organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1193

(2E)-2-[2-(Cyclo­hexyl­carbamo­thio­yl)hydrazinyl­idene]­propanoic acid

aFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 April 2011; accepted 18 April 2011; online 22 April 2011)

In the title thio­urea derivative, C10H17N3O2S, the carboxyl group and the least-squares plane through the cyclo­hexyl ring are twisted out of the plane through the central CN3S residue; the respective dihedral angles are 7.18 (8) and 62.29 (4)°. The conformation about the azomethine bond [1.275 (2) Å] is E. The NH groups are anti, with one forming an intra­molecular N—H⋯N hydrogen bond. The main feature of the crystal structure is the formation of linear supra­molecular chains along [110] mediated by alternating pairs of O—H⋯O and pairs of N—H⋯S hydrogen bonds.

Related literature

For related thio­urea structures, see: Normaya et al. (2011[Normaya, E., Farina, Y., Halim, S. N. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o943-o944.]); Salam et al. (2011[Salam, M. A., Affan, M. A., Ahmad, F. B., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o955.]).

[Scheme 1]

Experimental

Crystal data
  • C10H17N3O2S

  • Mr = 243.33

  • Monoclinic, P 21 /n

  • a = 8.9204 (2) Å

  • b = 6.0350 (2) Å

  • c = 22.4750 (6) Å

  • β = 90.051 (3)°

  • V = 1209.93 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.687, Tmax = 1.000

  • 7394 measured reflections

  • 2723 independent reflections

  • 2251 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.143

  • S = 0.98

  • 2723 reflections

  • 158 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1 0.87 (1) 2.20 (2) 2.574 (2) 106 (2)
O1—H1⋯O2i 0.85 (1) 1.80 (1) 2.6416 (17) 172 (3)
N2—H2⋯S1ii 0.89 (1) 2.65 (1) 3.5384 (15) 176 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+3, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of structural investigations into conformation and hydrogen bonding in thiourea derivatives (Normaya et al. 2011; Salam et al., 2011), the title compound, (I), was investigated.

The central CN3S chromophore in (I), Fig. 1, is planar (r.m.s. = 0.0039 Å). The carboxylate residue is slightly twisted out this plane (dihedral angle = 7.18 (8) °), and, by contrast, the least-squares plane through the cyclohexyl group (which has the conformation of a chair) is twisted significantly out of the central plane (dihedral angle = 62.29 (4) °). The H atoms of the NH groups are anti, and the conformation about the azomethine bond [1.275 (2) Å] is E. The N3—H forms an intramolecular hydrogen bond with the imino-N3 atom, Table 1. Finally, the thione and carboxylic acid groups lie to opposite sides of the molecule. This arrangements enables the formation of linear supramolecular chains via hydrogen bonds along [110] in the crystal packing, Fig. 2 and Table 1. The carboxylic acid residues self-associate via a centrosymmetric eight-membered {···HOCO}2 synthon. Similarly, the thiourea entity with the NH atom not involved in the intramolecular N—H···N interaction, self-associates via a centrosymmetric eight-membered {···HNC S}2 synthon. Chains lie in the ab plane with the cyclohexyl rings inter-digitating along the c axis, Fig. 3.

Related literature top

For related thiourea structures, see: Normaya et al. (2011); Salam et al. (2011).

Experimental top

Cyclohexylisothiocyanate (0.706 g, 5 mmol) and hydrazine hydrate (0.250 g, 5 mmol), each dissolved in 10 ml e thanol were mixed with constant stirring. The stirring was continued for 30 min and the white product that formed, N(4)-cyclohexylthiosemicarbazide, was washed with ethanol and dried in vacuo. A solution of this (0.51 g, 3 mmol) in 10 ml me thanol was refluxed with a methanolic solution of pyruvic acid (0.261 g, 3 mmol) for 5 h after the addition of 1–2 drops of glacial acetic acid. On cooling the solution to room temperature, white precipitate separated, which were filtered and washed with methanol. The white precipitate was recrystallized from methanol to yield colourless prisms and dried in vacuo over silica gel. (M.pt. 465–467 K. Yield 0.621 g (80%). Anal. Found: C, 49.31; H, 7.01; N, 17.18%. C10H17N3O2S requires: C, 49.36; H, 7.04; N, 17.26%. FT—IR (KBr, cm-1) νmax: 3322 (m, OH), 3197 (s, NH), 2922, 2851 (s, cyclohexyl), 1692 (m, CO), 1619 (w, CN), 980 (m, N—N), 1249, 873 (w, CS).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.98 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O– and N-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.84±0.01 Å and N—H 0.88±0.01 Å, and with Uiso(H) = yUeq(N) for y = 1.5 (O) and 1.2 (N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain aligned along [110] in (I). The O—H···O and N—H···S hydrogen bonds are shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the crystal packing in (I) showing the inter-digitation of the cyclohexyl rings along the c direction. The O—H···O and N—H···S hydrogen bonds are shown as orange and blue dashed lines, respectively.
(2E)-2-[2-(Cyclohexylcarbamothioyl)hydrazinylidene]propanoic acid top
Crystal data top
C10H17N3O2SF(000) = 520
Mr = 243.33Dx = 1.336 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3312 reflections
a = 8.9204 (2) Åθ = 2.3–29.1°
b = 6.0350 (2) ŵ = 0.26 mm1
c = 22.4750 (6) ÅT = 100 K
β = 90.051 (3)°Prism, colourless
V = 1209.93 (6) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
2723 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2251 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 67
Tmin = 0.687, Tmax = 1.000l = 2929
7394 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2723 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H17N3O2SV = 1209.93 (6) Å3
Mr = 243.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9204 (2) ŵ = 0.26 mm1
b = 6.0350 (2) ÅT = 100 K
c = 22.4750 (6) Å0.30 × 0.20 × 0.10 mm
β = 90.051 (3)°
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
2723 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2251 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 1.000Rint = 0.036
7394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.36 e Å3
2723 reflectionsΔρmin = 0.32 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.07001 (5)1.46426 (7)0.59008 (2)0.01940 (18)
O10.65476 (14)0.6300 (2)0.54143 (6)0.0209 (3)
O20.53180 (13)0.7099 (2)0.45694 (6)0.0196 (3)
N10.80028 (16)1.0010 (2)0.53480 (7)0.0156 (3)
N20.88614 (16)1.1878 (2)0.53543 (7)0.0170 (3)
N30.94326 (16)1.0938 (3)0.63114 (7)0.0169 (3)
C10.62814 (18)0.7522 (3)0.49413 (8)0.0164 (4)
C20.72145 (19)0.9564 (3)0.48899 (8)0.0162 (4)
C30.7098 (2)1.0904 (3)0.43363 (8)0.0211 (4)
H3A0.69041.24550.44400.032*
H3B0.62731.03390.40910.032*
H3C0.80391.08000.41130.032*
C40.96146 (18)1.2376 (3)0.58689 (8)0.0156 (4)
C51.00682 (18)1.1176 (3)0.69060 (7)0.0157 (4)
H51.10551.19510.68710.019*
C61.0336 (2)0.8900 (3)0.71759 (9)0.0210 (4)
H6A1.10370.80540.69210.025*
H6B0.93770.80760.71940.025*
C71.0991 (2)0.9113 (3)0.78024 (8)0.0221 (4)
H7A1.11160.76180.79770.026*
H7B1.19940.98110.77790.026*
C80.9984 (2)1.0501 (3)0.82063 (9)0.0235 (4)
H8A0.90190.97250.82670.028*
H8B1.04711.06890.85990.028*
C90.9696 (2)1.2771 (3)0.79289 (9)0.0250 (4)
H9A0.89881.36100.81820.030*
H9B1.06481.36110.79120.030*
C100.9048 (2)1.2561 (3)0.73033 (8)0.0212 (4)
H10A0.80461.18580.73250.025*
H10B0.89241.40550.71280.025*
H10.602 (2)0.514 (3)0.5431 (12)0.040 (7)*
H20.892 (2)1.275 (3)0.5035 (6)0.026 (6)*
H30.888 (2)0.976 (2)0.6260 (11)0.029 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0251 (3)0.0177 (3)0.0154 (3)0.00825 (16)0.0030 (2)0.00088 (18)
O10.0233 (6)0.0208 (7)0.0185 (7)0.0089 (5)0.0048 (5)0.0055 (6)
O20.0200 (6)0.0205 (7)0.0182 (7)0.0064 (5)0.0030 (5)0.0018 (5)
N10.0148 (7)0.0144 (7)0.0178 (8)0.0030 (5)0.0009 (6)0.0010 (6)
N20.0214 (7)0.0140 (7)0.0157 (8)0.0039 (6)0.0007 (6)0.0036 (6)
N30.0196 (7)0.0172 (7)0.0140 (8)0.0068 (6)0.0047 (6)0.0006 (6)
C10.0159 (8)0.0178 (9)0.0155 (9)0.0010 (7)0.0000 (7)0.0017 (7)
C20.0153 (8)0.0168 (9)0.0166 (9)0.0015 (6)0.0005 (7)0.0006 (7)
C30.0247 (9)0.0215 (9)0.0169 (9)0.0069 (7)0.0040 (7)0.0022 (8)
C40.0154 (8)0.0160 (8)0.0155 (8)0.0002 (6)0.0004 (7)0.0008 (7)
C50.0173 (8)0.0184 (9)0.0112 (8)0.0030 (7)0.0038 (6)0.0006 (7)
C60.0255 (9)0.0168 (9)0.0208 (9)0.0006 (7)0.0006 (8)0.0003 (8)
C70.0266 (9)0.0186 (9)0.0210 (10)0.0007 (7)0.0032 (8)0.0036 (8)
C80.0301 (10)0.0263 (10)0.0141 (9)0.0050 (8)0.0001 (8)0.0016 (8)
C90.0318 (10)0.0241 (10)0.0191 (9)0.0032 (8)0.0004 (8)0.0057 (8)
C100.0255 (9)0.0197 (9)0.0185 (9)0.0037 (7)0.0007 (8)0.0011 (8)
Geometric parameters (Å, º) top
S1—C41.6774 (18)C5—C101.525 (2)
O1—C11.315 (2)C5—H51.0000
O1—H10.845 (10)C6—C71.530 (3)
O2—C11.225 (2)C6—H6A0.9900
N1—C21.275 (2)C6—H6B0.9900
N1—N21.363 (2)C7—C81.528 (3)
N2—C41.370 (2)C7—H7A0.9900
N2—H20.892 (9)C7—H7B0.9900
N3—C41.330 (2)C8—C91.527 (3)
N3—C51.458 (2)C8—H8A0.9900
N3—H30.870 (9)C8—H8B0.9900
C1—C21.491 (2)C9—C101.525 (3)
C2—C31.488 (3)C9—H9A0.9900
C3—H3A0.9800C9—H9B0.9900
C3—H3B0.9800C10—H10A0.9900
C3—H3C0.9800C10—H10B0.9900
C5—C61.520 (3)
C1—O1—H1113.7 (18)C5—C6—H6A109.5
C2—N1—N2119.52 (15)C7—C6—H6A109.5
N1—N2—C4117.71 (14)C5—C6—H6B109.5
N1—N2—H2121.1 (14)C7—C6—H6B109.5
C4—N2—H2121.2 (14)H6A—C6—H6B108.1
C4—N3—C5124.97 (14)C8—C7—C6111.63 (15)
C4—N3—H3120.2 (16)C8—C7—H7A109.3
C5—N3—H3114.8 (16)C6—C7—H7A109.3
O2—C1—O1124.08 (15)C8—C7—H7B109.3
O2—C1—C2120.71 (15)C6—C7—H7B109.3
O1—C1—C2115.18 (15)H7A—C7—H7B108.0
N1—C2—C3126.77 (15)C9—C8—C7110.38 (16)
N1—C2—C1114.80 (15)C9—C8—H8A109.6
C3—C2—C1118.38 (15)C7—C8—H8A109.6
C2—C3—H3A109.5C9—C8—H8B109.6
C2—C3—H3B109.5C7—C8—H8B109.6
H3A—C3—H3B109.5H8A—C8—H8B108.1
C2—C3—H3C109.5C10—C9—C8111.43 (15)
H3A—C3—H3C109.5C10—C9—H9A109.3
H3B—C3—H3C109.5C8—C9—H9A109.3
N3—C4—N2115.34 (15)C10—C9—H9B109.3
N3—C4—S1124.83 (14)C8—C9—H9B109.3
N2—C4—S1119.82 (13)H9A—C9—H9B108.0
N3—C5—C6109.71 (14)C5—C10—C9111.06 (14)
N3—C5—C10111.03 (14)C5—C10—H10A109.4
C6—C5—C10110.79 (15)C9—C10—H10A109.4
N3—C5—H5108.4C5—C10—H10B109.4
C6—C5—H5108.4C9—C10—H10B109.4
C10—C5—H5108.4H10A—C10—H10B108.0
C5—C6—C7110.56 (15)
C2—N1—N2—C4175.80 (15)C4—N3—C5—C6151.10 (16)
N2—N1—C2—C30.7 (3)C4—N3—C5—C1086.1 (2)
N2—N1—C2—C1178.00 (14)N3—C5—C6—C7179.54 (14)
O2—C1—C2—N1169.21 (15)C10—C5—C6—C756.59 (19)
O1—C1—C2—N18.9 (2)C5—C6—C7—C856.5 (2)
O2—C1—C2—C38.4 (2)C6—C7—C8—C955.6 (2)
O1—C1—C2—C3173.52 (15)C7—C8—C9—C1055.2 (2)
C5—N3—C4—N2177.12 (15)N3—C5—C10—C9178.84 (14)
C5—N3—C4—S14.2 (2)C6—C5—C10—C956.7 (2)
N1—N2—C4—N30.7 (2)C8—C9—C10—C556.1 (2)
N1—N2—C4—S1179.49 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N10.87 (1)2.20 (2)2.574 (2)106 (2)
O1—H1···O2i0.85 (1)1.80 (1)2.6416 (17)172 (3)
N2—H2···S1ii0.89 (1)2.65 (1)3.5384 (15)176 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC10H17N3O2S
Mr243.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.9204 (2), 6.0350 (2), 22.4750 (6)
β (°) 90.051 (3)
V3)1209.93 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent Supernova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.687, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7394, 2723, 2251
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.143, 0.98
No. of reflections2723
No. of parameters158
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.32

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N10.873 (14)2.20 (2)2.574 (2)105.6 (17)
O1—H1···O2i0.845 (10)1.802 (10)2.6416 (17)172 (3)
N2—H2···S1ii0.892 (9)2.648 (10)3.5384 (15)176.2 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+3, z+1.
 

Footnotes

Additional correspondence author, e-mail: maaffan@yahoo.com.

Acknowledgements

This work was supported financially by the Ministry of Science, Technology and Innovation (MOSTI) under a research grant (No. 06-01-09-SF0046). The authors thank Universiti Malaysia Sarawak (UNIMAS) for the facilities to carry out the research work. The authors also thank the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNormaya, E., Farina, Y., Halim, S. N. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o943–o944.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalam, M. A., Affan, M. A., Ahmad, F. B., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1193
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds