organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1283-o1284

3-(4-Chloro­anilino)-2,5-di­methyl­cyclo­hex-2-en-1-one

aDepartment of Pharmaceutical Sciences, Howard University, 2300 4th Street NW, Washington, DC 20059, USA, bBowie High School, Bowie, MD 20715, USA, cFork Union Military Academy, Fork Union, VA 23055, USA, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 2 February 2011; accepted 15 February 2011; online 29 April 2011)

In the title compound, C14H16ClNO, the dihedral angle between the benzene ring and the conjugated part of the cyclo­hexene ring is 61.7 (2)°. Part of the cyclo­hexene ring and one of the attached methyl groups are disordered over two orientations with occupancies of 0.602 (7) and 0.398 (7). In addition, the crystal studied was a racemic twin [Flack parameter = 0.58 (4)]. In the crystal, the mol­ecules are linked into chains in the b-axis direction by inter­molecular N—H⋯O hydrogen bonds. C—H⋯O and C—H⋯Cl inter­actions are also observed.

Related literature

The title compound 3-(4-chloro­phenyl­amino)-2,5-dimethyl­cyclo­hex-2-enone possesses significant anti­convulsant properties. For the anti­convulsant properties of enamino­nes, see: Edafiogho et al. (1992[Edafiogho, I. O., Hinko, C. N., Chang, H., Moore, J. A., Mulzac, D., Nicholson, J. M. & Scott, K. R. (1992). J. Med. Chem. 35, 2798-2805.]); Eddington et al. (2003[Eddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). Eur. J. Med. Chem. 38, 49-64.]); Scott et al. (1993[Scott, K. R., Edafiogho, I. O., Richardson, E. R., Farrar, V. A., Moore, J. A., Tietz, E., Hinko, C. N., Chang, H., El-Assadi, A. & Nicholson, J. M. (1993). J. Med. Chem. 36, 1947-1955.], 1995[Scott, K. R., Rankin, G. O., Stables, J. P., Alexander, M. S., Edafiogho, I. O., Farrar, V. A., Kolen, K. R., Moore, J. A., Sims, L. D. & Tonnu, A. D. (1995). J. Med. Chem. 38, 4033-4043.]). For related structures see: Alexander et al. (2010[Alexander, M. S., North, H., Scott, K. R. & Butcher, R. J. (2010). Acta Cryst. E66, o3229.], 2011[Alexander, M. S., North, H., Scott, K. R. & Butcher, R. J. (2011). Acta Cryst. E67, o224.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16ClNO

  • Mr = 249.73

  • Monoclinic, P 21

  • a = 6.0775 (5) Å

  • b = 8.8106 (5) Å

  • c = 12.5794 (7) Å

  • β = 99.904 (7)°

  • V = 663.5 (1) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.41 mm−1

  • T = 295 K

  • 0.45 × 0.28 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.679, Tmax = 1.000

  • 2292 measured reflections

  • 1705 independent reflections

  • 1417 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.150

  • S = 1.00

  • 1705 reflections

  • 171 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 259 Friedel pairs

  • Flack parameter: 0.58 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.10 2.897 (4) 155
C6—H6A⋯O1ii 0.93 2.42 3.340 (4) 172
C12A—H12A⋯O1ii 0.97 2.58 3.439 (9) 147
C12B—H12D⋯Cl1iii 0.97 2.95 3.79 (3) 146
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x+2, y-{\script{1\over 2}}, -z]; (iii) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The study of enaminones has led to several compounds possessing anticonvulsant properties (Edafiogho et al., 1992; Eddington et al., 2003; Scott et al., 1993, 1995; Alexander et al., 2010, 2011). Our group has extensively studied the effects of modification of the enaminone with substitutions at the methyl ester, ethyl ester, and without the ester group. Early in our work, the N–H binding site was confirmed when it was found that no compound was active with the N–H proton missing. All of the active compounds were para-substituted with an electron-withdrawing group. A series of compounds with vinyl proton substitution has recently synthesized. The title compound, 3-(4-chlorophenylamino)-2,5-dimethylcyclohex-2-enone was exclusively active in the maximal electroshock seizure evaluation (MES) in mice, indicative of protection against tonic-clonic convulsions in humans. The MES test with mice revealed no activity at the 30 mg kg-1 dose, however in the 100 mg kg-1 dose, 3/3 of the animals were protected at 30 minutes and 0/3 of the animals were protected at 4 h. At a dose of 300 mg kg-1, 1/1 animals were protected 30 min and 4 h. There was toxicity at 30 min in 2/4 animals. In the rat MES study, at a dose of 30 mg kg-1, 1/4 of the animals were protected at 1 and 2 h with no toxicity.

Since the shape of the molecule is important in determining binding to the receptor sites it is of interest to note that the dihedral angle between the phenyl ring and the conjugated part of the cyclohexene ring is 61.7 (2)°. The backbone of the cyclohexene ring is disordered over two conformations with occupancies of 0.602 (7) and 0.398 (7), respectively. In addition the compound is a racemic twin (Flack parameter of 0.58 (4)). The molecules are linked in chains in the b direction by intermolecular N—H···O hydrogen bonds.

Related literature top

The title compound 3-(4-chlorophenylamino)-2,5-dimethylcyclohex-2-enone possesses significant anticonvulsant properties. For the anticonvulsant properties of enaminones, see: Edafiogho et al. (1992); Eddington et al. (2003); Scott et al. (1993, 1995). For related structures see: Alexander et al. (2010, 2011).

Experimental top

Iodomethane (11.2 ml, 0.18 mol, 1.5 equiv) was added to a solution of 5-methyl-1,3-cyclohexanedione (15.0 g, 0.119 mol) in 4 N aqueous sodium hydroxide (30 mL, 1.0 equiv of NaOH) in a two-neck 250 ml round bottom flask fitted with a magnetic stirrer and condenser. The solution was refluxed for 20 h and cooled to room temperature, then refrigerated at 0°C overnight. Vacuum filtration of the reaction mixture gave a crystalline mass dried to yield 9.24 g (54%). The crystalline mass, 2,5-dimethyl-1,3-cyclohexadione (2.10 g, 15 mmol), mp 170–172°C (lit. mp 130–131.5°C), 4-chloroaniline (2.32 g, 18 mmol), and toluene (60 ml) was added to a 150 ml single neck round bottom flask containing a stir bar. The solution was refluxed and stirred for 6 h with azeotropic removal of water by Dean-Stark trap. After standing overnight, crystals appeared. Evaporation under reduced pressure yielded crystals that were recrystallized from EtOAc, 44.3% yield (mp 183–185°C).

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.93 and 0.98 Å Uiso(H) = 1.2Ueq(C) and 0.96 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. The H atoms attached to N were idealized with an N–H distance of 0.86 Å. The backbone of the cyclohexene was disordered over two conformations with occupancies of 0.602 (7) and 0.398 (7), respectively.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of 3-(4-Chlorophenylamino)-2,5-dimethylcyclohex-2-enone showing atom labeling scheme. Thermal ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing for 3-(4-Chlorophenylamino)-2,5-dimethylcyclohex-2-enone viewed down the a axis. Intermolecular interactions are shown by dashed lines.
3-(4-Chloroanilino)-2,5-dimethylcyclohex-2-en-1-one top
Crystal data top
C14H16ClNOF(000) = 264
Mr = 249.73Dx = 1.250 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 1339 reflections
a = 6.0775 (5) Åθ = 5.0–73.9°
b = 8.8106 (5) ŵ = 2.41 mm1
c = 12.5794 (7) ÅT = 295 K
β = 99.904 (7)°Chunk, colorless
V = 663.5 (1) Å30.45 × 0.28 × 0.10 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1705 independent reflections
Radiation source: Enhance (Cu) X-ray Source1417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.5081 pixels mm-1θmax = 74.1°, θmin = 6.2°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 105
Tmin = 0.679, Tmax = 1.000l = 1315
2292 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.1145P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1705 reflectionsΔρmax = 0.22 e Å3
171 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 259 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.58 (4)
Crystal data top
C14H16ClNOV = 663.5 (1) Å3
Mr = 249.73Z = 2
Monoclinic, P21Cu Kα radiation
a = 6.0775 (5) ŵ = 2.41 mm1
b = 8.8106 (5) ÅT = 295 K
c = 12.5794 (7) Å0.45 × 0.28 × 0.10 mm
β = 99.904 (7)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1705 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1417 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 1.000Rint = 0.029
2292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.150Δρmax = 0.22 e Å3
S = 1.00Δρmin = 0.17 e Å3
1705 reflectionsAbsolute structure: Flack (1983), 259 Friedel pairs
171 parametersAbsolute structure parameter: 0.58 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.8577 (2)0.13354 (18)0.49024 (9)0.1059 (5)
O10.7909 (4)0.7372 (4)0.0704 (2)0.0739 (7)
N10.6375 (5)0.3591 (5)0.1708 (2)0.0660 (7)
H10.50330.35240.13570.079*
C10.7018 (5)0.2490 (4)0.2532 (2)0.0577 (8)
C20.5554 (6)0.2139 (6)0.3223 (3)0.0706 (10)
H2A0.42430.26930.31930.085*
C30.6030 (7)0.0966 (6)0.3961 (3)0.0775 (11)
H3A0.50360.07170.44190.093*
C40.7978 (7)0.0183 (5)0.4006 (3)0.0716 (10)
C50.9464 (6)0.0537 (5)0.3342 (3)0.0685 (9)
H5A1.08030.00090.33970.082*
C60.8969 (6)0.1680 (5)0.2591 (3)0.0630 (8)
H6A0.99570.19040.21250.076*
C70.7639 (6)0.4728 (4)0.1416 (3)0.0576 (8)
C80.7074 (6)0.5456 (4)0.0452 (3)0.0576 (7)
C90.8352 (5)0.6705 (5)0.0176 (3)0.0614 (8)
C10A1.051 (3)0.719 (3)0.0899 (17)0.066 (3)0.602 (7)
H10A1.07100.82740.08470.080*0.602 (7)
H10B1.17730.66890.06640.080*0.602 (7)
C11A1.0433 (10)0.6749 (8)0.2071 (5)0.0654 (13)0.602 (7)
H11A0.92950.73760.23240.078*0.602 (7)
C12A0.977 (3)0.5058 (16)0.2158 (13)0.059 (2)0.602 (7)
H12A1.09450.44140.19760.070*0.602 (7)
H12B0.95990.48340.28940.070*0.602 (7)
C14A1.270 (3)0.708 (2)0.279 (2)0.081 (4)0.602 (7)
H14A1.31320.81110.26840.122*0.602 (7)
H14B1.38130.64040.26060.122*0.602 (7)
H14C1.25750.69370.35350.122*0.602 (7)
C10B1.015 (6)0.732 (5)0.110 (3)0.066 (3)0.398 (7)
H10C1.12490.78830.07830.080*0.398 (7)
H10D0.94430.80230.15290.080*0.398 (7)
C11B1.1314 (16)0.6105 (13)0.1820 (8)0.0654 (13)0.398 (7)
H11B1.19350.53440.13860.078*0.398 (7)
C12B0.950 (5)0.540 (3)0.233 (2)0.059 (2)0.398 (7)
H12C0.88490.61570.27450.070*0.398 (7)
H12D1.01190.45960.28220.070*0.398 (7)
C14B1.321 (6)0.673 (4)0.272 (4)0.081 (4)0.398 (7)
H14D1.42000.59200.30000.122*0.398 (7)
H14E1.25590.71600.32980.122*0.398 (7)
H14F1.40440.75020.24230.122*0.398 (7)
C130.5116 (7)0.4931 (5)0.0383 (3)0.0716 (10)
H13A0.50800.38420.04020.107*
H13B0.52790.53120.10800.107*
H13C0.37490.53060.01960.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1398 (11)0.0944 (8)0.0775 (6)0.0012 (8)0.0015 (6)0.0320 (6)
O10.0719 (15)0.0806 (17)0.0706 (14)0.0063 (14)0.0158 (11)0.0202 (13)
N10.0611 (14)0.0737 (18)0.0575 (14)0.0048 (16)0.0060 (11)0.0102 (15)
C10.0651 (18)0.0592 (19)0.0451 (14)0.0076 (16)0.0009 (12)0.0016 (13)
C20.0615 (18)0.085 (3)0.0630 (18)0.0002 (19)0.0042 (14)0.0081 (18)
C30.074 (2)0.100 (3)0.0582 (17)0.009 (2)0.0091 (15)0.015 (2)
C40.087 (3)0.068 (2)0.0535 (17)0.008 (2)0.0037 (15)0.0098 (16)
C50.074 (2)0.065 (2)0.0623 (18)0.003 (2)0.0017 (15)0.0009 (17)
C60.0663 (18)0.066 (2)0.0556 (15)0.0063 (19)0.0059 (13)0.0038 (16)
C70.0562 (16)0.0566 (19)0.0579 (16)0.0011 (15)0.0042 (12)0.0010 (15)
C80.0563 (16)0.0581 (18)0.0566 (16)0.0059 (16)0.0046 (12)0.0017 (15)
C90.0585 (16)0.0611 (19)0.0660 (18)0.0088 (17)0.0144 (14)0.0059 (17)
C10A0.057 (7)0.072 (6)0.073 (8)0.005 (5)0.021 (4)0.005 (6)
C11A0.062 (3)0.060 (4)0.070 (3)0.000 (3)0.001 (2)0.007 (3)
C12A0.065 (5)0.051 (7)0.056 (6)0.003 (5)0.000 (3)0.006 (4)
C14A0.070 (10)0.075 (10)0.092 (4)0.006 (6)0.007 (6)0.005 (7)
C10B0.057 (7)0.072 (6)0.073 (8)0.005 (5)0.021 (4)0.005 (6)
C11B0.062 (3)0.060 (4)0.070 (3)0.000 (3)0.001 (2)0.007 (3)
C12B0.065 (5)0.051 (7)0.056 (6)0.003 (5)0.000 (3)0.006 (4)
C14B0.070 (10)0.075 (10)0.092 (4)0.006 (6)0.007 (6)0.005 (7)
C130.072 (2)0.075 (2)0.0617 (19)0.000 (2)0.0045 (16)0.0077 (18)
Geometric parameters (Å, º) top
Cl1—C41.747 (4)C10A—H10B0.9700
O1—C91.241 (4)C11A—C14A1.54 (2)
N1—C71.351 (5)C11A—C12A1.552 (18)
N1—C11.424 (5)C11A—H11A0.9800
N1—H10.8600C12A—H12A0.9700
C1—C61.375 (5)C12A—H12B0.9700
C1—C21.382 (5)C14A—H14A0.9600
C2—C31.386 (6)C14A—H14B0.9600
C2—H2A0.9300C14A—H14C0.9600
C3—C41.363 (6)C10B—C11B1.50 (4)
C3—H3A0.9300C10B—H10C0.9700
C4—C51.367 (5)C10B—H10D0.9700
C5—C61.378 (6)C11B—C12B1.50 (3)
C5—H5A0.9300C11B—C14B1.58 (5)
C6—H6A0.9300C11B—H11B0.9800
C7—C81.363 (5)C12B—H12C0.9700
C7—C12A1.489 (19)C12B—H12D0.9700
C7—C12B1.58 (3)C14B—H14D0.9600
C8—C91.424 (5)C14B—H14E0.9600
C8—C131.518 (5)C14B—H14F0.9600
C9—C10A1.52 (3)C13—H13A0.9600
C9—C10B1.55 (4)C13—H13B0.9600
C10A—C11A1.53 (2)C13—H13C0.9600
C10A—H10A0.9700
C7—N1—C1127.3 (3)C10A—C11A—C14A110.2 (14)
C7—N1—H1116.4C10A—C11A—C12A111.1 (13)
C1—N1—H1116.4C14A—C11A—C12A110.9 (12)
C6—C1—C2119.5 (3)C10A—C11A—H11A108.2
C6—C1—N1121.3 (3)C14A—C11A—H11A108.2
C2—C1—N1119.0 (3)C12A—C11A—H11A108.2
C1—C2—C3120.4 (4)C7—C12A—C11A110.6 (11)
C1—C2—H2A119.8C7—C12A—H12A109.5
C3—C2—H2A119.8C11A—C12A—H12A109.5
C4—C3—C2119.0 (4)C7—C12A—H12B109.5
C4—C3—H3A120.5C11A—C12A—H12B109.5
C2—C3—H3A120.5H12A—C12A—H12B108.1
C3—C4—C5121.3 (4)C11B—C10B—C9114 (3)
C3—C4—Cl1119.8 (3)C11B—C10B—H10C108.8
C5—C4—Cl1118.9 (3)C9—C10B—H10C108.8
C4—C5—C6119.8 (4)C11B—C10B—H10D108.8
C4—C5—H5A120.1C9—C10B—H10D108.8
C6—C5—H5A120.1H10C—C10B—H10D107.7
C1—C6—C5120.1 (3)C10B—C11B—C12B104.5 (18)
C1—C6—H6A120.0C10B—C11B—C14B113 (2)
C5—C6—H6A120.0C12B—C11B—C14B110 (2)
N1—C7—C8121.5 (3)C10B—C11B—H11B109.7
N1—C7—C12A116.6 (8)C12B—C11B—H11B109.7
C8—C7—C12A121.7 (8)C14B—C11B—H11B109.7
N1—C7—C12B116.5 (12)C11B—C12B—C7109.0 (17)
C8—C7—C12B120.8 (12)C11B—C12B—H12C109.9
C12A—C7—C12B15.4 (10)C7—C12B—H12C109.9
C7—C8—C9121.1 (3)C11B—C12B—H12D109.9
C7—C8—C13121.3 (3)C7—C12B—H12D109.9
C9—C8—C13117.6 (3)H12C—C12B—H12D108.3
O1—C9—C8122.6 (3)C11B—C14B—H14D109.5
O1—C9—C10A115.7 (10)C11B—C14B—H14E109.5
C8—C9—C10A121.3 (10)H14D—C14B—H14E109.5
O1—C9—C10B121.3 (16)C11B—C14B—H14F109.5
C8—C9—C10B115.6 (15)H14D—C14B—H14F109.5
C10A—C9—C10B14.3 (11)H14E—C14B—H14F109.5
C9—C10A—C11A109.7 (13)C8—C13—H13A109.5
C9—C10A—H10A109.7C8—C13—H13B109.5
C11A—C10A—H10A109.7H13A—C13—H13B109.5
C9—C10A—H10B109.7C8—C13—H13C109.5
C11A—C10A—H10B109.7H13A—C13—H13C109.5
H10A—C10A—H10B108.2H13B—C13—H13C109.5
C7—N1—C1—C649.7 (6)C13—C8—C9—C10A172.1 (8)
C7—N1—C1—C2136.0 (4)C7—C8—C9—C10B9.3 (13)
C6—C1—C2—C31.0 (6)C13—C8—C9—C10B173.0 (13)
N1—C1—C2—C3173.4 (4)O1—C9—C10A—C11A159.1 (10)
C1—C2—C3—C41.1 (6)C8—C9—C10A—C11A27.6 (17)
C2—C3—C4—C50.3 (6)C10B—C9—C10A—C11A43 (10)
C2—C3—C4—Cl1178.1 (3)C9—C10A—C11A—C14A174.3 (12)
C3—C4—C5—C61.7 (6)C9—C10A—C11A—C12A50.9 (17)
Cl1—C4—C5—C6176.7 (3)N1—C7—C12A—C11A152.2 (7)
C2—C1—C6—C50.5 (5)C8—C7—C12A—C11A32.7 (10)
N1—C1—C6—C5174.8 (3)C12B—C7—C12A—C11A59 (6)
C4—C5—C6—C11.9 (6)C10A—C11A—C12A—C754.1 (13)
C1—N1—C7—C8162.5 (3)C14A—C11A—C12A—C7177.0 (10)
C1—N1—C7—C12A12.5 (7)O1—C9—C10B—C11B149.8 (12)
C1—N1—C7—C12B29.8 (10)C8—C9—C10B—C11B37.9 (17)
N1—C7—C8—C9176.7 (3)C10A—C9—C10B—C11B79 (10)
C12A—C7—C8—C98.4 (7)C9—C10B—C11B—C12B63.3 (18)
C12B—C7—C8—C99.6 (10)C9—C10B—C11B—C14B177.3 (18)
N1—C7—C8—C135.6 (6)C10B—C11B—C12B—C760 (2)
C12A—C7—C8—C13169.2 (5)C14B—C11B—C12B—C7178.3 (16)
C12B—C7—C8—C13172.8 (9)N1—C7—C12B—C11B155.6 (11)
C7—C8—C9—O1178.5 (4)C8—C7—C12B—C11B36.6 (17)
C13—C8—C9—O10.7 (5)C12A—C7—C12B—C11B61 (6)
C7—C8—C9—C10A5.6 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.102.897 (4)155
C6—H6A···O1ii0.932.423.340 (4)172
C12A—H12A···O1ii0.972.583.439 (9)147
C12B—H12D···Cl1iii0.972.953.79 (3)146
Symmetry codes: (i) x+1, y1/2, z; (ii) x+2, y1/2, z; (iii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H16ClNO
Mr249.73
Crystal system, space groupMonoclinic, P21
Temperature (K)295
a, b, c (Å)6.0775 (5), 8.8106 (5), 12.5794 (7)
β (°) 99.904 (7)
V3)663.5 (1)
Z2
Radiation typeCu Kα
µ (mm1)2.41
Crystal size (mm)0.45 × 0.28 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.679, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2292, 1705, 1417
Rint0.029
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.150, 1.00
No. of reflections1705
No. of parameters171
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17
Absolute structureFlack (1983), 259 Friedel pairs
Absolute structure parameter0.58 (4)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.102.897 (4)155
C6—H6A···O1ii0.932.423.340 (4)172
C12A—H12A···O1ii0.972.583.439 (9)147
C12B—H12D···Cl1iii0.972.953.79 (3)146
Symmetry codes: (i) x+1, y1/2, z; (ii) x+2, y1/2, z; (iii) x+2, y+1/2, z+1.
 

Acknowledgements

The authors are indebted to Mr James P. Stables, Epilepsy Branch, Division of Convulsive, Developmental and Neuromuscular Disorders, National Institute of Neurological Disorders and Stroke, for helpful discussions and initial data. The authors wish to acknowledge E. Jeannette Andrews, EdD, Deputy Director of the Center of Excellence at Howard University College of Pharmacy, Nursing and Allied Health Sciences, for her generous assistance in completing this project. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAlexander, M. S., North, H., Scott, K. R. & Butcher, R. J. (2010). Acta Cryst. E66, o3229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlexander, M. S., North, H., Scott, K. R. & Butcher, R. J. (2011). Acta Cryst. E67, o224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEdafiogho, I. O., Hinko, C. N., Chang, H., Moore, J. A., Mulzac, D., Nicholson, J. M. & Scott, K. R. (1992). J. Med. Chem. 35, 2798–2805.  CrossRef PubMed CAS Web of Science Google Scholar
First citationEddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). Eur. J. Med. Chem. 38, 49–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationScott, K. R., Edafiogho, I. O., Richardson, E. R., Farrar, V. A., Moore, J. A., Tietz, E., Hinko, C. N., Chang, H., El-Assadi, A. & Nicholson, J. M. (1993). J. Med. Chem. 36, 1947–1955.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScott, K. R., Rankin, G. O., Stables, J. P., Alexander, M. S., Edafiogho, I. O., Farrar, V. A., Kolen, K. R., Moore, J. A., Sims, L. D. & Tonnu, A. D. (1995). J. Med. Chem. 38, 4033–4043.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1283-o1284
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds