organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1262-o1263

2,4-Bis(4-fluoro­phen­yl)-2,3-di­hydro-1H-1,5-benzodiazepine

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 15 April 2011; accepted 24 April 2011; online 29 April 2011)

In the title compound, C21H16F2N2, the seven-membered 1,4-diazepine ring of the benzodiazepine ring system adopts a distorted-boat conformation. The benzene ring of this system makes dihedral angles of 18.6 (2) and 78.8 (2)° with those of two fluoro­phenyl substituents. In the crystal, inversion dimers linked by two weak C—H⋯F hydrogen bonds generate R22(20) ring motifs. There are also weak N—H⋯π and C—H⋯π inter­actions.

Related literature

For related structures, see: An et al. (2007[An, L.-T., Ding, F.-Q., Zou, J.-P. & Lu, X.-H. (2007). Acta Cryst. E63, o3272-o3273.]); Bibila Mayaya Bisseyou et al. (2010[Bibila Mayaya Bisseyou, Y., Adjou, A., Yapo, Y. M., Bany, G. E. & Kakou-Yao, R. C. A. (2010). Acta Cryst. E66, o87-o88.]); Harrison et al. (2005[Harrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K., Narayana, B. & Lobo, K. G. (2005). Acta Cryst. E61, o3810-o3812.]); Peeters et al. (1997[Peeters, O. M., Blaton, N. M. & de Ranter, C. J. (1997). Acta Cryst. C53, 95-97.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set nomenclature of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16F2N2

  • Mr = 334.36

  • Monoclinic, P 21 /n

  • a = 12.9151 (4) Å

  • b = 6.0438 (3) Å

  • c = 21.2851 (7) Å

  • β = 92.147 (3)°

  • V = 1660.27 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: refined from ΔF (XABS2; Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]) Tmin = 0.981, Tmax = 0.981

  • 3413 measured reflections

  • 3413 independent reflections

  • 1226 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.151

  • S = 1.04

  • 3413 reflections

  • 233 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the benzene rings of the two fluorophenyl substituents (C10–C15 and C16–C21, respectively).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯F1i 0.93 2.54 3.469 (6) 175
N1—H1NCg2i 0.86 (3) 2.82 (5) 3.601 (4) 151 (4)
C2—H2⋯Cg1ii 0.93 2.89 3.640 (5) 138
C11—H11⋯Cg2 0.93 2.79 3.494 (5) 134
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The crystal structures of some 1,5-benzodiazepines, viz., 2-[2-(4-methoxyphenyl)-2,3-dihydro-1H-1,5-benzodiazepin-4-yl]phenol (Bibila Mayaya Bisseyou et al., 2010), 1-(2-bromo-5-methoxyphenyl)-8-chloro-6-(2-fluorophenyl)-4H-1,2,4-triazolo[4,3-a][1,4] benzodiazepine (Harrison et al., 2005), 5-(4-fluorophenyl)-1,8-dimethyl-2-(p-toluoylaminomethyl)-2,3-dihydro-1H-1,4-benzodiazepine monohydrate (Peeters et al., 1997) and 2,4-bis(4-chlorophenyl)-2-methyl-2,3-dihydro-1H-1,5-benzodiazepine (An et al., 2007) have been reported. In continuation of this work, the title compound, (I), is synthesized and its crystal structure is reported here.

The seven-membered 1,4-diazepine ring (C1/C6–C9/N1/N2) of the benzodiazepine ring system (C1–C9/N1/N2) adopts a distorted-boat conformation [the puckering parameters (Cremer & Pople, 1975) for this eleven-membered ring system are: Q2 = 0.917 (4) Å, Q3 = 0.155 (4) Å, ϕ2 = 16.6 (3)° and ϕ3 = 92.6 (17)°] as shown in Fig. 1. The benzene ring (C1–C6) of this system forms dihedral angles of 18.6 (2)° and 78.8 (2)° with the benzene rings (C10–C15 and C16–C21) of two fluorophenyl fragments, respectively which make a dihedral angle of 62.1 (2)° with each other.

In the crystal, the two weak C—H···F hydrogen bonds link pairs of inversion-related molecules to form cyclic centrosymmetric dimers containing the R22(20) ring motif (Bernstein et al., 1995; Table 1, Fig. 2). In addtion, three C—H···π interactions are observed (Table 1).

Related literature top

For related structures, see: An et al. (2007); Bibila Mayaya Bisseyou et al. (2010); Harrison et al. (2005); Peeters et al. (1997). For puckering parameters, see: Cremer & Pople (1975). For graph-set nomenclature of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

To a solution of 4,4'-difluoro chalcone (2.44 g, 0.01 mol) in ethanol (30 ml) a few drops of piperidine and 1, 2-diaminobenzene (1.08 g, 01 mol) were added. The mixture was heated under reflux for 10 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Pale yellow blocks of (I) were grown from DMF by slow evaporation method in 66% yield (m. p.: 409 K).

Refinement top

The amine and methine H atoms were placed from a Fourier map and positional parameters were constrained to ride on their parent atom by applying the N–H and C–H DFIX restraints of 0.86 (1) and 0.98 (1) Å, respectively. Their isotropic displacement parameters were set to be 1.2Ueq of the carrier atoms. The other H atoms were positioned geometrically [C—H = 0.93 and 0.97Å for aromatic and methylene H atoms, respectively] and allowed to ride on their parent C atoms, with Uiso(H) = 1.2Ueq(C). Owing to the large number of weak high-angle reflections, the ratio of observed to unique reflections is low (36%).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis. Hydrogen bonds are shown as dotted lines.
2,4-Bis(4-fluorophenyl)-2,3-dihydro-1H-1,5-benzodiazepine top
Crystal data top
C21H16F2N2F(000) = 696
Mr = 334.36Dx = 1.338 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1691 reflections
a = 12.9151 (4) Åθ = 2.5–26.3°
b = 6.0438 (3) ŵ = 0.10 mm1
c = 21.2851 (7) ÅT = 294 K
β = 92.147 (3)°Block, pale yellow
V = 1660.27 (11) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3413 independent reflections
Radiation source: Sealed Tube1226 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.000
Detector resolution: 10.0000 pixels mm-1θmax = 26.5°, θmin = 3.2°
dtprofit.ref scansh = 1616
Absorption correction: part of the refinement model (ΔF)
[XABS2 (Parkin et al., 1995); Cubic fit to sinθ/λ, 24 parameters]
k = 07
Tmin = 0.981, Tmax = 0.981l = 026
3413 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.P)2 + 1.2828P]
where P = (Fo2 + 2Fc2)/3
3413 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.16 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H16F2N2V = 1660.27 (11) Å3
Mr = 334.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.9151 (4) ŵ = 0.10 mm1
b = 6.0438 (3) ÅT = 294 K
c = 21.2851 (7) Å0.20 × 0.20 × 0.20 mm
β = 92.147 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3413 independent reflections
Absorption correction: part of the refinement model (ΔF)
[XABS2 (Parkin et al., 1995); Cubic fit to sinθ/λ, 24 parameters]
1226 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.981Rint = 0.000
3413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0612 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.16 e Å3
3413 reflectionsΔρmin = 0.18 e Å3
233 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2985 (2)0.5093 (5)0.38988 (13)0.1156 (16)
F20.6025 (2)0.0519 (5)0.58369 (17)0.1365 (18)
N10.0014 (3)0.2319 (7)0.60658 (19)0.0764 (17)
N20.1477 (3)0.0519 (6)0.67436 (16)0.0667 (16)
C10.0446 (4)0.0259 (7)0.6923 (2)0.0649 (17)
C20.0114 (4)0.1609 (7)0.7400 (2)0.0747 (19)
C30.0881 (4)0.1566 (8)0.7601 (2)0.084 (2)
C40.1587 (4)0.0156 (9)0.7299 (2)0.090 (2)
C50.1280 (4)0.1161 (8)0.6815 (2)0.083 (2)
C60.0273 (4)0.1150 (7)0.6613 (2)0.0669 (17)
C70.0768 (4)0.4074 (7)0.6097 (2)0.0674 (17)
C80.1593 (3)0.3499 (7)0.66113 (19)0.0675 (17)
C90.2006 (3)0.1161 (7)0.6576 (2)0.0635 (17)
C100.3074 (3)0.0767 (7)0.6375 (2)0.0652 (17)
C110.3591 (4)0.2231 (8)0.6009 (2)0.080 (2)
C120.4584 (4)0.1818 (9)0.5813 (2)0.095 (3)
C130.5044 (4)0.0120 (10)0.6017 (3)0.094 (3)
C140.4580 (4)0.1612 (8)0.6392 (2)0.085 (2)
C150.3579 (4)0.1181 (7)0.6567 (2)0.0735 (17)
C160.1258 (3)0.4366 (7)0.5464 (2)0.0628 (17)
C170.1274 (3)0.2722 (7)0.5013 (2)0.0710 (17)
C180.1843 (4)0.2974 (9)0.4478 (2)0.083 (2)
C190.2394 (4)0.4894 (10)0.4416 (2)0.081 (2)
C200.2382 (4)0.6561 (8)0.4837 (2)0.080 (2)
C210.1800 (3)0.6298 (7)0.5363 (2)0.0721 (17)
H1N0.060 (2)0.265 (10)0.588 (2)0.1640*
H20.058400.258400.759200.0900*
H30.107800.245900.793100.1010*
H40.226900.010500.742500.1080*
H50.176300.209200.661700.1000*
H70.048 (4)0.552 (4)0.621 (2)0.1640*
H8A0.216700.452200.658100.0810*
H8B0.129600.371300.701900.0810*
H110.326500.354400.588700.0960*
H120.492300.280400.555600.1140*
H140.492500.288600.652700.1020*
H150.323800.219600.681400.0880*
H170.089800.142900.507000.0850*
H180.185000.187800.417100.0990*
H200.275700.785200.477600.0960*
H210.177100.744200.565400.0860*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.117 (3)0.135 (3)0.098 (2)0.027 (2)0.0457 (19)0.034 (2)
F20.080 (2)0.133 (3)0.199 (4)0.019 (2)0.040 (2)0.037 (3)
N10.065 (3)0.093 (3)0.071 (3)0.011 (2)0.002 (2)0.014 (2)
N20.063 (3)0.064 (2)0.073 (3)0.001 (2)0.003 (2)0.001 (2)
C10.065 (3)0.066 (3)0.064 (3)0.005 (3)0.006 (2)0.001 (2)
C20.078 (4)0.070 (3)0.076 (3)0.000 (3)0.002 (3)0.003 (3)
C30.088 (4)0.088 (4)0.077 (4)0.001 (3)0.020 (3)0.014 (3)
C40.073 (4)0.109 (4)0.090 (4)0.005 (3)0.015 (3)0.011 (3)
C50.069 (3)0.098 (4)0.083 (4)0.009 (3)0.013 (3)0.012 (3)
C60.066 (3)0.072 (3)0.063 (3)0.001 (3)0.008 (2)0.002 (2)
C70.069 (3)0.069 (3)0.064 (3)0.004 (3)0.000 (2)0.004 (3)
C80.072 (3)0.064 (3)0.066 (3)0.001 (2)0.003 (2)0.003 (2)
C90.064 (3)0.061 (3)0.065 (3)0.005 (2)0.004 (2)0.000 (2)
C100.062 (3)0.067 (3)0.066 (3)0.004 (3)0.006 (2)0.000 (2)
C110.062 (3)0.082 (4)0.096 (4)0.001 (3)0.000 (3)0.015 (3)
C120.071 (4)0.102 (4)0.113 (5)0.003 (3)0.013 (3)0.031 (3)
C130.056 (3)0.105 (5)0.123 (5)0.012 (3)0.015 (3)0.010 (4)
C140.067 (4)0.078 (4)0.109 (4)0.005 (3)0.003 (3)0.010 (3)
C150.069 (3)0.067 (3)0.084 (3)0.007 (3)0.002 (3)0.001 (3)
C160.061 (3)0.061 (3)0.066 (3)0.004 (2)0.004 (2)0.002 (2)
C170.073 (3)0.068 (3)0.072 (3)0.003 (3)0.003 (3)0.001 (3)
C180.091 (4)0.084 (4)0.074 (4)0.016 (3)0.007 (3)0.006 (3)
C190.078 (4)0.099 (4)0.067 (3)0.020 (3)0.017 (3)0.023 (3)
C200.080 (4)0.074 (4)0.085 (4)0.006 (3)0.006 (3)0.017 (3)
C210.077 (3)0.068 (3)0.071 (3)0.002 (3)0.002 (3)0.001 (3)
Geometric parameters (Å, º) top
F1—C191.368 (5)C14—C151.384 (7)
F2—C131.359 (6)C16—C211.382 (6)
N1—C61.413 (6)C16—C171.382 (6)
N1—C71.464 (6)C17—C181.387 (6)
N2—C11.408 (6)C18—C191.370 (8)
N2—C91.282 (6)C19—C201.349 (7)
N1—H1N0.86 (3)C20—C211.381 (6)
C1—C61.406 (7)C2—H20.9300
C1—C21.383 (6)C3—H30.9300
C2—C31.370 (7)C4—H40.9300
C3—C41.388 (7)C5—H50.9300
C4—C51.372 (7)C7—H70.98 (3)
C5—C61.385 (7)C8—H8A0.9700
C7—C81.539 (6)C8—H8B0.9700
C7—C161.520 (6)C11—H110.9300
C8—C91.513 (6)C12—H120.9300
C9—C101.479 (6)C14—H140.9300
C10—C111.369 (6)C15—H150.9300
C10—C151.400 (6)C17—H170.9300
C11—C121.386 (7)C18—H180.9300
C12—C131.376 (8)C20—H200.9300
C13—C141.358 (8)C21—H210.9300
C6—N1—C7120.6 (4)F1—C19—C18117.4 (4)
C1—N2—C9120.4 (4)C18—C19—C20123.3 (4)
C7—N1—H1N116 (4)C19—C20—C21118.2 (5)
C6—N1—H1N105 (3)C16—C21—C20121.2 (4)
N2—C1—C6123.7 (4)C1—C2—H2119.00
C2—C1—C6119.0 (5)C3—C2—H2119.00
N2—C1—C2117.1 (4)C2—C3—H3121.00
C1—C2—C3122.6 (4)C4—C3—H3121.00
C2—C3—C4118.3 (4)C3—C4—H4120.00
C3—C4—C5120.0 (5)C5—C4—H4120.00
C4—C5—C6122.1 (5)C4—C5—H5119.00
C1—C6—C5117.9 (4)C6—C5—H5119.00
N1—C6—C1121.1 (4)N1—C7—H7113 (3)
N1—C6—C5120.5 (4)C8—C7—H7107 (3)
N1—C7—C16110.7 (4)C16—C7—H7107 (2)
N1—C7—C8109.1 (3)C7—C8—H8A109.00
C8—C7—C16110.9 (4)C7—C8—H8B109.00
C7—C8—C9114.3 (3)C9—C8—H8A109.00
N2—C9—C8122.2 (4)C9—C8—H8B109.00
C8—C9—C10119.9 (4)H8A—C8—H8B108.00
N2—C9—C10117.8 (4)C10—C11—H11119.00
C9—C10—C15118.7 (4)C12—C11—H11119.00
C9—C10—C11122.7 (4)C11—C12—H12122.00
C11—C10—C15118.6 (4)C13—C12—H12122.00
C10—C11—C12122.1 (4)C13—C14—H14121.00
C11—C12—C13116.9 (5)C15—C14—H14121.00
C12—C13—C14123.8 (5)C10—C15—H15120.00
F2—C13—C14119.0 (5)C14—C15—H15120.00
F2—C13—C12117.3 (5)C16—C17—H17119.00
C13—C14—C15118.1 (5)C18—C17—H17120.00
C10—C15—C14120.7 (4)C17—C18—H18121.00
C17—C16—C21118.6 (4)C19—C18—H18121.00
C7—C16—C17123.3 (4)C19—C20—H20121.00
C7—C16—C21117.8 (4)C21—C20—H20121.00
C16—C17—C18120.9 (4)C16—C21—H21119.00
C17—C18—C19117.7 (4)C20—C21—H21119.00
F1—C19—C20119.3 (5)
C6—N1—C7—C832.4 (5)C7—C8—C9—N274.6 (5)
C6—N1—C7—C16154.7 (4)N2—C9—C10—C11159.0 (4)
C7—N1—C6—C167.0 (6)N2—C9—C10—C1521.1 (6)
C7—N1—C6—C5120.7 (5)C8—C9—C10—C1124.2 (6)
C9—N2—C1—C640.9 (6)C8—C9—C10—C15155.7 (4)
C9—N2—C1—C2144.4 (4)C9—C10—C11—C12178.6 (4)
C1—N2—C9—C85.1 (6)C15—C10—C11—C121.5 (7)
C1—N2—C9—C10178.2 (4)C9—C10—C15—C14179.7 (4)
N2—C1—C6—C5176.5 (4)C11—C10—C15—C140.2 (7)
N2—C1—C2—C3177.7 (4)C10—C11—C12—C131.6 (7)
C6—C1—C2—C32.7 (7)C11—C12—C13—F2178.8 (5)
N2—C1—C6—N13.9 (7)C11—C12—C13—C140.1 (8)
C2—C1—C6—N1170.7 (4)F2—C13—C14—C15179.6 (5)
C2—C1—C6—C51.8 (6)C12—C13—C14—C151.5 (8)
C1—C2—C3—C42.0 (7)C13—C14—C15—C101.6 (7)
C2—C3—C4—C50.5 (7)C7—C16—C17—C18171.8 (4)
C3—C4—C5—C60.3 (7)C21—C16—C17—C181.7 (6)
C4—C5—C6—C10.4 (7)C7—C16—C21—C20171.2 (4)
C4—C5—C6—N1172.2 (4)C17—C16—C21—C202.6 (6)
N1—C7—C8—C948.6 (5)C16—C17—C18—C190.6 (7)
N1—C7—C16—C21163.2 (4)C17—C18—C19—F1177.5 (4)
C8—C7—C16—C1797.9 (5)C17—C18—C19—C202.2 (8)
C8—C7—C16—C2175.6 (5)F1—C19—C20—C21178.4 (4)
N1—C7—C16—C1723.3 (6)C18—C19—C20—C211.3 (8)
C16—C7—C8—C973.5 (4)C19—C20—C21—C161.2 (7)
C7—C8—C9—C10108.7 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the benzene rings of the two fluorophenyl substituents (C10–C15 and C16–C21, respectively).
D—H···AD—HH···AD···AD—H···A
C5—H5···F1i0.932.543.469 (6)175
N1—H1N···Cg2i0.86 (3)2.82 (5)3.601 (4)151 (4)
C2—H2···Cg1ii0.932.893.640 (5)138
C11—H11···Cg20.932.793.494 (5)134
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC21H16F2N2
Mr334.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)12.9151 (4), 6.0438 (3), 21.2851 (7)
β (°) 92.147 (3)
V3)1660.27 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionPart of the refinement model (ΔF)
[XABS2 (Parkin et al., 1995); Cubic fit to sinθ/λ, 24 parameters]
Tmin, Tmax0.981, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
3413, 3413, 1226
Rint0.000
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.151, 1.04
No. of reflections3413
No. of parameters233
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the benzene rings of the two fluorophenyl substituents (C10–C15 and C16–C21, respectively).
D—H···AD—HH···AD···AD—H···A
C5—H5···F1i0.932.543.469 (6)175
N1—H1N···Cg2i0.86 (3)2.82 (5)3.601 (4)151 (4)
C2—H2···Cg1ii0.932.893.640 (5)138
C11—H11···Cg20.932.793.494 (5)134
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

ZB and MA thank the Unit of the Scientific Research Projects of Erciyes University, Turkey for the research grant FBD-10–2949, and for support of the data collection at Atatürk University, Turkey. SS and BN thank Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAn, L.-T., Ding, F.-Q., Zou, J.-P. & Lu, X.-H. (2007). Acta Cryst. E63, o3272–o3273.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBibila Mayaya Bisseyou, Y., Adjou, A., Yapo, Y. M., Bany, G. E. & Kakou-Yao, R. C. A. (2010). Acta Cryst. E66, o87–o88.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K., Narayana, B. & Lobo, K. G. (2005). Acta Cryst. E61, o3810–o3812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPeeters, O. M., Blaton, N. M. & de Ranter, C. J. (1997). Acta Cryst. C53, 95–97.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1262-o1263
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds