organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1078

2-(3-Meth­­oxy­phen­­oxy)benzoic acid

aSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, People's Republic of China
*Correspondence e-mail: zhifang889@sohu.com

(Received 19 March 2011; accepted 24 March 2011; online 7 April 2011)

In the crystal structure of the title compound, C14H12O4, the mol­ecules form classical O—H⋯O hydrogen-bonded carb­oxy­lic acid dimers. These dimers are linked by C—H⋯pi; inter­actions into a three-dimensional network. The benzene rings are oriented at a dihedral angle of 69.6 (3)°.

Related literature

For applications of the title compound, see: Jackson et al. (1993)[Jackson, W. T., Boyd, R. J., Froelich, L. L., Gapinski, D. M., Mallett, B. E. & Sawyer, J. S. (1993). J. Med. Chem. 36, 1726-1734.]; Gapinski et al. (1990[Gapinski, D. M., Mallett, B. E., Froelich, L. L. & Jackson, W. T. (1990). J. Med. Chem. 33, 2798-2807.]). For related structures, see: Shi et al. (2011[Shi, L., Zhang, Q., Xiao, Q., Wu, T. & Zhu, H.-J. (2011). Acta Cryst. E67, o748.]); Raghunathan et al. (1982[Raghunathan, S., Chandrasekhar, K. & Pattabhi, V. (1982). Acta Cryst. B38, 2536-2538.]). For the synthesis of the title compound, see: Pellón et al. (1995[Pellón, R. F., Carrasco, R., Milián, V.& Rodes, L. (1995). Synth. Commun. 25, 1077-1083.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans.2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12O4

  • Mr = 244.24

  • Orthorhombic, P b c a

  • a = 14.309 (3) Å

  • b = 8.5330 (17) Å

  • c = 19.432 (4) Å

  • V = 2372.6 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.970, Tmax = 0.995

  • 4273 measured reflections

  • 2175 independent reflections

  • 1056 reflections with I > 2σ(I)

  • Rint = 0.093

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.133

  • S = 1.00

  • 2175 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3i 0.82 1.82 2.633 (3) 173
C1—H1BCg1ii 0.96 2.89 3.784 (4) 155
Symmetry codes: (i) -x+2, -y, -z+2; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 2-(3-methoxyphenoxy)benzoic acid is an important intermediate of xanthone dicarboxylic acids (Jackson et al., 1972). Xanthone dicarboxylic acid, such as LY223982, which inhibited the binding of LTB4 to receptors on intact human neutrophils nearly as well as nonradioactive LTB4 (Gapinski et al., 1990). Knowledge of the crystal structure of such benzoicacid derivatives gives us not only information about nuclearity of the complex molecule, but is important in understanding the behaviour of these compounds with respect to the mechanisms of pharmacological activities and physiological activities. Therefore, we have synthesized the title compound, (I), and report its crystal structure here.

The molecular structure of (I) is shown in Fig. 1, and the intermolecular O—H···O hydrogen bond (Table 1) results in the formation of carboxylic acid dimers (Fig. 2.). The bond lengths are within normal ranges (Allen et al., 1987). Similar crystal structure of some compounds have been reported (Shi et al., 2011; Raghunathan et al., 1982).

In the molecule of (I), the dihedral angle of the rings(C3—C6) and (C8—C13) is 69.6 (3)°, the molecules were connected together via O—H···O intermolecular hydrogen bonds to form dimers. These dimers are linked by C—H···π and weak C—H···O interactions to give a three-dimensional network, which seems to be very effective in the stabilization of the crystal structure.

Related literature top

For applications of the title compound, see: Jackson et al. (1993); Gapinski et al. (1990). For related structures, see: Shi et al. (2011); Raghunathan et al. (1982). For the synthesis of the title compound, see: Pellón et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound (I) was prepared by the method of Ullmann condensation reaction reported in literature (Pellón et al., 1995). A mixture of 2-chlorobenzoic acid (6.26 g, 0.04 mol), 3-methoxyphenol (9.93 g, 0.08 mol), anhydrous K2CO3 (11.04 g' 0.08 mol), pyridine (1.58 g' 0.02 mol), Cu powder (0.2 g) and cuprous iodide (0.2 g) in 25 ml water was kept at reflux for two hours. The mixture was then basified with Na2CO3 solution and extracted with diethyl ether. The aqueous solution was acidified with HCl, the precipitated solid was filtered off and disolved in NaOH; the basic solution was filtered (charcoal) and acidified with acetic acid. The 2-(3-methoxyphenoxy)benzoic acid was crystalized from the mixture.

Refinement top

H atoms were positioned geometrically and refined as riding groups, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (thermal ellipsoids are shown at 30% probability levels).
[Figure 2] Fig. 2. The structure of a dimer of (I).
2-(3-Methoxyphenoxy)benzoic acid top
Crystal data top
C14H12O4F(000) = 1024
Mr = 244.24Dx = 1.367 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 14.309 (3) Åθ = 9–12°
b = 8.5330 (17) ŵ = 0.10 mm1
c = 19.432 (4) ÅT = 295 K
V = 2372.6 (8) Å3Block, colourless
Z = 80.30 × 0.10 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1056 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.093
Graphite monochromatorθmax = 25.4°, θmin = 2.1°
ω/2θ scansh = 017
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.970, Tmax = 0.995l = 2323
4273 measured reflections3 standard reflections every 200 reflections
2175 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.039P)2]
where P = (Fo2 + 2Fc2)/3
2175 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H12O4V = 2372.6 (8) Å3
Mr = 244.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.309 (3) ŵ = 0.10 mm1
b = 8.5330 (17) ÅT = 295 K
c = 19.432 (4) Å0.30 × 0.10 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1056 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.093
Tmin = 0.970, Tmax = 0.9953 standard reflections every 200 reflections
4273 measured reflections intensity decay: 1%
2175 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
2175 reflectionsΔρmin = 0.16 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60412 (16)0.2617 (3)0.77635 (10)0.0641 (7)
C10.6361 (3)0.4135 (4)0.79576 (18)0.0738 (11)
H1A0.62390.48630.75920.111*
H1B0.70210.40980.80460.111*
H1C0.60400.44680.83660.111*
O20.70190 (16)0.0652 (2)0.99264 (12)0.0668 (7)
C20.6162 (2)0.1419 (4)0.82240 (16)0.0510 (8)
O30.88741 (15)0.0003 (3)0.97959 (10)0.0654 (7)
C30.6528 (2)0.1601 (4)0.88657 (16)0.0495 (8)
H3A0.67200.25840.90160.059*
O40.95145 (16)0.0699 (3)1.07827 (11)0.0783 (8)
H4A0.99920.04651.05730.117*
C40.6614 (2)0.0306 (4)0.92945 (16)0.0472 (8)
C50.6323 (2)0.1143 (4)0.90941 (18)0.0570 (9)
H5A0.63710.20000.93880.068*
C60.5953 (3)0.1298 (4)0.84420 (18)0.0660 (10)
H6A0.57510.22790.82960.079*
C70.5878 (2)0.0056 (5)0.80078 (18)0.0638 (10)
H7A0.56360.01930.75680.077*
C80.7034 (2)0.0465 (4)1.04428 (17)0.0533 (8)
C90.7889 (2)0.0922 (3)1.06981 (15)0.0454 (7)
C100.7896 (2)0.1884 (4)1.12863 (16)0.0535 (9)
H10A0.84630.21951.14770.064*
C110.7077 (3)0.2363 (4)1.15792 (17)0.0598 (9)
H11A0.70900.30121.19640.072*
C120.6238 (3)0.1898 (5)1.1312 (2)0.0666 (10)
H12A0.56830.22361.15120.080*
C130.6218 (2)0.0919 (5)1.0743 (2)0.0699 (10)
H13A0.56500.05751.05670.084*
C140.8796 (2)0.0495 (4)1.03863 (15)0.0488 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0741 (17)0.0676 (16)0.0506 (13)0.0054 (14)0.0066 (12)0.0027 (13)
C10.091 (3)0.067 (3)0.064 (2)0.008 (2)0.008 (2)0.010 (2)
O20.0799 (17)0.0490 (13)0.0716 (15)0.0051 (12)0.0318 (14)0.0080 (12)
C20.049 (2)0.055 (2)0.0488 (19)0.0094 (18)0.0042 (15)0.0037 (18)
O30.0670 (15)0.0839 (17)0.0452 (12)0.0097 (13)0.0051 (11)0.0177 (14)
C30.046 (2)0.0420 (19)0.061 (2)0.0060 (16)0.0011 (16)0.0044 (16)
O40.0547 (15)0.115 (2)0.0654 (16)0.0057 (16)0.0086 (13)0.0296 (15)
C40.0391 (18)0.046 (2)0.0565 (19)0.0019 (14)0.0081 (16)0.0041 (18)
C50.062 (2)0.045 (2)0.064 (2)0.0033 (19)0.0009 (19)0.0012 (18)
C60.081 (3)0.043 (2)0.074 (2)0.0001 (19)0.002 (2)0.014 (2)
C70.064 (2)0.070 (2)0.057 (2)0.001 (2)0.0037 (17)0.020 (2)
C80.062 (2)0.0448 (19)0.0530 (19)0.0070 (18)0.0061 (17)0.0012 (16)
C90.0518 (18)0.0384 (17)0.0461 (16)0.0025 (15)0.0024 (16)0.0004 (14)
C100.058 (2)0.059 (2)0.0439 (19)0.0086 (18)0.0046 (18)0.0023 (15)
C110.070 (2)0.061 (2)0.0485 (19)0.002 (2)0.0065 (19)0.0034 (17)
C120.053 (2)0.075 (3)0.072 (3)0.003 (2)0.015 (2)0.002 (2)
C130.048 (2)0.079 (3)0.083 (3)0.011 (2)0.001 (2)0.006 (2)
C140.057 (2)0.0475 (18)0.0423 (18)0.0035 (17)0.0138 (16)0.0029 (15)
Geometric parameters (Å, º) top
O1—C21.369 (3)C5—H5A0.9300
O1—C11.425 (4)C6—C71.360 (5)
C1—H1A0.9600C6—H6A0.9300
C1—H1B0.9600C7—H7A0.9300
C1—H1C0.9600C8—C131.362 (4)
O2—C81.384 (3)C8—C91.377 (4)
O2—C41.389 (3)C9—C101.407 (4)
C2—C31.362 (4)C9—C141.477 (4)
C2—C71.388 (4)C10—C111.366 (4)
O3—C141.229 (3)C10—H10A0.9300
C3—C41.389 (4)C11—C121.366 (4)
C3—H3A0.9300C11—H11A0.9300
O4—C141.296 (3)C12—C131.386 (5)
O4—H4A0.8200C12—H12A0.9300
C4—C51.362 (4)C13—H13A0.9300
C5—C61.379 (4)
C2—O1—C1117.7 (2)C6—C7—C2119.7 (3)
O1—C1—H1A109.5C6—C7—H7A120.1
O1—C1—H1B109.5C2—C7—H7A120.1
H1A—C1—H1B109.5C13—C8—C9121.8 (3)
O1—C1—H1C109.5C13—C8—O2119.6 (3)
H1A—C1—H1C109.5C9—C8—O2118.1 (3)
H1B—C1—H1C109.5C8—C9—C10117.7 (3)
C8—O2—C4120.0 (2)C8—C9—C14124.2 (3)
O1—C2—C3124.2 (3)C10—C9—C14118.1 (3)
O1—C2—C7116.2 (3)C11—C10—C9120.5 (3)
C3—C2—C7119.6 (3)C11—C10—H10A119.8
C2—C3—C4119.5 (3)C9—C10—H10A119.8
C2—C3—H3A120.2C10—C11—C12120.6 (3)
C4—C3—H3A120.2C10—C11—H11A119.7
C14—O4—H4A109.5C12—C11—H11A119.7
C5—C4—O2125.0 (3)C11—C12—C13119.8 (3)
C5—C4—C3121.5 (3)C11—C12—H12A120.1
O2—C4—C3113.4 (3)C13—C12—H12A120.1
C4—C5—C6117.9 (3)C8—C13—C12119.7 (4)
C4—C5—H5A121.1C8—C13—H13A120.2
C6—C5—H5A121.1C12—C13—H13A120.2
C7—C6—C5121.7 (3)O3—C14—O4122.0 (3)
C7—C6—H6A119.1O3—C14—C9123.2 (3)
C5—C6—H6A119.1O4—C14—C9114.8 (3)
C1—O1—C2—C33.1 (5)C13—C8—C9—C100.1 (5)
C1—O1—C2—C7177.4 (3)O2—C8—C9—C10171.1 (3)
O1—C2—C3—C4179.6 (3)C13—C8—C9—C14178.6 (3)
C7—C2—C3—C40.1 (5)O2—C8—C9—C1410.2 (5)
C8—O2—C4—C59.0 (5)C8—C9—C10—C111.3 (4)
C8—O2—C4—C3171.1 (3)C14—C9—C10—C11177.5 (3)
C2—C3—C4—C51.3 (5)C9—C10—C11—C121.0 (5)
C2—C3—C4—O2178.6 (3)C10—C11—C12—C130.6 (6)
O2—C4—C5—C6178.6 (3)C9—C8—C13—C121.5 (5)
C3—C4—C5—C61.3 (5)O2—C8—C13—C12172.5 (3)
C4—C5—C6—C70.1 (5)C11—C12—C13—C81.8 (6)
C5—C6—C7—C21.1 (6)C8—C9—C14—O316.7 (5)
O1—C2—C7—C6178.4 (3)C10—C9—C14—O3162.0 (3)
C3—C2—C7—C61.1 (5)C8—C9—C14—O4163.9 (3)
C4—O2—C8—C1367.7 (4)C10—C9—C14—O417.4 (4)
C4—O2—C8—C9121.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.821.822.633 (3)173
C1—H1B···Cg1ii0.962.893.784 (4)155
Symmetry codes: (i) x+2, y, z+2; (ii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H12O4
Mr244.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)14.309 (3), 8.5330 (17), 19.432 (4)
V3)2372.6 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.970, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
4273, 2175, 1056
Rint0.093
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.133, 1.00
No. of reflections2175
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.821.822.633 (3)173
C1—H1B···Cg1ii0.962.893.784 (4)155
Symmetry codes: (i) x+2, y, z+2; (ii) x+3/2, y+1/2, z.
 

Acknowledgements

The author gratefully acknowledges financial support from the Natural Science Foundation of the Education Department of Shaanxi Provincial Government (09JK844) and is grateful for support provided by the key industry problem plan of Yulin (gygg200807) and the special research projects of Yulin University (08YK17).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans.2, pp. S1–19.  Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGapinski, D. M., Mallett, B. E., Froelich, L. L. & Jackson, W. T. (1990). J. Med. Chem. 33, 2798-2807.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJackson, W. T., Boyd, R. J., Froelich, L. L., Gapinski, D. M., Mallett, B. E. & Sawyer, J. S. (1993). J. Med. Chem. 36, 1726–1734.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPellón, R. F., Carrasco, R., Milián, V.& Rodes, L. (1995). Synth. Commun. 25, 1077–1083.  Google Scholar
First citationRaghunathan, S., Chandrasekhar, K. & Pattabhi, V. (1982). Acta Cryst. B38, 2536–2538.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Zhang, Q., Xiao, Q., Wu, T. & Zhu, H.-J. (2011). Acta Cryst. E67, o748.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1078
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds