metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m564-m565

Aqua­bis­­(3-fluoro­benzoato-κO)(1,10-phenanthroline-κ2N,N′)copper(II)

aDepartment of Chemistry, East China University of Science and Technology, School of Chemistry and Molecular Engineering, Mei Long Road 130, Shanghai 200237, People's Republic of China
*Correspondence e-mail: yoshikiyin@ecust.edu.cn

(Received 24 March 2011; accepted 1 April 2011; online 13 April 2011)

In the title compound, [Cu(C7H4FO2)2(C12H8N2)(H2O)], the coordination around the CuII atom is square-pyramidal. The equatorial positions are occupied by two N atoms from a 1,10-phenanthroline ligand [Cu—N = 2.008 (3) and 2.019 (3) Å] and two O atoms from 3-fluoro­benzoate ligands and a water mol­ecule [Cu—O = 1.950 (2) and 1.978 (2) Å]. One O atom from another 3-fluoro­benzoate ligand occupies the apical positon [Cu—O = 2.210 (2) Å]. Hydrogen bonds occur between coordinated water mol­ecules and benzoate ligands, while O—H⋯O, C—H⋯O, C—H⋯F and ππ stacking [centroid–centroid distance = 3.731 (2) Å] inter­actions consolidate the crystal packing.

Related literature

A number of copper SOD mimetics (SOD = superoxide dismutase) have been shown to possess anti­tumor activity and have been proposed as a new class of potential anti­cancer agents, see: Devereux et al. (2007[Devereux, M. O., Shea, D., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kedziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881-892.]). Phen­oxy­alkanoic acids inter­act with Cu(II) ions to form complexes which have been shown to have diverse stereochemistries, see: Smith et al. (1981[Smith, G. O., Reilly, E. J., Kennard, C. H. L., Stadnicka, K. & Oleskyn, B. (1981). Inorg. Chim. Acta, 47, 111-120.], 1982[Smith, G. O., Reilly, E. J., Kennard, C. H. L. & Mak, T. C. W. (1982). Inorg. Chim. Acta, 65, L219-L221.]). For the structures of similar coordination compounds, see: Liu et al. (2009[Liu, Y., Ning, J., Sun, J. & Zhang, C. (2009). Acta Cryst. E65, m113.]); Zhu & Xiao (2006[Zhu, L.-G. & Xiao, H.-P. (2006). Acta Cryst. E62, m2061-m2063.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4FO2)2(C12H8N2)(H2O)]

  • Mr = 539.96

  • Triclinic, [P \overline 1]

  • a = 9.9914 (8) Å

  • b = 10.7258 (9) Å

  • c = 11.6166 (10) Å

  • α = 73.208 (1)°

  • β = 70.082 (1)°

  • γ = 86.293 (1)°

  • V = 1119.74 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.782, Tmax = 0.860

  • 5876 measured reflections

  • 3972 independent reflections

  • 2924 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.132

  • S = 1.03

  • 3972 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O1 0.85 1.75 2.585 (4) 163
O1W—H2W⋯O4 0.85 1.80 2.612 (4) 161
C10—H10⋯O3 0.93 2.53 3.005 (4) 112
C1—H1⋯F1i 0.93 2.33 3.213 (6) 158
C8—H8⋯O4ii 0.93 2.39 3.309 (4) 171
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A number of copper SOD mimetics have been shown to possess antitumor activity and have been proposed as a new class of potential anticancer agents (Devereux et al. 2007). Morever, phenoxyalkanoic acids interact with Cu(II) ions to form complexes which have been shown to have diverse stereochemistries (Smith et al. 1981,1982). Studying structure of such copper complexes is important to the understanding of copper biochemistry. Therefore, we have synthesized the title compound, (I), and report its crystal structure here.

In the title monomer complex, the copper atom adopts a square pyramidal environment defined by two nitrogen donors from the 1,10-phenanthroline ligand, two carboxyl oxygen atoms from two 3-fluorobenzoate ligands and one oxygen atom from the coordinated water molecule O atom (Fig. 1). Atoms N1, N2, O3, and O1w are sitting on the basal plane, while atom O2 occupies the apical position. Each 3-fluorobenzoate ligand is mono-coordinated to the metal atom. The coordinated water molecule acts as double donor to the carbonyl groups of the 3-fluorobenzoate ligands, forming two intramolecular O-H···O hydrogen bonds (Table 1), which consolidates the solid structure. The crystal packing exhibits also weak intermolecularC—H···O hydrogen bonds, ππ interactions and short intermolecular C—H···F Contacts. Similar coordination is observed in other Cu structures (Liu et al.,2009; Zhu et al., 2006).

Related literature top

A number of copper SOD mimetics have been shown to possess antitumor activity

and have been proposed as a new class of potential anticancer agents, see: Devereux et al. (2007). Phenoxyalkanoic acids interact with Cu(II) ions

to form complexes which have been shown to have diverse

stereochemistries, see: Smith et al. (1981, 1982). For similiar coordination structures, see Liu et al. (2009); Zhu & Xiao (2006).

Experimental top

All reagents were obtained from commercial sources and used without further purification. CuCl2.2H2O (0.017 g, 0.10 mmol) was successively added to 20 ml CH3OH, H2O (1:1, v/v)solution. Then 3-fluorobenzoic acid (0.028 g, 0.20 mmol) and 1,10-phenanthroline (0.017 g, 0.10 mmol) were subsequently added. The pH value of the mixture was adjusted to about 5.5 with NaOH solution and stirred continuously for 1 h to give a blue clear solution. After filtration, the blue filtrate was allowed to stand at room temperature for one week to give blue block-shaped crystals suitable for X-ray analysis.Analysis required for C26H18CuF2N2O5: C 57.83, H 3.36, N 5.19%; found: C 57.64, H 3.58, N 5.09%. m.p. 463.5-464 K.

Refinement top

All C-bound H atoms were positioned geometrically and treated as riding, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). The water H atoms were found in a difference Fourier map and refined freely.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), (thermal ellipsoids are shown at 30% probability levels).
Aquabis(3-fluorobenzoato-κO/)(1,10-phenanthroline- κ2N/,N/')copper(II) top
Crystal data top
[Cu(C7H4FO2)2(C12H8N2)(H2O)]Z = 2
Mr = 539.96F(000) = 550
Triclinic, P1Dx = 1.602 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9914 (8) ÅCell parameters from 2269 reflections
b = 10.7258 (9) Åθ = 2.4–23.9°
c = 11.6166 (10) ŵ = 1.04 mm1
α = 73.208 (1)°T = 295 K
β = 70.082 (1)°Block, blue
γ = 86.293 (1)°0.25 × 0.20 × 0.15 mm
V = 1119.74 (16) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3972 independent reflections
Radiation source: fine-focus sealed tube2924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1110
Tmin = 0.782, Tmax = 0.860k = 1212
5876 measured reflectionsl = 139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0675P)2]
where P = (Fo2 + 2Fc2)/3
3972 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu(C7H4FO2)2(C12H8N2)(H2O)]γ = 86.293 (1)°
Mr = 539.96V = 1119.74 (16) Å3
Triclinic, P1Z = 2
a = 9.9914 (8) ÅMo Kα radiation
b = 10.7258 (9) ŵ = 1.04 mm1
c = 11.6166 (10) ÅT = 295 K
α = 73.208 (1)°0.25 × 0.20 × 0.15 mm
β = 70.082 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3972 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2924 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.860Rint = 0.058
5876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.99 e Å3
3972 reflectionsΔρmin = 0.47 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1039 (5)0.3825 (4)0.2313 (4)0.0699 (13)
H10.11000.29390.24000.084*
C20.2204 (5)0.4403 (6)0.2961 (5)0.0823 (15)
H20.30300.39000.34780.099*
C30.2174 (5)0.5693 (5)0.2861 (4)0.0766 (14)
H30.29710.60750.33010.092*
C40.0929 (4)0.6439 (4)0.2089 (4)0.0575 (10)
C50.0752 (5)0.7814 (5)0.1881 (4)0.0686 (12)
H50.15070.82620.22880.082*
C60.0486 (5)0.8471 (4)0.1106 (4)0.0610 (11)
H60.05690.93600.09950.073*
C70.1661 (4)0.7829 (3)0.0457 (4)0.0460 (9)
C80.2980 (4)0.8451 (3)0.0358 (4)0.0503 (9)
H80.31210.93410.05120.060*
C90.4045 (4)0.7747 (3)0.0918 (3)0.0487 (9)
H90.49120.81590.14710.058*
C100.3850 (4)0.6403 (3)0.0670 (3)0.0423 (8)
H100.46010.59310.10450.051*
C110.1545 (4)0.6493 (3)0.0640 (3)0.0400 (8)
C120.0226 (4)0.5790 (4)0.1455 (3)0.0456 (9)
C130.2143 (4)0.2156 (3)0.3195 (3)0.0470 (9)
C140.2732 (4)0.1690 (3)0.4278 (3)0.0432 (8)
C150.2137 (4)0.0593 (4)0.5261 (3)0.0516 (9)
H150.13460.01570.52890.062*
C160.2740 (5)0.0158 (4)0.6198 (4)0.0584 (11)
C170.3895 (4)0.0746 (4)0.6215 (4)0.0569 (10)
H170.42760.04050.68640.068*
C180.4494 (5)0.1861 (4)0.5246 (4)0.0603 (11)
H180.52700.22990.52410.072*
C190.3909 (4)0.2315 (4)0.4279 (4)0.0538 (10)
H190.43160.30560.36150.065*
C200.4248 (4)0.2594 (3)0.1064 (4)0.0503 (9)
C210.5686 (4)0.2694 (4)0.2072 (4)0.0514 (10)
C220.6404 (5)0.3875 (4)0.2736 (4)0.0632 (11)
H220.60000.46370.25670.076*
C230.7713 (5)0.3922 (5)0.3647 (4)0.0757 (14)
C240.8378 (6)0.2835 (5)0.3942 (5)0.0802 (14)
H240.92610.29010.45800.096*
C250.7682 (6)0.1643 (5)0.3252 (5)0.0765 (14)
H250.81080.08830.34060.092*
C260.6352 (5)0.1575 (4)0.2331 (4)0.0640 (12)
H260.58930.07650.18760.077*
Cu10.20778 (5)0.38751 (4)0.05953 (4)0.04433 (19)
F10.2173 (4)0.0908 (3)0.7161 (3)0.1306 (14)
F30.8389 (4)0.5091 (3)0.4302 (3)0.1242 (13)
N10.2605 (3)0.5780 (3)0.0096 (3)0.0395 (7)
N20.0190 (3)0.4496 (3)0.1555 (3)0.0498 (8)
O10.1097 (3)0.1514 (3)0.3257 (3)0.0654 (8)
O20.2767 (3)0.3139 (2)0.2280 (2)0.0486 (6)
O30.3809 (3)0.3625 (2)0.0732 (2)0.0494 (6)
O40.3565 (3)0.1534 (3)0.0605 (3)0.0765 (9)
O1W0.1185 (3)0.2161 (2)0.0909 (3)0.0591 (7)
H1W0.11590.17950.16750.089*
H2W0.18950.17840.05240.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (3)0.068 (3)0.073 (3)0.016 (2)0.019 (2)0.006 (2)
C20.044 (3)0.104 (4)0.071 (3)0.013 (3)0.004 (2)0.001 (3)
C30.048 (3)0.104 (4)0.062 (3)0.004 (3)0.005 (2)0.015 (3)
C40.045 (2)0.076 (3)0.052 (2)0.007 (2)0.017 (2)0.020 (2)
C50.065 (3)0.079 (3)0.077 (3)0.022 (2)0.028 (3)0.043 (3)
C60.070 (3)0.055 (2)0.074 (3)0.018 (2)0.035 (2)0.033 (2)
C70.059 (2)0.0390 (19)0.050 (2)0.0075 (17)0.0283 (19)0.0163 (17)
C80.069 (3)0.0305 (18)0.055 (2)0.0027 (18)0.028 (2)0.0089 (17)
C90.054 (2)0.0401 (19)0.047 (2)0.0096 (17)0.0141 (18)0.0052 (17)
C100.048 (2)0.0339 (18)0.042 (2)0.0013 (15)0.0135 (17)0.0069 (15)
C110.042 (2)0.0411 (19)0.0388 (19)0.0018 (15)0.0186 (16)0.0084 (16)
C120.043 (2)0.051 (2)0.041 (2)0.0009 (17)0.0171 (17)0.0057 (17)
C130.052 (2)0.040 (2)0.046 (2)0.0026 (17)0.0149 (18)0.0108 (18)
C140.050 (2)0.0377 (18)0.0373 (19)0.0029 (16)0.0101 (16)0.0094 (15)
C150.062 (3)0.047 (2)0.044 (2)0.0095 (18)0.0163 (19)0.0093 (18)
C160.080 (3)0.045 (2)0.040 (2)0.009 (2)0.020 (2)0.0035 (18)
C170.068 (3)0.057 (2)0.046 (2)0.001 (2)0.025 (2)0.0077 (19)
C180.067 (3)0.059 (2)0.049 (2)0.002 (2)0.020 (2)0.007 (2)
C190.059 (2)0.047 (2)0.046 (2)0.0093 (18)0.0140 (19)0.0020 (18)
C200.062 (3)0.042 (2)0.057 (2)0.0039 (18)0.032 (2)0.0160 (19)
C210.068 (3)0.044 (2)0.055 (2)0.0104 (19)0.030 (2)0.0217 (19)
C220.077 (3)0.055 (2)0.054 (3)0.012 (2)0.015 (2)0.021 (2)
C230.080 (3)0.069 (3)0.062 (3)0.005 (3)0.007 (3)0.016 (3)
C240.084 (4)0.096 (4)0.066 (3)0.024 (3)0.024 (3)0.038 (3)
C250.092 (4)0.075 (3)0.085 (4)0.027 (3)0.041 (3)0.049 (3)
C260.079 (3)0.055 (2)0.077 (3)0.011 (2)0.039 (3)0.034 (2)
Cu10.0507 (3)0.0328 (3)0.0478 (3)0.00640 (18)0.0178 (2)0.00571 (19)
F10.169 (3)0.110 (2)0.103 (2)0.072 (2)0.081 (2)0.043 (2)
F30.113 (3)0.091 (2)0.110 (3)0.0060 (19)0.029 (2)0.018 (2)
N10.0405 (16)0.0362 (15)0.0383 (16)0.0007 (13)0.0112 (13)0.0076 (13)
N20.0462 (19)0.0481 (18)0.0471 (18)0.0098 (14)0.0152 (15)0.0005 (14)
O10.0704 (19)0.0583 (16)0.0621 (18)0.0245 (14)0.0326 (16)0.0093 (14)
O20.0559 (16)0.0416 (13)0.0425 (14)0.0088 (11)0.0175 (12)0.0004 (12)
O30.0595 (16)0.0316 (12)0.0563 (16)0.0019 (11)0.0172 (13)0.0142 (12)
O40.076 (2)0.0439 (15)0.110 (3)0.0078 (15)0.0196 (18)0.0350 (17)
O1W0.0714 (19)0.0472 (14)0.0597 (17)0.0153 (13)0.0244 (15)0.0100 (13)
Geometric parameters (Å, º) top
C1—N21.347 (5)C15—H150.9300
C1—C21.374 (6)C16—F11.338 (4)
C1—H10.9300C16—C171.359 (6)
C2—C31.357 (7)C17—C181.383 (5)
C2—H20.9300C17—H170.9300
C3—C41.395 (6)C18—C191.391 (5)
C3—H30.9300C18—H180.9300
C4—C121.404 (5)C19—H190.9300
C4—C51.437 (6)C20—O41.243 (4)
C5—C61.350 (6)C20—O31.277 (4)
C5—H50.9300C20—C211.500 (5)
C6—C71.419 (5)C21—C221.375 (5)
C6—H60.9300C21—C261.394 (5)
C7—C111.393 (5)C22—C231.367 (6)
C7—C81.407 (5)C22—H220.9300
C8—C91.354 (5)C23—F31.347 (5)
C8—H80.9300C23—C241.376 (6)
C9—C101.398 (5)C24—C251.379 (7)
C9—H90.9300C24—H240.9300
C10—N11.340 (4)C25—C261.384 (6)
C10—H100.9300C25—H250.9300
C11—N11.351 (4)C26—H260.9300
C11—C121.438 (5)Cu1—O31.950 (2)
C12—N21.360 (5)Cu1—O1W1.978 (2)
C13—O11.259 (4)Cu1—N12.008 (3)
C13—O21.272 (4)Cu1—N22.019 (3)
C13—C141.510 (5)Cu1—O22.210 (2)
C14—C151.376 (5)O1W—H1W0.8545
C14—C191.392 (5)O1W—H2W0.8462
C15—C161.373 (5)
N2—C1—C2122.3 (4)C18—C17—H17120.7
N2—C1—H1118.9C17—C18—C19118.6 (4)
C2—C1—H1118.9C17—C18—H18120.7
C3—C2—C1121.2 (4)C19—C18—H18120.7
C3—C2—H2119.4C18—C19—C14121.7 (3)
C1—C2—H2119.4C18—C19—H19119.1
C2—C3—C4119.0 (4)C14—C19—H19119.1
C2—C3—H3120.5O4—C20—O3124.3 (4)
C4—C3—H3120.5O4—C20—C21118.9 (3)
C3—C4—C12117.0 (4)O3—C20—C21116.8 (3)
C3—C4—C5125.0 (4)C22—C21—C26118.1 (4)
C12—C4—C5118.0 (4)C22—C21—C20121.5 (3)
C6—C5—C4121.5 (4)C26—C21—C20120.4 (4)
C6—C5—H5119.3C23—C22—C21119.6 (4)
C4—C5—H5119.3C23—C22—H22120.2
C5—C6—C7121.2 (4)C21—C22—H22120.2
C5—C6—H6119.4F3—C23—C22118.7 (4)
C7—C6—H6119.4F3—C23—C24118.0 (4)
C11—C7—C8116.4 (3)C22—C23—C24123.4 (5)
C11—C7—C6119.4 (4)C23—C24—C25117.3 (5)
C8—C7—C6124.2 (4)C23—C24—H24121.3
C9—C8—C7119.7 (3)C25—C24—H24121.3
C9—C8—H8120.2C24—C25—C26120.2 (4)
C7—C8—H8120.2C24—C25—H25119.9
C8—C9—C10120.4 (3)C26—C25—H25119.9
C8—C9—H9119.8C25—C26—C21121.4 (4)
C10—C9—H9119.8C25—C26—H26119.3
N1—C10—C9121.5 (3)C21—C26—H26119.3
N1—C10—H10119.2O3—Cu1—O1W94.85 (10)
C9—C10—H10119.2O3—Cu1—N190.11 (10)
N1—C11—C7124.4 (3)O1W—Cu1—N1165.91 (11)
N1—C11—C12115.9 (3)O3—Cu1—N2164.15 (11)
C7—C11—C12119.7 (3)O1W—Cu1—N290.67 (12)
N2—C12—C4123.9 (3)N1—Cu1—N281.29 (11)
N2—C12—C11115.9 (3)O3—Cu1—O299.65 (10)
C4—C12—C11120.2 (4)O1W—Cu1—O291.54 (10)
O1—C13—O2125.3 (3)N1—Cu1—O2100.63 (10)
O1—C13—C14117.2 (3)N2—Cu1—O295.04 (11)
O2—C13—C14117.5 (3)C10—N1—C11117.6 (3)
C15—C14—C19118.9 (4)C10—N1—Cu1128.7 (2)
C15—C14—C13119.7 (3)C11—N1—Cu1113.7 (2)
C19—C14—C13121.4 (3)C1—N2—C12116.6 (4)
C16—C15—C14118.3 (4)C1—N2—Cu1130.3 (3)
C16—C15—H15120.8C12—N2—Cu1113.0 (2)
C14—C15—H15120.8C13—O2—Cu1121.4 (2)
F1—C16—C17117.1 (4)C20—O3—Cu1129.5 (2)
F1—C16—C15119.0 (4)Cu1—O1W—H1W100.5
C17—C16—C15123.9 (4)Cu1—O1W—H2W100.5
C16—C17—C18118.6 (4)H1W—O1W—H2W98.7
C16—C17—H17120.7
N2—C1—C2—C30.4 (8)F3—C23—C24—C25179.2 (5)
C1—C2—C3—C40.3 (8)C22—C23—C24—C251.4 (8)
C2—C3—C4—C120.2 (7)C23—C24—C25—C261.8 (7)
C2—C3—C4—C5179.1 (5)C24—C25—C26—C210.3 (7)
C3—C4—C5—C6179.3 (4)C22—C21—C26—C251.6 (6)
C12—C4—C5—C60.4 (6)C20—C21—C26—C25179.6 (4)
C4—C5—C6—C70.4 (7)C9—C10—N1—C111.0 (5)
C5—C6—C7—C111.1 (6)C9—C10—N1—Cu1179.8 (3)
C5—C6—C7—C8179.7 (4)C7—C11—N1—C100.1 (5)
C11—C7—C8—C90.3 (5)C12—C11—N1—C10179.9 (3)
C6—C7—C8—C9179.0 (4)C7—C11—N1—Cu1178.9 (3)
C7—C8—C9—C101.3 (6)C12—C11—N1—Cu11.1 (4)
C8—C9—C10—N11.7 (6)O3—Cu1—N1—C1012.2 (3)
C8—C7—C11—N10.4 (5)O1W—Cu1—N1—C10123.0 (5)
C6—C7—C11—N1178.4 (3)N2—Cu1—N1—C10178.9 (3)
C8—C7—C11—C12179.6 (3)O2—Cu1—N1—C1087.6 (3)
C6—C7—C11—C121.7 (5)O3—Cu1—N1—C11168.9 (2)
C3—C4—C12—N20.0 (6)O1W—Cu1—N1—C1158.1 (5)
C5—C4—C12—N2179.0 (4)N2—Cu1—N1—C112.3 (2)
C3—C4—C12—C11179.9 (4)O2—Cu1—N1—C1191.2 (2)
C5—C4—C12—C110.9 (6)C2—C1—N2—C120.2 (6)
N1—C11—C12—N21.7 (5)C2—C1—N2—Cu1175.7 (3)
C7—C11—C12—N2178.3 (3)C4—C12—N2—C10.0 (5)
N1—C11—C12—C4178.4 (3)C11—C12—N2—C1179.9 (3)
C7—C11—C12—C41.6 (5)C4—C12—N2—Cu1176.5 (3)
O1—C13—C14—C151.1 (5)C11—C12—N2—Cu13.5 (4)
O2—C13—C14—C15176.9 (3)O3—Cu1—N2—C1123.0 (4)
O1—C13—C14—C19178.3 (4)O1W—Cu1—N2—C112.5 (4)
O2—C13—C14—C190.3 (5)N1—Cu1—N2—C1179.2 (4)
C19—C14—C15—C160.4 (5)O2—Cu1—N2—C179.1 (4)
C13—C14—C15—C16176.9 (3)O3—Cu1—N2—C1261.0 (5)
C14—C15—C16—F1180.0 (4)O1W—Cu1—N2—C12171.6 (3)
C14—C15—C16—C170.1 (6)N1—Cu1—N2—C123.2 (2)
F1—C16—C17—C18179.0 (4)O2—Cu1—N2—C1296.8 (2)
C15—C16—C17—C181.1 (7)O1—C13—O2—Cu10.4 (5)
C16—C17—C18—C191.6 (6)C14—C13—O2—Cu1177.4 (2)
C17—C18—C19—C141.1 (6)O3—Cu1—O2—C13118.2 (3)
C15—C14—C19—C180.1 (6)O1W—Cu1—O2—C1323.0 (3)
C13—C14—C19—C18177.4 (3)N1—Cu1—O2—C13149.9 (3)
O4—C20—C21—C22171.0 (4)N2—Cu1—O2—C1367.8 (3)
O3—C20—C21—C229.2 (5)O4—C20—O3—Cu13.8 (6)
O4—C20—C21—C2611.0 (6)C21—C20—O3—Cu1176.0 (2)
O3—C20—C21—C26168.8 (3)O1W—Cu1—O3—C2010.8 (3)
C26—C21—C22—C231.9 (6)N1—Cu1—O3—C20177.6 (3)
C20—C21—C22—C23179.9 (4)N2—Cu1—O3—C20120.8 (4)
C21—C22—C23—F3179.0 (4)O2—Cu1—O3—C2081.6 (3)
C21—C22—C23—C240.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O10.851.752.585 (4)163
O1W—H2W···O40.851.802.612 (4)161
C10—H10···O30.932.533.005 (4)112
C1—H1···F1i0.932.333.213 (6)158
C8—H8···O4ii0.932.393.309 (4)171
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H4FO2)2(C12H8N2)(H2O)]
Mr539.96
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.9914 (8), 10.7258 (9), 11.6166 (10)
α, β, γ (°)73.208 (1), 70.082 (1), 86.293 (1)
V3)1119.74 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.782, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
5876, 3972, 2924
Rint0.058
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.03
No. of reflections3972
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.99, 0.47

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O10.851.752.585 (4)163
O1W—H2W···O40.851.802.612 (4)161
C10—H10···O30.932.533.005 (4)112
C1—H1···F1i0.932.333.213 (6)158.0
C8—H8···O4ii0.932.393.309 (4)171.1
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the College of Chemistry and Mol­ecular Engineering, East China University of Science and Technology.

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevereux, M. O., Shea, D., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kedziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881–892.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y., Ning, J., Sun, J. & Zhang, C. (2009). Acta Cryst. E65, m113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. O., Reilly, E. J., Kennard, C. H. L. & Mak, T. C. W. (1982). Inorg. Chim. Acta, 65, L219–L221.  CrossRef CAS Google Scholar
First citationSmith, G. O., Reilly, E. J., Kennard, C. H. L., Stadnicka, K. & Oleskyn, B. (1981). Inorg. Chim. Acta, 47, 111–120.  CrossRef CAS Google Scholar
First citationZhu, L.-G. & Xiao, H.-P. (2006). Acta Cryst. E62, m2061–m2063.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m564-m565
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds