organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1282

2-[2-(1H-Imidazol-3-ium-5-yl)eth­yl]-3-(pyridin-2-yl)-2H-imidazo[1,5-a]pyridin-4-ium bis­­(perchlorate)

aDepartment of Chemistry, Faculty of Science, Trakya University, 22030 Edirne, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: namiko@omu.edu.tr

(Received 23 April 2011; accepted 25 April 2011; online 29 April 2011)

In the title mol­ecular salt, C17H17N5+·2ClO4, the dihedral angles between the fused-ring system and the pendant five- and six-membered heterocyclic rings are 6.4 (2) and 41.29 (19)°, respectively. The O atoms of both perchlorate anions are disordered over two sets of sites with occupancy ratios of 0.614 (8):0.386 (8) and 0.591 (7):0.409 (7). An intra­molecular C—H⋯N contact occurs in the cation. In the crystal, the components are linked by N—H⋯O and C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid separation = 3.642 (3) Å].

Related literature

For background to the biological properties of imidazopyridine compounds, see: Kaminski & Doweyko (1997[Kaminski, J. J. & Doweyko, A. M. (1997). J. Med. Chem. 40, 427-436.]); Sanfillipo et al. (1988[Sanfillipo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221-2227.]); Lhassani et al. (1999[Lhassani, M., Chavignon, O., Chezal, J.-M., Teulade, J.-C., Chapat, J.-P., Snoeck, R., Andrei, G., Balzarini, J., De Clercq, E. & Gueiffier, A. (1999). Eur. J. Med. Chem. 34, 271-274.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N52+·2ClO4

  • Mr = 490.26

  • Monoclinic, P 21 /c

  • a = 15.044 (6) Å

  • b = 11.303 (4) Å

  • c = 12.783 (5) Å

  • β = 108.009 (15)°

  • V = 2067.1 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 273 K

  • 0.35 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • 19199 measured reflections

  • 4507 independent reflections

  • 2540 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.214

  • S = 1.07

  • 4507 reflections

  • 363 parameters

  • 198 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯N3 0.97 2.48 3.001 (6) 113
C16—H16⋯O1A 0.93 2.44 3.351 (8) 167
N4—H4N⋯O7A 0.86 1.97 2.807 (10) 165
N5—H5N⋯O4Ai 0.86 2.18 2.927 (16) 145
C11—H11⋯O6Aii 0.93 2.46 3.224 (9) 139
C6—H6⋯O5Aiii 0.93 2.60 3.331 (17) 136
C5—H5⋯O6Aiv 0.93 2.43 3.139 (8) 133
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004)[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Imidazopyridine derivatives are of great importance because of their remarkable biological properties. For example, gastric antisecretory (Kaminski & Doweyko, 1997), local anesthetic (Sanfillipo et al., 1988) and antiviral (Lhassani et al., 1999) properties of imidazo[1,2-a]pyridine derivatives have been described.

The title salt comprises a double protonated 2-[2-(1H-imidazol-3-ium-5-yl)ethyl]-3-(pyridin-2-yl)-2H-imidazo [1,5-a]pyridin-4-ium cation and two perchlorate anion (Fig. 1). The interatomic distances and angles in the title salt show no anomalies.

The molecular structure of the title compound, (I), contains one intramolecular C—H···N contact leading to the formation of a six-membered ring with graph-set descriptor S(6) (Bernstein et al., 1995). In the crystal structure, intermolecular C—H···O and N—H···O type hydrogen bonds and ππ stacking interactions between the (N2/C2—C6) and (N3/C8—C12) pyridine rings interconnect the ions into a three-dimensional supramolecular structure (Table 1).

Related literature top

For background to the biological properties of imidazopyridine compounds, see: Kaminski & Doweyko (1997); Sanfillipo et al. (1988); Lhassani et al. (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Histamine-HCl (8 mmol, 1.18 g) was dissolved in argon saturated methanol and the solution was placed on a magnetic stirrer at room temperature. 2-Pyridinecarboxaldehyde (10 mmol, 1.08 g) was dissolved in argon saturated methanol and this solution was added to the histamine solution slowly. The final solution was left on a magnetic stirrer and temperature was raised to 333 K and the solution was left there for 24 h. Solvent volume was reduced and the solution was left for crystallization. After several days, brown blocks of (I) were separated, which were collected and dried.

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.86, 0.93 and 0.97 Å for NH, CH and CH2 groups, respectively. The displacement parameters of the H atoms were constrained as Uiso(H)= 1.2Ueq. In the compound, the O atoms of the two perchlorate anions show positional disorder and the refined site-occupancy factors of the disordered parts, viz. (O1A—O4A/O1B—O4B) and (O5A—O8A/O5B—O8B), are 0.614 (8)/0.386 (8)% and 0.591 (7)/0.409 (7)%, respectively.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. For the sake of clarity, only H atoms involved in hydrogen bonding have been included and only the major parts of disordered fragments are drawn. Hydrogen bonds are indicated by broken lines.
2-[2-(1H-Imidazol-3-ium-5-yl)ethyl]-3-(pyridin-2-yl)-2H- imidazo[1,5-a]pyridin-4-ium bis(perchlorate) top
Crystal data top
C17H17N52+·2ClO4F(000) = 1008
Mr = 490.26Dx = 1.575 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11579 reflections
a = 15.044 (6) Åθ = 3.1–29.6°
b = 11.303 (4) ŵ = 0.37 mm1
c = 12.783 (5) ÅT = 273 K
β = 108.009 (15)°Block, brown
V = 2067.1 (13) Å30.35 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2540 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 27.0°, θmin = 3.1°
Detector resolution: 10.00 pixels mm-1h = 1919
ω scansk = 1414
19199 measured reflectionsl = 1616
4507 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0979P)2 + 0.8991P]
where P = (Fo2 + 2Fc2)/3
4507 reflections(Δ/σ)max < 0.001
363 parametersΔρmax = 0.45 e Å3
198 restraintsΔρmin = 0.52 e Å3
Crystal data top
C17H17N52+·2ClO4V = 2067.1 (13) Å3
Mr = 490.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.044 (6) ŵ = 0.37 mm1
b = 11.303 (4) ÅT = 273 K
c = 12.783 (5) Å0.35 × 0.20 × 0.20 mm
β = 108.009 (15)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2540 reflections with I > 2σ(I)
19199 measured reflectionsRint = 0.083
4507 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.074198 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.07Δρmax = 0.45 e Å3
4507 reflectionsΔρmin = 0.52 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.04647 (8)0.10009 (10)0.30270 (8)0.0598 (4)
Cl20.38314 (10)0.18832 (12)0.36810 (11)0.0791 (4)
O1A0.1400 (4)0.0618 (7)0.3141 (7)0.0894 (19)0.614 (8)
O2A0.0092 (7)0.0565 (8)0.2027 (5)0.115 (2)0.614 (8)
O3A0.0469 (7)0.2260 (4)0.3022 (9)0.091 (2)0.614 (8)
O4A0.0210 (9)0.0453 (14)0.3907 (6)0.069 (2)0.614 (8)
O1B0.0926 (10)0.0210 (9)0.2511 (10)0.096 (2)0.386 (8)
O2B0.0448 (5)0.1148 (12)0.2321 (8)0.088 (3)0.386 (8)
O3B0.0868 (11)0.2140 (7)0.3301 (15)0.092 (3)0.386 (8)
O4B0.0434 (15)0.064 (2)0.4091 (8)0.064 (3)0.386 (8)
O5A0.4484 (9)0.1176 (9)0.4445 (8)0.114 (3)0.591 (7)
O6A0.3768 (6)0.2058 (7)0.2528 (5)0.113 (2)0.591 (7)
O7A0.3632 (7)0.2974 (6)0.4153 (7)0.089 (2)0.591 (7)
O8A0.2969 (5)0.1162 (7)0.3466 (6)0.0921 (19)0.591 (7)
O5B0.4416 (12)0.0902 (12)0.4024 (12)0.105 (3)0.409 (7)
O6B0.4497 (7)0.2597 (8)0.3319 (10)0.108 (3)0.409 (7)
O7B0.3793 (11)0.2623 (10)0.4594 (8)0.089 (3)0.409 (7)
O8B0.2861 (6)0.1717 (13)0.3009 (12)0.123 (3)0.409 (7)
N10.2084 (2)0.6878 (3)0.5373 (3)0.0568 (9)
N20.2744 (2)0.8592 (3)0.5682 (3)0.0525 (8)
N30.3643 (3)0.6138 (3)0.4591 (3)0.0678 (10)
N40.1981 (3)0.2840 (3)0.4732 (3)0.0602 (9)
H4N0.24310.29660.44650.072*
N50.0837 (3)0.2016 (3)0.5074 (3)0.0703 (11)
H5N0.04060.15150.50700.084*
C10.1678 (3)0.7453 (4)0.6032 (3)0.0633 (12)
H10.12150.71530.62990.076*
C20.2065 (3)0.8542 (4)0.6235 (3)0.0586 (11)
C30.1957 (4)0.9540 (5)0.6846 (4)0.0705 (13)
H30.15150.95330.72180.085*
C40.2487 (4)1.0493 (5)0.6890 (4)0.0786 (15)
H40.23981.11610.72700.094*
C50.3187 (4)1.0491 (4)0.6361 (4)0.0753 (14)
H50.35711.11510.64290.090*
C60.3313 (3)0.9565 (4)0.5763 (3)0.0616 (11)
H60.37710.95800.54140.074*
C70.2737 (3)0.7553 (3)0.5146 (3)0.0519 (10)
C80.3311 (3)0.7255 (4)0.4459 (3)0.0527 (10)
C90.3495 (3)0.8053 (4)0.3742 (4)0.0624 (11)
H90.32230.88000.36510.075*
C100.4094 (4)0.7724 (5)0.3157 (4)0.0763 (14)
H100.42560.82540.26910.092*
C110.4437 (4)0.6597 (6)0.3288 (5)0.0821 (16)
H110.48390.63470.29070.099*
C120.4184 (4)0.5831 (5)0.3986 (4)0.0814 (15)
H120.44040.50570.40370.098*
C130.1788 (3)0.5677 (4)0.4936 (4)0.0613 (11)
H13A0.20000.55290.43040.074*
H13B0.11120.56290.46970.074*
C140.2189 (3)0.4744 (4)0.5806 (4)0.0643 (12)
H14A0.28560.46730.59320.077*
H14B0.20910.49790.64920.077*
C150.1729 (3)0.3587 (4)0.5444 (3)0.0554 (10)
C160.1433 (3)0.1910 (4)0.4521 (4)0.0674 (12)
H160.14630.12850.40600.081*
C170.1007 (3)0.3047 (4)0.5659 (4)0.0660 (12)
H170.06830.33250.61220.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0669 (7)0.0630 (7)0.0559 (6)0.0019 (5)0.0283 (5)0.0003 (5)
Cl20.0943 (9)0.0704 (8)0.0883 (9)0.0208 (7)0.0509 (8)0.0218 (6)
O1A0.080 (3)0.106 (4)0.101 (4)0.012 (3)0.056 (3)0.012 (4)
O2A0.137 (5)0.124 (5)0.068 (3)0.020 (4)0.006 (3)0.017 (3)
O3A0.116 (6)0.064 (3)0.094 (5)0.010 (3)0.036 (5)0.007 (3)
O4A0.072 (6)0.074 (5)0.072 (3)0.001 (4)0.040 (4)0.005 (4)
O1B0.122 (5)0.102 (5)0.083 (5)0.009 (4)0.059 (4)0.011 (4)
O2B0.090 (4)0.108 (6)0.057 (4)0.004 (4)0.010 (3)0.016 (4)
O3B0.107 (7)0.069 (4)0.090 (6)0.020 (4)0.014 (6)0.004 (4)
O4B0.071 (7)0.072 (6)0.050 (3)0.007 (5)0.023 (4)0.003 (4)
O5A0.106 (4)0.092 (5)0.122 (6)0.031 (4)0.005 (5)0.007 (4)
O6A0.149 (5)0.109 (5)0.102 (3)0.040 (4)0.071 (4)0.024 (3)
O7A0.098 (5)0.061 (3)0.117 (5)0.006 (3)0.047 (5)0.009 (3)
O8A0.098 (3)0.090 (4)0.084 (4)0.007 (3)0.022 (3)0.004 (3)
O5B0.111 (5)0.082 (5)0.124 (7)0.034 (5)0.038 (6)0.013 (5)
O6B0.139 (5)0.098 (5)0.118 (6)0.011 (4)0.087 (4)0.020 (5)
O7B0.091 (5)0.083 (6)0.106 (5)0.001 (5)0.050 (5)0.003 (4)
O8B0.117 (4)0.115 (7)0.114 (6)0.018 (4)0.002 (5)0.001 (5)
N10.060 (2)0.056 (2)0.054 (2)0.0036 (17)0.0177 (18)0.0058 (16)
N20.061 (2)0.052 (2)0.0438 (18)0.0022 (16)0.0154 (16)0.0031 (15)
N30.073 (3)0.061 (2)0.066 (2)0.0037 (19)0.017 (2)0.0068 (19)
N40.065 (2)0.058 (2)0.062 (2)0.0012 (18)0.0260 (19)0.0045 (18)
N50.060 (2)0.057 (2)0.094 (3)0.0071 (18)0.024 (2)0.015 (2)
C10.062 (3)0.077 (3)0.051 (2)0.002 (2)0.019 (2)0.011 (2)
C20.058 (3)0.073 (3)0.043 (2)0.012 (2)0.013 (2)0.011 (2)
C30.077 (3)0.086 (4)0.049 (2)0.019 (3)0.019 (2)0.000 (2)
C40.099 (4)0.071 (3)0.060 (3)0.018 (3)0.017 (3)0.008 (2)
C50.098 (4)0.054 (3)0.063 (3)0.000 (3)0.009 (3)0.005 (2)
C60.078 (3)0.050 (2)0.054 (2)0.007 (2)0.017 (2)0.000 (2)
C70.057 (2)0.049 (2)0.048 (2)0.0030 (19)0.0136 (19)0.0069 (18)
C80.054 (2)0.053 (2)0.049 (2)0.0041 (19)0.0132 (19)0.0070 (19)
C90.065 (3)0.071 (3)0.053 (2)0.007 (2)0.022 (2)0.008 (2)
C100.077 (3)0.092 (4)0.063 (3)0.027 (3)0.025 (3)0.010 (3)
C110.063 (3)0.105 (5)0.085 (4)0.014 (3)0.033 (3)0.031 (3)
C120.071 (3)0.084 (4)0.086 (4)0.007 (3)0.020 (3)0.026 (3)
C130.067 (3)0.055 (3)0.059 (3)0.014 (2)0.014 (2)0.007 (2)
C140.074 (3)0.056 (3)0.061 (3)0.003 (2)0.017 (2)0.007 (2)
C150.058 (3)0.056 (2)0.054 (2)0.000 (2)0.020 (2)0.006 (2)
C160.072 (3)0.053 (3)0.073 (3)0.002 (2)0.017 (3)0.001 (2)
C170.066 (3)0.065 (3)0.075 (3)0.004 (2)0.034 (3)0.008 (2)
Geometric parameters (Å, º) top
Cl1—O2A1.385 (5)N5—H5N0.8600
Cl1—O2B1.401 (6)C1—C21.352 (6)
Cl1—O1B1.414 (6)C1—H10.9300
Cl1—O3B1.420 (6)C2—C31.410 (6)
Cl1—O3A1.423 (5)C3—C41.330 (7)
Cl1—O4A1.436 (4)C3—H30.9300
Cl1—O4B1.436 (5)C4—C51.417 (7)
Cl1—O1A1.435 (5)C4—H40.9300
Cl2—O5B1.400 (6)C5—C61.343 (6)
Cl2—O5A1.401 (5)C5—H50.9300
Cl2—O7A1.444 (5)C6—H60.9300
Cl2—O7B1.452 (6)C7—C81.448 (5)
Cl2—O8B1.459 (7)C8—C91.374 (6)
Cl2—O6A1.461 (5)C9—C101.388 (6)
Cl2—O6B1.468 (6)C9—H90.9300
Cl2—O8A1.484 (6)C10—C111.365 (8)
N1—C71.344 (5)C10—H100.9300
N1—C11.350 (5)C11—C121.379 (8)
N1—C131.483 (5)C11—H110.9300
N2—C71.358 (5)C12—H120.9300
N2—C61.377 (5)C13—C141.515 (6)
N2—C21.411 (5)C13—H13A0.9700
N3—C121.331 (6)C13—H13B0.9700
N3—C81.349 (5)C14—C151.486 (6)
N4—C161.312 (6)C14—H14A0.9700
N4—C151.377 (5)C14—H14B0.9700
N4—H4N0.8600C15—C171.347 (6)
N5—C161.307 (6)C16—H160.9300
N5—C171.366 (6)C17—H170.9300
O2B—Cl1—O1B107.4 (7)C3—C4—H4119.9
O2B—Cl1—O3B108.1 (7)C5—C4—H4119.9
O1B—Cl1—O3B117.0 (9)C6—C5—C4121.9 (5)
O2A—Cl1—O3A110.7 (5)C6—C5—H5119.1
O2A—Cl1—O4A109.8 (6)C4—C5—H5119.1
O3A—Cl1—O4A116.0 (8)C5—C6—N2118.2 (4)
O2B—Cl1—O4B109.4 (9)C5—C6—H6120.9
O1B—Cl1—O4B115.2 (12)N2—C6—H6120.9
O3B—Cl1—O4B99.4 (12)N1—C7—N2105.9 (4)
O2A—Cl1—O1A106.3 (5)N1—C7—C8127.7 (4)
O3A—Cl1—O1A107.2 (5)N2—C7—C8126.4 (4)
O4A—Cl1—O1A106.3 (7)N3—C8—C9123.7 (4)
O5A—Cl2—O7A112.8 (5)N3—C8—C7114.1 (4)
O5B—Cl2—O7B112.5 (8)C9—C8—C7122.1 (4)
O5B—Cl2—O8B120.0 (10)C8—C9—C10118.8 (5)
O7B—Cl2—O8B105.4 (9)C8—C9—H9120.6
O5A—Cl2—O6A126.4 (6)C10—C9—H9120.6
O7A—Cl2—O6A110.4 (4)C11—C10—C9117.9 (5)
O5B—Cl2—O6B96.3 (10)C11—C10—H10121.0
O7B—Cl2—O6B97.9 (7)C9—C10—H10121.0
O8B—Cl2—O6B122.8 (8)C10—C11—C12119.7 (5)
O5A—Cl2—O8A101.5 (7)C10—C11—H11120.2
O7A—Cl2—O8A105.3 (5)C12—C11—H11120.2
O6A—Cl2—O8A96.1 (5)N3—C12—C11123.6 (5)
C7—N1—C1111.3 (4)N3—C12—H12118.2
C7—N1—C13126.3 (4)C11—C12—H12118.2
C1—N1—C13122.3 (4)N1—C13—C14110.9 (3)
C7—N2—C6129.5 (4)N1—C13—H13A109.5
C7—N2—C2108.9 (4)C14—C13—H13A109.5
C6—N2—C2121.5 (4)N1—C13—H13B109.5
C12—N3—C8116.1 (4)C14—C13—H13B109.5
C16—N4—C15110.1 (4)H13A—C13—H13B108.1
C16—N4—H4N125.0C15—C14—C13110.1 (4)
C15—N4—H4N125.0C15—C14—H14A109.6
C16—N5—C17109.3 (4)C13—C14—H14A109.6
C16—N5—H5N125.3C15—C14—H14B109.6
C17—N5—H5N125.3C13—C14—H14B109.6
N1—C1—C2107.9 (4)H14A—C14—H14B108.2
N1—C1—H1126.1C17—C15—N4105.1 (4)
C2—C1—H1126.1C17—C15—C14131.5 (4)
C1—C2—C3135.9 (5)N4—C15—C14123.3 (4)
C1—C2—N2106.0 (4)N5—C16—N4107.9 (4)
C3—C2—N2118.1 (4)N5—C16—H16126.0
C4—C3—C2120.1 (5)N4—C16—H16126.0
C4—C3—H3120.0C15—C17—N5107.5 (4)
C2—C3—H3120.0C15—C17—H17126.2
C3—C4—C5120.2 (5)N5—C17—H17126.2
C7—N1—C1—C20.8 (5)C12—N3—C8—C7179.2 (4)
C13—N1—C1—C2176.6 (4)N1—C7—C8—N341.5 (6)
N1—C1—C2—C3179.7 (5)N2—C7—C8—N3139.5 (4)
N1—C1—C2—N21.2 (4)N1—C7—C8—C9138.6 (4)
C7—N2—C2—C11.3 (4)N2—C7—C8—C940.4 (6)
C6—N2—C2—C1176.5 (4)N3—C8—C9—C103.5 (7)
C7—N2—C2—C3179.9 (4)C7—C8—C9—C10176.4 (4)
C6—N2—C2—C32.4 (6)C8—C9—C10—C113.0 (7)
C1—C2—C3—C4178.3 (5)C9—C10—C11—C120.1 (7)
N2—C2—C3—C40.1 (6)C8—N3—C12—C112.4 (7)
C2—C3—C4—C52.5 (7)C10—C11—C12—N32.8 (8)
C3—C4—C5—C63.0 (8)C7—N1—C13—C14104.7 (5)
C4—C5—C6—N20.7 (7)C1—N1—C13—C1478.3 (5)
C7—N2—C6—C5179.2 (4)N1—C13—C14—C15167.9 (4)
C2—N2—C6—C52.0 (6)C16—N4—C15—C170.7 (5)
C1—N1—C7—N20.1 (5)C16—N4—C15—C14177.3 (4)
C13—N1—C7—N2177.3 (3)C13—C14—C15—C1796.1 (6)
C1—N1—C7—C8179.1 (4)C13—C14—C15—N481.3 (5)
C13—N1—C7—C81.9 (7)C17—N5—C16—N40.0 (5)
C6—N2—C7—N1176.7 (4)C15—N4—C16—N50.4 (5)
C2—N2—C7—N10.8 (4)N4—C15—C17—N50.7 (5)
C6—N2—C7—C84.1 (7)C14—C15—C17—N5177.1 (4)
C2—N2—C7—C8178.4 (4)C16—N5—C17—C150.5 (5)
C12—N3—C8—C90.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N30.972.483.001 (6)113
C16—H16···O1A0.932.443.351 (8)167
N4—H4N···O7A0.861.972.807 (10)165
N5—H5N···O4Ai0.862.182.927 (16)145
C11—H11···O6Aii0.932.463.224 (9)139
C6—H6···O5Aiii0.932.603.331 (17)136
C5—H5···O6Aiv0.932.433.139 (8)133
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H17N52+·2ClO4
Mr490.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)15.044 (6), 11.303 (4), 12.783 (5)
β (°) 108.009 (15)
V3)2067.1 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.35 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19199, 4507, 2540
Rint0.083
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.214, 1.07
No. of reflections4507
No. of parameters363
No. of restraints198
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.52

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N30.972.483.001 (6)113
C16—H16···O1A0.932.443.351 (8)167
N4—H4N···O7A0.861.972.807 (10)165
N5—H5N···O4Ai0.862.182.927 (16)145
C11—H11···O6Aii0.932.463.224 (9)139
C6—H6···O5Aiii0.932.603.331 (17)136
C5—H5···O6Aiv0.932.433.139 (8)133
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

Financial support received from the Scientific and Technological Research Council of Turkey research program 1001 grant for 104 T389 is gratefully acknowledged

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKaminski, J. J. & Doweyko, A. M. (1997). J. Med. Chem. 40, 427–436.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLhassani, M., Chavignon, O., Chezal, J.-M., Teulade, J.-C., Chapat, J.-P., Snoeck, R., Andrei, G., Balzarini, J., De Clercq, E. & Gueiffier, A. (1999). Eur. J. Med. Chem. 34, 271–274.  CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSanfillipo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221–2227.  PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1282
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds