organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1215

Ethyl 1-[2-(morpholin-4-yl)eth­yl]-2-[4-(tri­fluoro­meth­yl)phen­yl]-1H-benzimid­azole-5-carboxyl­ate

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 April 2011; accepted 19 April 2011; online 29 April 2011)

In the title compound, C23H24F3N3O3, the morpholine ring adopts a chair conformation. The benzimidazole ring is approximately planar, with a maximum deviation of 0.028 (1) Å for one of the unsubstituted C atoms. The benzimidazole ring makes dihedral angles of 35.66 (4) and 75.45 (5)° with the attached phenyl and morpholine rings, respectively. In the crystal structure, adjacent mol­ecules are linked via C—H⋯F and C—H⋯O hydrogen bonds to form a two-dimensional network.

Related literature

For background to benzimidazoles, see: Boruah & Skibo (1994[Boruah, C. R. & Skibo, E. B. (1994). J. Med. Chem. 37, 1625-1631.]); Haugwitz (1982[Haugwitz, R. D. (1982). J. Med. Chem. 25, 969-974.]); Hisano (1982[Hisano, T. (1982). Chem. Pharm. Bull. 30, 2996-3004.]); Hubschwerlen (1992[Hubschwerlen, C. (1992). J. Med. Chem. 35, 1385-1392.]); Shi (1996[Shi, D. F. J. (1996). J. Med. Chem. 39, 3375-3384.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H24F3N3O3

  • Mr = 447.45

  • Triclinic, [P \overline 1]

  • a = 10.1463 (2) Å

  • b = 10.5595 (2) Å

  • c = 11.5775 (2) Å

  • α = 96.868 (1)°

  • β = 109.638 (1)°

  • γ = 110.833 (1)°

  • V = 1050.83 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.51 × 0.33 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.979

  • 22546 measured reflections

  • 6122 independent reflections

  • 5266 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.03

  • 6122 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F1i 0.95 2.51 3.4617 (15) 175
C10—H10A⋯O3ii 0.95 2.38 3.1889 (14) 143
C20—H20A⋯O2iii 0.99 2.52 3.4878 (14) 166
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A wide variety of benzimidazole derivatives have been described for their chemotherapeutic importance (Boruah & Skibo, 1994). The synthesis of novel benzimidazole derivatives remains an important focus in medicinal research. Recent observations suggest that substituted benzimidazoles and heterocyclic, which are the structural isosters of nucleotides owing to their fused heterocyclic nuclei in their structures that allow them to interact easily with the biopolymers, possess potential activity with lower toxicities in the chemotherapeutic approach in man (Haugwitz, 1982; Hisano, 1982). Moreover, these fused heterocylces were distinctively studied for their antitumor, antiviral and antimicrobial activities as new nonnucleoside topoisomerase I poisons, human immunodeficiency virus-1 reverse transcriptase inhibitors and or potent DNA gyrase inhibitors (Hubschwerlen, 1992; Shi, 1996). In addition, benzimidazole derivatives have played a crucial role in the theoretical development of heterocyclic chemistry and are also used extensively in organic synthesis.

The molecular structure of the title compound, (I), is shown in Fig. 1. The benzimidazole (N1–N2/C1–C7) ring is approximately planar with maximum deviation of 0.028 (1) Å for atom C4. The morpholine (N3/O3/C20–C23) ring adopts a chair conformation [Q = 0.5778 (12) Å, θ = 178.81 (12)°, ϕ = 128 (5)°; Cremer & Pople, 1975]. The central benzimidazole (N1–N2/C1–C7) ring makes dihedral angles of 35.66 (4)° and 75.45 (5)° with the attached phenyl (C8–C13) and the morpholine (N3/O3/C20–C23) rings, respectively.

In the crystal (Fig. 2), adjacent molecules are connected via intermolecular C2—H2A···F1, C10—H10A···O3 and C20—H20A···O2 (Table 1) hydrogen bonds to form a two-dimensional network.

Related literature top

For background to benzimidazoles, see: Boruah & Skibo (1994); Haugwitz (1982); Hisano (1982); Hubschwerlen (1992); Shi (1996). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Ethlyl-3-amino-4-(morpholinoethylamino) benzoate (0.01 mol) and sodium metabisulfite adduct of trifluromethyl benzaldehyde (0.01 mol) were dissolved in DMF. The reaction mixture was refluxed at 130°C for 4 h. After completion, the reaction mixture was diluted in ethyl acetate (20 ml) and washed with water (20 ml). The organic layer was collected, dried over Na2SO4 and the evaporated in vacuo to yield the product. The product was recrystallised from ethyl acetate to yield colourless blocks of (I).

Refinement top

All H atoms were positioned geometrically [C—H = 0.95–0.99 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound (I).
Ethyl 1-[2-(morpholin-4-yl)ethyl]-2-[4-(trifluoromethyl)phenyl]-1H- benzimidazole-5-carboxylate top
Crystal data top
C23H24F3N3O3Z = 2
Mr = 447.45F(000) = 468
Triclinic, P1Dx = 1.414 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1463 (2) ÅCell parameters from 9996 reflections
b = 10.5595 (2) Åθ = 2.4–30.1°
c = 11.5775 (2) ŵ = 0.11 mm1
α = 96.868 (1)°T = 100 K
β = 109.638 (1)°Block, colourless
γ = 110.833 (1)°0.51 × 0.33 × 0.19 mm
V = 1050.83 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
6122 independent reflections
Radiation source: fine-focus sealed tube5266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.945, Tmax = 0.979k = 1414
22546 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.2843P]
where P = (Fo2 + 2Fc2)/3
6122 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C23H24F3N3O3γ = 110.833 (1)°
Mr = 447.45V = 1050.83 (3) Å3
Triclinic, P1Z = 2
a = 10.1463 (2) ÅMo Kα radiation
b = 10.5595 (2) ŵ = 0.11 mm1
c = 11.5775 (2) ÅT = 100 K
α = 96.868 (1)°0.51 × 0.33 × 0.19 mm
β = 109.638 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6122 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5266 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.979Rint = 0.024
22546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
6122 reflectionsΔρmin = 0.26 e Å3
290 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.57861 (8)1.42374 (7)0.30620 (7)0.02777 (15)
F20.46917 (8)1.29209 (7)0.11309 (6)0.02950 (16)
F30.71291 (8)1.42604 (7)0.19595 (7)0.02843 (15)
O10.69592 (9)0.47558 (8)0.74341 (7)0.02040 (15)
O20.85918 (10)0.40173 (9)0.69712 (8)0.02932 (18)
O31.19661 (9)0.84859 (9)0.01681 (7)0.02600 (17)
N10.83537 (9)0.85327 (9)0.38581 (8)0.01618 (16)
N20.65751 (9)0.82663 (9)0.46835 (8)0.01700 (16)
N30.98967 (9)0.86116 (8)0.13194 (7)0.01548 (15)
C10.73153 (11)0.74099 (10)0.50627 (9)0.01619 (17)
C20.71070 (11)0.64983 (10)0.58354 (9)0.01726 (18)
H2A0.63430.63590.61670.021*
C30.80658 (11)0.58039 (10)0.60970 (9)0.01745 (18)
C40.92137 (11)0.60204 (10)0.56165 (9)0.01902 (18)
H4A0.98670.55500.58390.023*
C50.94156 (11)0.68952 (10)0.48328 (9)0.01836 (18)
H5A1.01760.70280.44980.022*
C60.84348 (11)0.75739 (10)0.45626 (9)0.01645 (17)
C70.72211 (11)0.89169 (10)0.39757 (9)0.01597 (17)
C80.68579 (11)1.00214 (10)0.34664 (9)0.01626 (17)
C90.69019 (11)1.02693 (10)0.23121 (9)0.01882 (18)
H9A0.71150.96710.17920.023*
C100.66367 (11)1.13828 (11)0.19277 (9)0.01912 (19)
H10A0.66881.15590.11550.023*
C110.62940 (11)1.22431 (10)0.26810 (9)0.01741 (18)
C120.61869 (11)1.19837 (10)0.38023 (9)0.01806 (18)
H12A0.59241.25580.42980.022*
C130.64690 (11)1.08740 (10)0.41914 (9)0.01761 (18)
H13A0.63971.06920.49570.021*
C140.59851 (12)1.34179 (11)0.22216 (10)0.02011 (19)
C150.79184 (12)0.47723 (11)0.68685 (9)0.01946 (19)
C160.67213 (13)0.37082 (11)0.81448 (10)0.0224 (2)
H16A0.77150.38810.88340.027*
H16B0.62900.27520.75730.027*
C170.56154 (14)0.38291 (12)0.86957 (11)0.0266 (2)
H17A0.54120.31200.91640.040*
H17B0.46450.36760.80060.040*
H17C0.60650.47710.92770.040*
C180.94152 (11)0.90747 (10)0.32523 (9)0.01693 (17)
H18A1.04760.92680.38390.020*
H18B0.94160.99720.30830.020*
C190.89489 (11)0.80215 (10)0.20000 (9)0.01663 (17)
H19A0.90590.71630.21820.020*
H19B0.78500.77470.14530.020*
C201.15464 (11)0.90256 (10)0.20837 (9)0.01811 (18)
H20A1.16910.82110.23500.022*
H20B1.19160.97860.28610.022*
C211.24758 (12)0.95334 (12)0.13135 (10)0.0243 (2)
H21A1.23831.03860.10990.029*
H21B1.35790.97940.18350.029*
C221.03751 (13)0.81211 (12)0.05885 (10)0.0251 (2)
H22A1.00170.74010.13900.030*
H22B1.02600.89640.08110.030*
C230.93906 (12)0.75531 (11)0.01281 (9)0.02070 (19)
H23A0.82950.73020.04110.025*
H23B0.94750.66910.03240.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0374 (4)0.0265 (3)0.0319 (3)0.0204 (3)0.0199 (3)0.0113 (3)
F20.0268 (3)0.0292 (3)0.0280 (3)0.0123 (3)0.0044 (3)0.0108 (3)
F30.0285 (3)0.0250 (3)0.0394 (4)0.0103 (3)0.0210 (3)0.0170 (3)
O10.0242 (4)0.0216 (3)0.0227 (3)0.0115 (3)0.0144 (3)0.0110 (3)
O20.0365 (5)0.0326 (4)0.0379 (4)0.0238 (4)0.0239 (4)0.0197 (4)
O30.0221 (4)0.0328 (4)0.0221 (4)0.0077 (3)0.0141 (3)0.0018 (3)
N10.0163 (4)0.0184 (4)0.0177 (4)0.0081 (3)0.0103 (3)0.0056 (3)
N20.0174 (4)0.0192 (4)0.0174 (4)0.0086 (3)0.0095 (3)0.0057 (3)
N30.0150 (4)0.0176 (4)0.0145 (3)0.0055 (3)0.0083 (3)0.0043 (3)
C10.0162 (4)0.0176 (4)0.0162 (4)0.0076 (3)0.0082 (3)0.0034 (3)
C20.0175 (4)0.0195 (4)0.0176 (4)0.0082 (3)0.0098 (3)0.0056 (3)
C30.0190 (4)0.0182 (4)0.0164 (4)0.0080 (3)0.0085 (3)0.0049 (3)
C40.0198 (4)0.0210 (4)0.0199 (4)0.0109 (4)0.0099 (4)0.0053 (3)
C50.0173 (4)0.0210 (4)0.0202 (4)0.0089 (4)0.0109 (3)0.0050 (3)
C60.0167 (4)0.0170 (4)0.0161 (4)0.0064 (3)0.0085 (3)0.0034 (3)
C70.0159 (4)0.0180 (4)0.0158 (4)0.0074 (3)0.0085 (3)0.0039 (3)
C80.0151 (4)0.0176 (4)0.0170 (4)0.0064 (3)0.0081 (3)0.0046 (3)
C90.0213 (5)0.0213 (4)0.0181 (4)0.0102 (4)0.0116 (4)0.0056 (3)
C100.0198 (4)0.0231 (5)0.0197 (4)0.0098 (4)0.0125 (4)0.0081 (4)
C110.0157 (4)0.0178 (4)0.0197 (4)0.0067 (3)0.0085 (3)0.0061 (3)
C120.0181 (4)0.0206 (4)0.0170 (4)0.0093 (4)0.0081 (3)0.0036 (3)
C130.0182 (4)0.0213 (4)0.0159 (4)0.0091 (4)0.0091 (3)0.0053 (3)
C140.0195 (5)0.0208 (4)0.0223 (4)0.0084 (4)0.0106 (4)0.0075 (4)
C150.0207 (5)0.0205 (4)0.0184 (4)0.0088 (4)0.0090 (4)0.0059 (3)
C160.0252 (5)0.0226 (5)0.0237 (5)0.0107 (4)0.0121 (4)0.0124 (4)
C170.0309 (6)0.0267 (5)0.0272 (5)0.0115 (4)0.0170 (4)0.0111 (4)
C180.0164 (4)0.0181 (4)0.0180 (4)0.0056 (3)0.0110 (3)0.0043 (3)
C190.0153 (4)0.0173 (4)0.0178 (4)0.0049 (3)0.0100 (3)0.0036 (3)
C200.0151 (4)0.0216 (4)0.0170 (4)0.0056 (3)0.0086 (3)0.0040 (3)
C210.0198 (5)0.0266 (5)0.0224 (5)0.0028 (4)0.0131 (4)0.0022 (4)
C220.0242 (5)0.0318 (5)0.0175 (4)0.0080 (4)0.0115 (4)0.0040 (4)
C230.0190 (4)0.0230 (5)0.0165 (4)0.0050 (4)0.0088 (3)0.0011 (3)
Geometric parameters (Å, º) top
F1—C141.3384 (12)C9—H9A0.9500
F2—C141.3528 (12)C10—C111.3950 (13)
F3—C141.3407 (12)C10—H10A0.9500
O1—C151.3399 (12)C11—C121.3895 (13)
O1—C161.4561 (12)C11—C141.4975 (14)
O2—C151.2132 (13)C12—C131.3915 (13)
O3—C211.4251 (13)C12—H12A0.9500
O3—C221.4311 (13)C13—H13A0.9500
N1—C61.3815 (12)C16—C171.4986 (15)
N1—C71.3883 (12)C16—H16A0.9900
N1—C181.4646 (12)C16—H16B0.9900
N2—C71.3224 (12)C17—H17A0.9800
N2—C11.3896 (12)C17—H17B0.9800
N3—C191.4610 (12)C17—H17C0.9800
N3—C231.4704 (12)C18—C191.5303 (13)
N3—C201.4722 (12)C18—H18A0.9900
C1—C21.4000 (13)C18—H18B0.9900
C1—C61.4077 (13)C19—H19A0.9900
C2—C31.3922 (13)C19—H19B0.9900
C2—H2A0.9500C20—C211.5139 (13)
C3—C41.4124 (13)C20—H20A0.9900
C3—C151.4878 (13)C20—H20B0.9900
C4—C51.3818 (14)C21—H21A0.9900
C4—H4A0.9500C21—H21B0.9900
C5—C61.3977 (13)C22—C231.5152 (14)
C5—H5A0.9500C22—H22A0.9900
C7—C81.4724 (13)C22—H22B0.9900
C8—C131.4019 (13)C23—H23A0.9900
C8—C91.4042 (13)C23—H23B0.9900
C9—C101.3865 (14)
C15—O1—C16114.83 (8)F2—C14—C11111.39 (8)
C21—O3—C22109.12 (8)O2—C15—O1123.35 (9)
C6—N1—C7106.10 (8)O2—C15—C3123.50 (9)
C6—N1—C18123.21 (8)O1—C15—C3113.15 (8)
C7—N1—C18130.41 (8)O1—C16—C17107.55 (8)
C7—N2—C1105.02 (8)O1—C16—H16A110.2
C19—N3—C23109.01 (7)C17—C16—H16A110.2
C19—N3—C20111.75 (7)O1—C16—H16B110.2
C23—N3—C20108.99 (7)C17—C16—H16B110.2
N2—C1—C2129.84 (9)H16A—C16—H16B108.5
N2—C1—C6109.97 (8)C16—C17—H17A109.5
C2—C1—C6120.18 (9)C16—C17—H17B109.5
C3—C2—C1117.21 (9)H17A—C17—H17B109.5
C3—C2—H2A121.4C16—C17—H17C109.5
C1—C2—H2A121.4H17A—C17—H17C109.5
C2—C3—C4121.52 (9)H17B—C17—H17C109.5
C2—C3—C15122.16 (9)N1—C18—C19111.25 (8)
C4—C3—C15116.30 (9)N1—C18—H18A109.4
C5—C4—C3122.02 (9)C19—C18—H18A109.4
C5—C4—H4A119.0N1—C18—H18B109.4
C3—C4—H4A119.0C19—C18—H18B109.4
C4—C5—C6116.02 (9)H18A—C18—H18B108.0
C4—C5—H5A122.0N3—C19—C18111.69 (7)
C6—C5—H5A122.0N3—C19—H19A109.3
N1—C6—C5131.06 (9)C18—C19—H19A109.3
N1—C6—C1105.89 (8)N3—C19—H19B109.3
C5—C6—C1122.99 (9)C18—C19—H19B109.3
N2—C7—N1113.01 (8)H19A—C19—H19B107.9
N2—C7—C8122.72 (8)N3—C20—C21110.18 (8)
N1—C7—C8124.07 (8)N3—C20—H20A109.6
C13—C8—C9118.97 (9)C21—C20—H20A109.6
C13—C8—C7117.53 (8)N3—C20—H20B109.6
C9—C8—C7123.49 (8)C21—C20—H20B109.6
C10—C9—C8120.37 (9)H20A—C20—H20B108.1
C10—C9—H9A119.8O3—C21—C20111.87 (8)
C8—C9—H9A119.8O3—C21—H21A109.2
C9—C10—C11119.71 (9)C20—C21—H21A109.2
C9—C10—H10A120.1O3—C21—H21B109.2
C11—C10—H10A120.1C20—C21—H21B109.2
C12—C11—C10120.83 (9)H21A—C21—H21B107.9
C12—C11—C14121.00 (9)O3—C22—C23110.72 (8)
C10—C11—C14118.13 (9)O3—C22—H22A109.5
C11—C12—C13119.28 (9)C23—C22—H22A109.5
C11—C12—H12A120.4O3—C22—H22B109.5
C13—C12—H12A120.4C23—C22—H22B109.5
C12—C13—C8120.76 (9)H22A—C22—H22B108.1
C12—C13—H13A119.6N3—C23—C22110.37 (8)
C8—C13—H13A119.6N3—C23—H23A109.6
F1—C14—F3107.03 (8)C22—C23—H23A109.6
F1—C14—F2106.57 (8)N3—C23—H23B109.6
F3—C14—F2106.04 (8)C22—C23—H23B109.6
F1—C14—C11112.96 (8)H23A—C23—H23B108.1
F3—C14—C11112.41 (8)
C7—N2—C1—C2179.25 (10)C9—C10—C11—C14178.85 (9)
C7—N2—C1—C60.28 (10)C10—C11—C12—C131.81 (15)
N2—C1—C2—C3177.58 (9)C14—C11—C12—C13179.42 (9)
C6—C1—C2—C31.29 (14)C11—C12—C13—C80.00 (15)
C1—C2—C3—C40.72 (14)C9—C8—C13—C122.40 (14)
C1—C2—C3—C15177.84 (9)C7—C8—C13—C12176.78 (9)
C2—C3—C4—C52.01 (15)C12—C11—C14—F17.10 (13)
C15—C3—C4—C5176.62 (9)C10—C11—C14—F1175.22 (9)
C3—C4—C5—C61.14 (14)C12—C11—C14—F3128.35 (10)
C7—N1—C6—C5176.49 (10)C10—C11—C14—F353.98 (12)
C18—N1—C6—C51.98 (16)C12—C11—C14—F2112.80 (10)
C7—N1—C6—C10.82 (10)C10—C11—C14—F264.87 (12)
C18—N1—C6—C1175.33 (8)C16—O1—C15—O22.71 (14)
C4—C5—C6—N1177.86 (9)C16—O1—C15—C3176.96 (8)
C4—C5—C6—C10.94 (14)C2—C3—C15—O2169.88 (10)
N2—C1—C6—N10.71 (10)C4—C3—C15—O28.74 (15)
C2—C1—C6—N1179.79 (8)C2—C3—C15—O19.78 (13)
N2—C1—C6—C5176.88 (9)C4—C3—C15—O1171.59 (8)
C2—C1—C6—C52.20 (14)C15—O1—C16—C17179.41 (9)
C1—N2—C7—N10.27 (11)C6—N1—C18—C1979.90 (11)
C1—N2—C7—C8174.75 (8)C7—N1—C18—C19107.04 (11)
C6—N1—C7—N20.71 (11)C23—N3—C19—C18179.88 (8)
C18—N1—C7—N2174.67 (9)C20—N3—C19—C1859.59 (10)
C6—N1—C7—C8174.22 (8)N1—C18—C19—N3173.79 (8)
C18—N1—C7—C80.26 (15)C19—N3—C20—C21175.96 (8)
N2—C7—C8—C1331.52 (13)C23—N3—C20—C2155.41 (10)
N1—C7—C8—C13142.93 (9)C22—O3—C21—C2059.43 (12)
N2—C7—C8—C9149.33 (10)N3—C20—C21—O358.04 (12)
N1—C7—C8—C936.21 (14)C21—O3—C22—C2359.79 (11)
C13—C8—C9—C103.05 (15)C19—N3—C23—C22178.76 (8)
C7—C8—C9—C10176.09 (9)C20—N3—C23—C2256.55 (11)
C8—C9—C10—C111.29 (15)O3—C22—C23—N359.56 (12)
C9—C10—C11—C121.17 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F1i0.952.513.4617 (15)175
C10—H10A···O3ii0.952.383.1889 (14)143
C20—H20A···O2iii0.992.523.4878 (14)166
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H24F3N3O3
Mr447.45
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.1463 (2), 10.5595 (2), 11.5775 (2)
α, β, γ (°)96.868 (1), 109.638 (1), 110.833 (1)
V3)1050.83 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.51 × 0.33 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.945, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
22546, 6122, 5266
Rint0.024
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.03
No. of reflections6122
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F1i0.952.513.4617 (15)175
C10—H10A···O3ii0.952.383.1889 (14)143
C20—H20A···O2iii0.992.523.4878 (14)166
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z; (iii) x+2, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

YKY, MAA and TSC thank the Universiti Sains Malysia, Penang, for providing research facilities. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationBoruah, C. R. & Skibo, E. B. (1994). J. Med. Chem. 37, 1625–1631.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHaugwitz, R. D. (1982). J. Med. Chem. 25, 969–974.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHisano, T. (1982). Chem. Pharm. Bull. 30, 2996–3004.  CrossRef CAS Google Scholar
First citationHubschwerlen, C. (1992). J. Med. Chem. 35, 1385–1392.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D. F. J. (1996). J. Med. Chem. 39, 3375–3384.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1215
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds