organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1070-o1071

2-(4-Meth­­oxy­benz­yl)-4,6-di­phenyl-2,5-di­aza­bi­cyclo­[2.2.2]oct-5-en-3-one

aMolecular Design & Synthesis, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F – box 2404, B-3001 Leuven, Belgium, and bBiomolecular Architecture, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F – box 2404, B-3001 Leuven, Belgium
*Correspondence e-mail: lianger@chem.kuleuven.be

(Received 29 March 2011; accepted 31 March 2011; online 7 April 2011)

In the crystal structure of the title compound, C26H24N2O2, weak inter­molecular C—H⋯π inter­actions involving the benzene of the p-methoxy benzyl group and one of the phenyl rings result in the formation of chains consisting of alternating enanti­omers. Weak C—H ⋯O inter­actions with the methoxy O atom lead to the formation of layers, which are inter­linked by further C—H⋯O inter­actions into a three-dimensional assembly.

Related literature

For our studies on pyrazinone chemistry, see: De Borggraeve et al. (2004[De Borggraeve, W. M., Verbist, B. M. P., Rombouts, F. J. R., Pawar, V. G., Smets, W. J., Kamoune, L., Alen, J., Van der Eycken, E. V., Compernolle, F. & Hoornaert, G. J. (2004). Tetrahedron, 60, 11597-11612.]); Azzam et al. (2004[Azzam, R., De Borggraeve, W. M., Compernolle, F. & Hoornaert, G. J. (2004). Tetrahedron Lett. 45, 1885-1888.]); Alen et al. (2007a[Alen, J., Dobrzańska, L., De Borggraeve, W. M. & Compernolle, F. (2007a). J. Org. Chem. 72, 1055-1057.]); Rombouts et al. (2003[Rombouts, F. J. R., De Borggraeve, W. M., Delaere, D., Froeyen, M., Toppet, S. M., Compernolle, F. & Hoornaert, G. J. (2003). Eur. J. Org. Chem. 10, 1868-1878.]). For a crystal structure with a 2,5-diaza­bicyclo­[2.2.2]oct-5-en-3-one core, see: Rusinov et al. (2009[Rusinov, G. L., Verbitsky, E. V., Slepukhin, P. A., Zabelina, O. N., Ganebnykh, I. N., Kalinin, V. N., Ol'shevskaya, V. A. & Charushin, V. N. (2009). Mendeleev Commun. 19, 243-245.]). For crystal structures with a similar 2,5-diaza­bicyclo­[2.2.2]octane-3,6-dione core, see: Alen et al. (2007b[Alen, J., Smets, W. J., Dobrzańska, L., De Borggraeve, W. M., Compernolle, F. & Hoornaert, G. J. (2007b). Eur. J. Org. Chem. 6, 965-971.]); Holl et al. (2008[Holl, R., Dykstra, M., Schneiders, M., Fröhlich, R., Kitamura, M., Würthwein, E.-U. & Wünsch, B. (2008). Aust. J. Chem. 61, 914-919.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24N2O2

  • Mr = 396.47

  • Triclinic, [P \overline 1]

  • a = 6.2770 (1) Å

  • b = 11.5684 (2) Å

  • c = 14.1443 (2) Å

  • α = 85.497 (1)°

  • β = 89.900 (1)°

  • γ = 76.144 (1)°

  • V = 993.97 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 100 K

  • 0.34 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.805, Tmax = 0.907

  • 10093 measured reflections

  • 3473 independent reflections

  • 2894 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.05

  • 3473 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C22–C27 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8ACg2i 0.99 2.96 3.906 (2) 159
C21—H21ACg1ii 0.99 2.56 3.411 (2) 144
C19—H19⋯O28iii 0.95 2.51 3.457 (2) 172
C13—H13⋯O30iv 0.95 2.56 3.368 (2) 143
C29—H29A⋯O30v 0.98 2.50 3.383 (2) 150
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) x-1, y, z; (v) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During the course of our studies on 3,5-dichloropyrazinones (Azzam et al., 2004; Alen et al., 2007a) and their conversion to aminopiperidinone carboxylate systems (Rombouts et al., 2003; De Borggraeve et al., 2004), we have isolated the title compound. Although quite a few studies deal with bicyclo[2.2.2]octane systems, only one structure with the 2,5-diazabicyclo[2.2.2]oct-5-en-3-one core (Rusinov et al., 2009) has been reported till now. Quite a few structures contain the similar 2,5-diazabicyclo[2.2.2]octane-3,6-dione core. Of those, two have very close resemblance to the title molecule due to a benzyl substituent on N4. One of those was obtained by us (Alen et al., 2007b) and the other one was published by Wünsch and co-workers (Holl et al., 2008).

The presented structure crystallizes in the triclinic space group P1 with one molecule in the asymmetric unit (Fig. 1). All three aromatic rings participate in weak C—H···π interactions, acting as a donor (C15–C20) or acceptors (C9–C14 and C22–C27). Intramolecular interactions C20—H20···Cg1, (where Cg1 is the centroid of the C22–C27 ring; the C20···Cg1 distance is 3.790 (2) Å, and the C20—H20···Cg1 angle is 149°) influence the orientation of these two rings towards each other. The dihedral angle between their planes is 52.75 (4)°. Rings C9–C14 and C22–C27, with dihedral angles 12.77 (9)° between their corresponding planes and -117.75 (1)° between C9–C4–C21–C22, are involved in weak intermolecular C—H···π interactions. These interactions, namely C8—H8A···Cg2i (where Cg2 is the centroid of C9–C14, the C8···Cg2 distance is 3.906 (2) Å; symmetry operation (i): -x,1 - y,2 - z) and C21—H21A···Cg1ii (the C21···Cg1 distance is 3.411 (2) Å; symmetry code (ii): 1 - x,1 - y,1 - z), lead to the formation of chains of alternating enantiomers along [-1 0 1] (Fig. 2).These chains are interlinked by C19—H19···O28 interactions to form layers, which are expanded in the third dimension through a number of C—H···O interactions involving O30 (Fig. 3, Table 1).

Related literature top

For our studies on pyrazinone chemistry, see: De Borggraeve et al. (2004); Azzam et al. (2004); Alen et al. (2007a); Rombouts et al. (2003). For a crystal structure with a 2,5-diazabicyclo[2.2.2]oct-5-en-3-one core, see: Rusinov et al. (2009). For crystal structures with a similar 2,5-diazabicyclo[2.2.2]octane-3,6-dione core, see: Alen et al. (2007b); Holl et al. (2008).

Experimental top

1-(4-methoxybenzyl)-3,5-diphenylpyrazin-2(1H)-one (5 mmol) was dissolved in toluene and heated at 145 °C in a stainless steel bomb under ethene pressure (35 atm) for 4 h. The progress of the Diels-Alder cycloaddition was monitored on TLC, by the disappearance of the starting pyrazinone. After evaporation of the solvent, the crude residue was purified by column chromatography to yield the title compound. Single crystals suitable for X-ray diffraction were obtained by slow evaporation from a chloroform solution.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95, 0.98, 0.99 and 1 Å) and constrained to ride on their parent atoms with Uiso(H) values set at 1.2 x Ueq(C) and 1.5 x Ueq(methyl-C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule; displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Fragment of the chain formed by C—H···π interactions; red centroids derive from C22–C27 ring (Cg1), blue from C9–C14 (Cg2).
[Figure 3] Fig. 3. Representation of the packing viewed down the a axis; weak C19—H19···O28 interactions facilitating the formation of layers are indicated by blue dashed lines; C13—H13···O30 and C29—H29A···O30 interactions stabilizing the three-dimensional assembly are presented in orange. Symmetry codes are listed in Table 1.
2-(4-Methoxybenzyl)-4,6-diphenyl-2,5-diazabicyclo[2.2.2]oct-5-en-3-one top
Crystal data top
C26H24N2O2Z = 2
Mr = 396.47F(000) = 420
Triclinic, P1Dx = 1.325 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 6.2770 (1) ÅCell parameters from 3657 reflections
b = 11.5684 (2) Åθ = 4.0–68.4°
c = 14.1443 (2) ŵ = 0.67 mm1
α = 85.497 (1)°T = 100 K
β = 89.900 (1)°Block, colorless
γ = 76.144 (1)°0.34 × 0.18 × 0.15 mm
V = 993.97 (3) Å3
Data collection top
Bruker SMART 6000
diffractometer
3473 independent reflections
Radiation source: fine-focus sealed tube2894 reflections with I > 2σ(I)
Crossed Göbel mirrors monochromatorRint = 0.028
ω and ϕ scansθmax = 68.5°, θmin = 4.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 77
Tmin = 0.805, Tmax = 0.907k = 1313
10093 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.2042P]
where P = (Fo2 + 2Fc2)/3
3473 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C26H24N2O2γ = 76.144 (1)°
Mr = 396.47V = 993.97 (3) Å3
Triclinic, P1Z = 2
a = 6.2770 (1) ÅCu Kα radiation
b = 11.5684 (2) ŵ = 0.67 mm1
c = 14.1443 (2) ÅT = 100 K
α = 85.497 (1)°0.34 × 0.18 × 0.15 mm
β = 89.900 (1)°
Data collection top
Bruker SMART 6000
diffractometer
3473 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2894 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.907Rint = 0.028
10093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
3473 reflectionsΔρmin = 0.27 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3365 (2)0.39618 (12)0.79614 (10)0.0184 (3)
H10.44520.32530.77470.022*
N20.30988 (19)0.50050 (10)0.72762 (8)0.0182 (3)
C30.1528 (2)0.59721 (12)0.74710 (9)0.0169 (3)
C40.0393 (2)0.57044 (12)0.84081 (9)0.0162 (3)
N50.04137 (19)0.46034 (10)0.83215 (8)0.0167 (3)
C60.1113 (2)0.37223 (12)0.80940 (9)0.0167 (3)
C70.2259 (2)0.54041 (12)0.91838 (9)0.0181 (3)
H7B0.29070.60990.92260.022*
H7A0.16450.52270.98090.022*
C80.4036 (2)0.43205 (13)0.89272 (10)0.0195 (3)
H8A0.41500.36510.94200.023*
H8B0.54770.45270.88810.023*
C90.1499 (2)0.67346 (12)0.86188 (10)0.0170 (3)
C100.1369 (3)0.74953 (13)0.93157 (10)0.0242 (3)
H100.00420.73840.96700.029*
C110.3152 (3)0.84182 (13)0.95039 (11)0.0278 (4)
H110.30410.89200.99920.033*
C120.5084 (3)0.86085 (13)0.89838 (11)0.0252 (3)
H120.63010.92390.91130.030*
C130.5227 (2)0.78717 (13)0.82731 (11)0.0252 (3)
H130.65420.80000.79070.030*
C140.3449 (2)0.69462 (12)0.80964 (11)0.0219 (3)
H140.35660.64450.76080.026*
C150.0681 (2)0.25323 (12)0.79874 (10)0.0184 (3)
C160.1056 (2)0.22043 (12)0.84705 (10)0.0200 (3)
H160.19340.27410.88720.024*
C170.1512 (2)0.11049 (13)0.83698 (11)0.0256 (3)
H170.26890.08890.87050.031*
C180.0242 (3)0.03196 (13)0.77777 (12)0.0282 (4)
H180.05390.04390.77140.034*
C190.1452 (3)0.06430 (13)0.72808 (11)0.0273 (4)
H190.22910.01160.68620.033*
C200.1933 (2)0.17386 (13)0.73923 (10)0.0230 (3)
H200.31220.19470.70610.028*
C210.4620 (2)0.49909 (13)0.64896 (10)0.0200 (3)
H21B0.61100.49350.67460.024*
H21A0.41680.57500.60860.024*
C220.4685 (2)0.39600 (12)0.58928 (9)0.0185 (3)
C230.2800 (2)0.38246 (12)0.54412 (10)0.0200 (3)
H230.14500.43910.55160.024*
C240.2841 (2)0.28809 (12)0.48822 (10)0.0206 (3)
H240.15340.28000.45840.025*
C250.4826 (2)0.20556 (12)0.47653 (10)0.0204 (3)
C260.6727 (2)0.21824 (13)0.52098 (10)0.0215 (3)
H260.80820.16240.51280.026*
C270.6647 (2)0.31205 (13)0.57704 (10)0.0204 (3)
H270.79500.31930.60760.024*
O280.50771 (17)0.10994 (9)0.42322 (7)0.0259 (3)
C290.3127 (3)0.08362 (14)0.38884 (12)0.0289 (4)
H29B0.21930.07100.44240.043*
H29C0.35140.01120.35470.043*
H29A0.23340.15060.34580.043*
O300.10832 (16)0.69324 (8)0.69944 (7)0.0208 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0169 (7)0.0183 (7)0.0186 (7)0.0017 (5)0.0005 (5)0.0013 (5)
N20.0193 (6)0.0193 (6)0.0159 (6)0.0043 (5)0.0026 (5)0.0015 (5)
C30.0166 (7)0.0202 (7)0.0155 (7)0.0064 (5)0.0013 (5)0.0041 (5)
C40.0177 (7)0.0169 (7)0.0151 (7)0.0060 (5)0.0002 (5)0.0025 (5)
N50.0178 (6)0.0171 (6)0.0156 (6)0.0047 (5)0.0003 (4)0.0018 (4)
C60.0178 (7)0.0186 (7)0.0126 (6)0.0026 (5)0.0012 (5)0.0002 (5)
C70.0174 (7)0.0235 (7)0.0142 (7)0.0069 (6)0.0005 (5)0.0010 (5)
C80.0170 (8)0.0245 (7)0.0169 (7)0.0054 (6)0.0006 (5)0.0002 (6)
C90.0189 (8)0.0159 (7)0.0171 (7)0.0065 (5)0.0026 (5)0.0001 (5)
C100.0262 (8)0.0232 (8)0.0229 (8)0.0042 (6)0.0026 (6)0.0045 (6)
C110.0383 (10)0.0211 (8)0.0228 (8)0.0030 (6)0.0013 (7)0.0077 (6)
C120.0263 (8)0.0164 (7)0.0304 (8)0.0001 (6)0.0059 (6)0.0030 (6)
C130.0192 (8)0.0201 (7)0.0363 (9)0.0044 (6)0.0024 (6)0.0030 (6)
C140.0225 (8)0.0173 (7)0.0268 (8)0.0049 (6)0.0013 (6)0.0070 (6)
C150.0187 (8)0.0172 (7)0.0177 (7)0.0015 (5)0.0055 (5)0.0004 (5)
C160.0176 (8)0.0190 (7)0.0225 (7)0.0023 (5)0.0050 (5)0.0021 (6)
C170.0198 (8)0.0238 (8)0.0333 (8)0.0064 (6)0.0054 (6)0.0003 (6)
C180.0304 (9)0.0172 (7)0.0365 (9)0.0043 (6)0.0121 (7)0.0033 (6)
C190.0312 (9)0.0199 (7)0.0274 (8)0.0024 (6)0.0051 (6)0.0074 (6)
C200.0232 (8)0.0208 (7)0.0225 (7)0.0004 (6)0.0017 (6)0.0013 (6)
C210.0198 (8)0.0227 (7)0.0189 (7)0.0074 (6)0.0040 (5)0.0034 (6)
C220.0214 (8)0.0212 (7)0.0140 (7)0.0074 (6)0.0023 (5)0.0002 (5)
C230.0190 (8)0.0207 (7)0.0196 (7)0.0034 (6)0.0018 (5)0.0006 (6)
C240.0209 (8)0.0230 (7)0.0193 (7)0.0082 (6)0.0012 (6)0.0005 (6)
C250.0268 (8)0.0184 (7)0.0171 (7)0.0075 (6)0.0019 (6)0.0020 (5)
C260.0192 (8)0.0205 (7)0.0235 (7)0.0021 (6)0.0019 (6)0.0026 (6)
C270.0187 (8)0.0239 (7)0.0192 (7)0.0069 (6)0.0007 (5)0.0008 (6)
O280.0269 (6)0.0229 (5)0.0293 (6)0.0059 (4)0.0015 (4)0.0096 (4)
C290.0319 (9)0.0225 (8)0.0340 (9)0.0083 (7)0.0084 (7)0.0067 (7)
O300.0241 (6)0.0189 (5)0.0191 (5)0.0053 (4)0.0002 (4)0.0013 (4)
Geometric parameters (Å, º) top
C1—N21.4641 (18)C15—C201.394 (2)
C1—C61.5129 (19)C15—C161.398 (2)
C1—C81.5460 (18)C16—C171.386 (2)
C1—H11.0000C16—H160.9500
N2—C31.3485 (18)C17—C181.390 (2)
N2—C211.4633 (17)C17—H170.9500
C3—O301.2252 (17)C18—C191.383 (2)
C3—C41.5489 (19)C18—H180.9500
C4—N51.4922 (17)C19—C201.392 (2)
C4—C91.5149 (19)C19—H190.9500
C4—C71.5641 (18)C20—H200.9500
N5—C61.2820 (18)C21—C221.5070 (19)
C6—C151.4843 (19)C21—H21B0.9900
C7—C81.5322 (19)C21—H21A0.9900
C7—H7B0.9900C22—C231.393 (2)
C7—H7A0.9900C22—C271.394 (2)
C8—H8A0.9900C23—C241.393 (2)
C8—H8B0.9900C23—H230.9500
C9—C101.387 (2)C24—C251.395 (2)
C9—C141.391 (2)C24—H240.9500
C10—C111.391 (2)C25—O281.3653 (17)
C10—H100.9500C25—C261.393 (2)
C11—C121.382 (2)C26—C271.385 (2)
C11—H110.9500C26—H260.9500
C12—C131.384 (2)C27—H270.9500
C12—H120.9500O28—C291.4250 (18)
C13—C141.387 (2)C29—H29B0.9800
C13—H130.9500C29—H29C0.9800
C14—H140.9500C29—H29A0.9800
N2—C1—C6106.68 (11)C9—C14—H14119.3
N2—C1—C8107.79 (11)C20—C15—C16118.74 (13)
C6—C1—C8106.12 (11)C20—C15—C6121.48 (13)
N2—C1—H1112.0C16—C15—C6119.75 (12)
C6—C1—H1112.0C17—C16—C15120.75 (14)
C8—C1—H1112.0C17—C16—H16119.6
C3—N2—C21123.95 (12)C15—C16—H16119.6
C3—N2—C1115.85 (11)C16—C17—C18119.89 (15)
C21—N2—C1119.96 (11)C16—C17—H17120.1
O30—C3—N2125.58 (12)C18—C17—H17120.1
O30—C3—C4124.51 (12)C19—C18—C17119.93 (14)
N2—C3—C4109.89 (11)C19—C18—H18120.0
N5—C4—C9110.11 (11)C17—C18—H18120.0
N5—C4—C3108.07 (10)C18—C19—C20120.23 (14)
C9—C4—C3111.77 (11)C18—C19—H19119.9
N5—C4—C7107.65 (10)C20—C19—H19119.9
C9—C4—C7113.68 (11)C19—C20—C15120.42 (15)
C3—C4—C7105.25 (11)C19—C20—H20119.8
C6—N5—C4112.30 (11)C15—C20—H20119.8
N5—C6—C15121.31 (12)N2—C21—C22112.07 (11)
N5—C6—C1116.26 (12)N2—C21—H21B109.2
C15—C6—C1122.43 (12)C22—C21—H21B109.2
C8—C7—C4109.57 (11)N2—C21—H21A109.2
C8—C7—H7B109.8C22—C21—H21A109.2
C4—C7—H7B109.8H21B—C21—H21A107.9
C8—C7—H7A109.8C23—C22—C27118.15 (13)
C4—C7—H7A109.8C23—C22—C21121.17 (12)
H7B—C7—H7A108.2C27—C22—C21120.68 (12)
C7—C8—C1107.33 (11)C24—C23—C22121.73 (13)
C7—C8—H8A110.2C24—C23—H23119.1
C1—C8—H8A110.2C22—C23—H23119.1
C7—C8—H8B110.2C23—C24—C25119.11 (13)
C1—C8—H8B110.2C23—C24—H24120.4
H8A—C8—H8B108.5C25—C24—H24120.4
C10—C9—C14117.80 (13)O28—C25—C26115.66 (13)
C10—C9—C4122.53 (13)O28—C25—C24124.54 (13)
C14—C9—C4119.66 (12)C26—C25—C24119.80 (13)
C9—C10—C11121.05 (14)C27—C26—C25120.19 (13)
C9—C10—H10119.5C27—C26—H26119.9
C11—C10—H10119.5C25—C26—H26119.9
C12—C11—C10120.35 (14)C26—C27—C22121.01 (13)
C12—C11—H11119.8C26—C27—H27119.5
C10—C11—H11119.8C22—C27—H27119.5
C11—C12—C13119.34 (14)C25—O28—C29117.06 (11)
C11—C12—H12120.3O28—C29—H29B109.5
C13—C12—H12120.3O28—C29—H29C109.5
C12—C13—C14119.95 (14)H29B—C29—H29C109.5
C12—C13—H13120.0O28—C29—H29A109.5
C14—C13—H13120.0H29B—C29—H29A109.5
C13—C14—C9121.49 (13)H29C—C29—H29A109.5
C13—C14—H14119.3
C6—C1—N2—C351.84 (15)C4—C9—C10—C11178.69 (13)
C8—C1—N2—C361.78 (15)C9—C10—C11—C121.2 (2)
C6—C1—N2—C21133.60 (12)C10—C11—C12—C130.0 (2)
C8—C1—N2—C21112.78 (13)C11—C12—C13—C140.7 (2)
C21—N2—C3—O304.4 (2)C12—C13—C14—C90.1 (2)
C1—N2—C3—O30178.72 (12)C10—C9—C14—C131.1 (2)
C21—N2—C3—C4174.13 (11)C4—C9—C14—C13179.33 (13)
C1—N2—C3—C40.19 (16)N5—C6—C15—C20153.12 (13)
O30—C3—C4—N5126.98 (13)C1—C6—C15—C2028.10 (19)
N2—C3—C4—N554.46 (14)N5—C6—C15—C1625.04 (19)
O30—C3—C4—C95.66 (18)C1—C6—C15—C16153.74 (13)
N2—C3—C4—C9175.79 (11)C20—C15—C16—C170.8 (2)
O30—C3—C4—C7118.21 (14)C6—C15—C16—C17178.97 (13)
N2—C3—C4—C760.35 (13)C15—C16—C17—C180.4 (2)
C9—C4—N5—C6176.59 (11)C16—C17—C18—C190.9 (2)
C3—C4—N5—C654.24 (14)C17—C18—C19—C201.9 (2)
C7—C4—N5—C658.98 (14)C18—C19—C20—C151.5 (2)
C4—N5—C6—C15178.84 (11)C16—C15—C20—C190.2 (2)
C4—N5—C6—C10.01 (16)C6—C15—C20—C19177.95 (13)
N2—C1—C6—N553.75 (15)C3—N2—C21—C22129.16 (13)
C8—C1—C6—N561.00 (15)C1—N2—C21—C2256.75 (16)
N2—C1—C6—C15127.41 (13)N2—C21—C22—C2359.17 (17)
C8—C1—C6—C15117.83 (13)N2—C21—C22—C27121.48 (14)
N5—C4—C7—C855.29 (14)C27—C22—C23—C240.2 (2)
C9—C4—C7—C8177.54 (11)C21—C22—C23—C24179.53 (12)
C3—C4—C7—C859.81 (13)C22—C23—C24—C250.5 (2)
C4—C7—C8—C12.67 (14)C23—C24—C25—O28179.64 (13)
N2—C1—C8—C756.69 (14)C23—C24—C25—C260.3 (2)
C6—C1—C8—C757.31 (13)O28—C25—C26—C27179.72 (12)
N5—C4—C9—C10134.06 (13)C24—C25—C26—C270.3 (2)
C3—C4—C9—C10105.81 (15)C25—C26—C27—C220.7 (2)
C7—C4—C9—C1013.18 (18)C23—C22—C27—C260.5 (2)
N5—C4—C9—C1446.41 (16)C21—C22—C27—C26178.88 (13)
C3—C4—C9—C1473.72 (15)C26—C25—O28—C29170.61 (13)
C7—C4—C9—C14167.29 (12)C24—C25—O28—C299.5 (2)
C14—C9—C10—C111.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C22–C27 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···O28i0.952.513.457 (2)172
C13—H13···O30ii0.952.563.368 (2)143
C29—H29A···O30iii0.982.503.383 (2)150
C8—H8A···Cg2iv0.992.963.906 (2)159
C21—H21A···Cg1v0.992.563.411 (2)144
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y+1, z+2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H24N2O2
Mr396.47
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.2770 (1), 11.5684 (2), 14.1443 (2)
α, β, γ (°)85.497 (1), 89.900 (1), 76.144 (1)
V3)993.97 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.34 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART 6000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.805, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
10093, 3473, 2894
Rint0.028
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.05
No. of reflections3473
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C22–C27 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···O28i0.952.513.457 (2)172
C13—H13···O30ii0.952.563.368 (2)143
C29—H29A···O30iii0.982.503.383 (2)150
C8—H8A···Cg2iv0.992.963.906 (2)159
C21—H21A···Cg1v0.992.563.411 (2)144
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y+1, z+2; (v) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO) for financial support.

References

First citationAlen, J., Dobrzańska, L., De Borggraeve, W. M. & Compernolle, F. (2007a). J. Org. Chem. 72, 1055–1057.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlen, J., Smets, W. J., Dobrzańska, L., De Borggraeve, W. M., Compernolle, F. & Hoornaert, G. J. (2007b). Eur. J. Org. Chem. 6, 965–971.  CrossRef Google Scholar
First citationAzzam, R., De Borggraeve, W. M., Compernolle, F. & Hoornaert, G. J. (2004). Tetrahedron Lett. 45, 1885–1888.  CrossRef CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Borggraeve, W. M., Verbist, B. M. P., Rombouts, F. J. R., Pawar, V. G., Smets, W. J., Kamoune, L., Alen, J., Van der Eycken, E. V., Compernolle, F. & Hoornaert, G. J. (2004). Tetrahedron, 60, 11597–11612.  CrossRef CAS Google Scholar
First citationHoll, R., Dykstra, M., Schneiders, M., Fröhlich, R., Kitamura, M., Würthwein, E.-U. & Wünsch, B. (2008). Aust. J. Chem. 61, 914–919.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRombouts, F. J. R., De Borggraeve, W. M., Delaere, D., Froeyen, M., Toppet, S. M., Compernolle, F. & Hoornaert, G. J. (2003). Eur. J. Org. Chem. 10, 1868–1878.  CrossRef Google Scholar
First citationRusinov, G. L., Verbitsky, E. V., Slepukhin, P. A., Zabelina, O. N., Ganebnykh, I. N., Kalinin, V. N., Ol'shevskaya, V. A. & Charushin, V. N. (2009). Mendeleev Commun. 19, 243–245.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1070-o1071
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds