O5S: C, 47.45; H, 5.12; N, 15.81; S, 9.05%. Found: C, 47.53; H, 5.17; N, 15.75; S, 9.03%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.93–0.97 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H 0.88±0.01 Å; the Uiso values were refined. The maximum and minimum residual electron density peaks of 1.04 and 0.46 e Å-3, respectively, were located 1.05 Å and 0.33 Å from the C2 and H2a atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Supramolecular chain aligned along the c axis in (I) mediated by N—H···O, S hydrogen bonding shown as blue and orange dashed lines, respectively.
1-(3,5-Dinitrobenzoyl)-3,3-dipropylthiourea top
Crystal data top
C14H18N4O5SF(000) = 744
Mr = 354.38Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3443 reflections
a = 7.9406 (4) Åθ = 2.3–29.3°
b = 21.2839 (10) ŵ = 0.23 mm1
c = 9.5967 (4) ÅT = 295 K
β = 94.379 (4)°Prism, light yellow
V = 1617.17 (13) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3614 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2878 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2726
Tmin = 0.933, Tmax = 0.977l = 1210
8055 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0697P)2 + 1.1729P]
where P = (Fo2 + 2Fc2)/3
3614 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 1.04 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
C14H18N4O5SV = 1617.17 (13) Å3
Mr = 354.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9406 (4) ŵ = 0.23 mm1
b = 21.2839 (10) ÅT = 295 K
c = 9.5967 (4) Å0.30 × 0.20 × 0.10 mm
β = 94.379 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3614 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2878 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.977Rint = 0.027
8055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.04 e Å3
3614 reflectionsΔρmin = 0.46 e Å3
221 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37257 (8)0.21276 (3)0.24866 (6)0.0405 (2)
O10.7561 (2)0.24758 (9)0.29218 (19)0.0505 (5)
O20.5844 (3)0.44242 (11)0.7375 (2)0.0621 (6)
O30.8149 (3)0.49393 (11)0.7748 (3)0.0761 (7)
O41.2906 (3)0.44304 (11)0.5156 (3)0.0711 (7)
O51.3052 (3)0.35161 (11)0.4221 (2)0.0623 (6)
N10.4129 (2)0.15013 (9)0.4887 (2)0.0334 (4)
N20.5882 (3)0.23606 (9)0.4730 (2)0.0343 (4)
H20.581 (3)0.2455 (12)0.5607 (13)0.044 (7)*
N30.7311 (3)0.45149 (10)0.7190 (2)0.0451 (5)
N41.2306 (3)0.39224 (11)0.4807 (2)0.0440 (5)
C10.2706 (3)0.10939 (12)0.4387 (3)0.0433 (6)
H1A0.27870.07010.48990.052*
H1B0.28020.09990.34080.052*
C20.0973 (4)0.1384 (2)0.4550 (4)0.0746 (10)
H2A0.08190.17330.39030.089*
H2B0.01170.10730.42800.089*
C30.0687 (5)0.1608 (2)0.5930 (5)0.0882 (13)
H3A0.04140.17950.59190.132*
H3B0.15280.19150.62170.132*
H3C0.07570.12620.65740.132*
C40.5096 (3)0.12842 (12)0.6168 (2)0.0396 (6)
H4A0.43290.10980.67910.047*
H4B0.56400.16410.66420.047*
C50.6417 (4)0.08077 (13)0.5847 (3)0.0510 (7)
H5A0.72230.10020.52700.061*
H5B0.58800.04640.53180.061*
C60.7351 (4)0.05486 (15)0.7163 (4)0.0659 (9)
H6A0.82110.02620.69120.099*
H6B0.65690.03320.77080.099*
H6C0.78620.08880.77010.099*
C70.4603 (3)0.19711 (10)0.4084 (2)0.0313 (5)
C80.7150 (3)0.26338 (11)0.4063 (2)0.0339 (5)
C90.8066 (3)0.31654 (10)0.4830 (2)0.0320 (5)
C100.7262 (3)0.35735 (11)0.5703 (2)0.0337 (5)
H100.61520.35020.59080.040*
C110.8147 (3)0.40847 (11)0.6256 (2)0.0350 (5)
C120.9793 (3)0.42129 (11)0.5982 (2)0.0367 (5)
H121.03610.45640.63520.044*
C131.0552 (3)0.37937 (11)0.5132 (2)0.0353 (5)
C140.9729 (3)0.32754 (11)0.4549 (2)0.0338 (5)
H141.02800.30040.39760.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0449 (4)0.0445 (4)0.0315 (3)0.0042 (3)0.0021 (2)0.0030 (2)
O10.0508 (11)0.0646 (12)0.0378 (10)0.0172 (9)0.0146 (8)0.0188 (9)
O20.0525 (12)0.0665 (14)0.0695 (14)0.0005 (10)0.0182 (10)0.0207 (11)
O30.0734 (15)0.0652 (14)0.0909 (17)0.0130 (12)0.0146 (13)0.0475 (13)
O40.0519 (12)0.0681 (15)0.0941 (18)0.0262 (11)0.0118 (12)0.0156 (13)
O50.0438 (11)0.0814 (15)0.0636 (13)0.0046 (10)0.0156 (10)0.0176 (12)
N10.0346 (10)0.0325 (10)0.0331 (10)0.0015 (8)0.0025 (8)0.0001 (8)
N20.0410 (11)0.0364 (10)0.0259 (9)0.0079 (8)0.0048 (8)0.0052 (8)
N30.0514 (14)0.0432 (12)0.0409 (12)0.0023 (10)0.0037 (10)0.0077 (10)
N40.0355 (11)0.0570 (14)0.0393 (11)0.0067 (10)0.0005 (9)0.0007 (10)
C10.0423 (14)0.0389 (13)0.0486 (14)0.0094 (11)0.0036 (11)0.0017 (11)
C20.0510 (18)0.097 (3)0.076 (2)0.0187 (18)0.0090 (16)0.015 (2)
C30.059 (2)0.102 (3)0.107 (3)0.015 (2)0.022 (2)0.040 (3)
C40.0476 (14)0.0394 (13)0.0317 (12)0.0022 (11)0.0031 (10)0.0047 (10)
C50.0528 (16)0.0482 (15)0.0500 (16)0.0068 (13)0.0093 (13)0.0058 (12)
C60.072 (2)0.0484 (17)0.072 (2)0.0038 (15)0.0257 (17)0.0032 (15)
C70.0323 (11)0.0305 (11)0.0315 (11)0.0008 (9)0.0055 (9)0.0042 (9)
C80.0363 (12)0.0348 (12)0.0308 (11)0.0036 (9)0.0035 (9)0.0035 (9)
C90.0362 (12)0.0337 (11)0.0259 (10)0.0029 (9)0.0015 (9)0.0012 (9)
C100.0353 (12)0.0372 (12)0.0285 (11)0.0025 (10)0.0019 (9)0.0023 (9)
C110.0398 (13)0.0344 (12)0.0304 (11)0.0023 (10)0.0006 (9)0.0022 (9)
C120.0424 (13)0.0351 (12)0.0318 (11)0.0063 (10)0.0024 (10)0.0029 (9)
C130.0341 (12)0.0416 (13)0.0299 (11)0.0042 (10)0.0002 (9)0.0037 (9)
C140.0364 (12)0.0363 (12)0.0290 (11)0.0003 (10)0.0040 (9)0.0005 (9)
Geometric parameters (Å, º) top
S1—C71.668 (2)C3—H3B0.9600
O1—C81.214 (3)C3—H3C0.9600
O2—N31.207 (3)C4—C51.508 (4)
O3—N31.221 (3)C4—H4A0.9700
O4—N41.218 (3)C4—H4B0.9700
O5—N41.211 (3)C5—C61.519 (4)
N1—C71.334 (3)C5—H5A0.9700
N1—C41.473 (3)C5—H5B0.9700
N1—C11.475 (3)C6—H6A0.9600
N2—C81.364 (3)C6—H6B0.9600
N2—C71.417 (3)C6—H6C0.9600
N2—H20.871 (10)C8—C91.507 (3)
N3—C111.474 (3)C9—C141.388 (3)
N4—C131.476 (3)C9—C101.394 (3)
C1—C21.527 (4)C10—C111.379 (3)
C1—H1A0.9700C10—H100.9300
C1—H1B0.9700C11—C121.380 (3)
C2—C31.441 (5)C12—C131.378 (3)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—C141.379 (3)
C3—H3A0.9600C14—H140.9300
C7—N1—C4124.44 (19)C4—C5—C6112.2 (2)
C7—N1—C1119.7 (2)C4—C5—H5A109.2
C4—N1—C1115.12 (19)C6—C5—H5A109.2
C8—N2—C7125.03 (19)C4—C5—H5B109.2
C8—N2—H2117.3 (18)C6—C5—H5B109.2
C7—N2—H2117.5 (18)H5A—C5—H5B107.9
O2—N3—O3123.6 (2)C5—C6—H6A109.5
O2—N3—C11118.3 (2)C5—C6—H6B109.5
O3—N3—C11118.1 (2)H6A—C6—H6B109.5
O5—N4—O4124.5 (2)C5—C6—H6C109.5
O5—N4—C13117.9 (2)H6A—C6—H6C109.5
O4—N4—C13117.5 (2)H6B—C6—H6C109.5
N1—C1—C2113.7 (2)N1—C7—N2114.2 (2)
N1—C1—H1A108.8N1—C7—S1124.35 (18)
C2—C1—H1A108.8N2—C7—S1121.38 (17)
N1—C1—H1B108.8O1—C8—N2124.3 (2)
C2—C1—H1B108.8O1—C8—C9119.7 (2)
H1A—C1—H1B107.7N2—C8—C9115.93 (19)
C3—C2—C1115.8 (3)C14—C9—C10119.9 (2)
C3—C2—H2A108.3C14—C9—C8117.6 (2)
C1—C2—H2A108.3C10—C9—C8122.3 (2)
C3—C2—H2B108.3C11—C10—C9118.6 (2)
C1—C2—H2B108.3C11—C10—H10120.7
H2A—C2—H2B107.4C9—C10—H10120.7
C2—C3—H3A109.5C10—C11—C12123.0 (2)
C2—C3—H3B109.5C10—C11—N3118.9 (2)
H3A—C3—H3B109.5C12—C11—N3118.1 (2)
C2—C3—H3C109.5C13—C12—C11116.6 (2)
H3A—C3—H3C109.5C13—C12—H12121.7
H3B—C3—H3C109.5C11—C12—H12121.7
N1—C4—C5111.5 (2)C12—C13—C14122.9 (2)
N1—C4—H4A109.3C12—C13—N4117.9 (2)
C5—C4—H4A109.3C14—C13—N4119.2 (2)
N1—C4—H4B109.3C13—C14—C9119.0 (2)
C5—C4—H4B109.3C13—C14—H14120.5
H4A—C4—H4B108.0C9—C14—H14120.5
C7—N1—C1—C279.3 (3)C8—C9—C10—C11173.6 (2)
C4—N1—C1—C2110.2 (3)C9—C10—C11—C120.2 (3)
N1—C1—C2—C352.9 (4)C9—C10—C11—N3179.4 (2)
C7—N1—C4—C586.1 (3)O2—N3—C11—C104.2 (3)
C1—N1—C4—C583.9 (3)O3—N3—C11—C10174.9 (2)
N1—C4—C5—C6176.4 (2)O2—N3—C11—C12176.2 (2)
C4—N1—C7—N215.8 (3)O3—N3—C11—C124.8 (4)
C1—N1—C7—N2174.7 (2)C10—C11—C12—C131.2 (3)
C4—N1—C7—S1167.53 (18)N3—C11—C12—C13178.5 (2)
C1—N1—C7—S12.0 (3)C11—C12—C13—C141.2 (3)
C8—N2—C7—N1144.3 (2)C11—C12—C13—N4179.3 (2)
C8—N2—C7—S138.9 (3)O5—N4—C13—C12170.3 (2)
C7—N2—C8—O116.5 (4)O4—N4—C13—C129.3 (3)
C7—N2—C8—C9163.4 (2)O5—N4—C13—C1411.5 (3)
O1—C8—C9—C1427.4 (3)O4—N4—C13—C14168.9 (2)
N2—C8—C9—C14152.7 (2)C12—C13—C14—C90.3 (3)
O1—C8—C9—C10147.1 (2)N4—C13—C14—C9178.4 (2)
N2—C8—C9—C1032.8 (3)C10—C9—C14—C130.7 (3)
C14—C9—C10—C110.7 (3)C8—C9—C14—C13173.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.87 (1)2.53 (2)3.264 (3)142 (2)
N2—H2···S1i0.87 (1)2.69 (2)3.436 (2)144 (2)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H18N4O5S
Mr354.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.9406 (4), 21.2839 (10), 9.5967 (4)
β (°) 94.379 (4)
V3)1617.17 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.933, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
8055, 3614, 2878
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.154, 1.02
No. of reflections3614
No. of parameters221
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.04, 0.46

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.87 (1)2.53 (2)3.264 (3)142 (2)
N2—H2···S1i0.87 (1)2.69 (2)3.436 (2)144 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: sohail262001@yahoo.com.

Acknowledgements

The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for the allocation of research and analytical laboratory facilities. The authors also thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDzulkifli, N. N., Farina, Y., Yamin, B. M., Baba, I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o872.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o980.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1162
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds