organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1099-o1100

1-(4-Bromo­phen­yl)-2-ethyl­sulfinyl-2-(phenyl­selan­yl)ethanone monohydrate

aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bInstituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil, cChemistry Institute, Universidade de São Paulo, 05508-000 São Paulo-SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

(Received 3 April 2011; accepted 5 April 2011; online 13 April 2011)

In the title hydrate, C16H15BrO2SSe·H2O, the sulfinyl O atom lies on the opposite side of the mol­ecule to the Se and carbonyl O atoms. The benzene rings form a dihedral angle of 51.66 (17)° and are splayed with respect to each other. The observed conformation allows the water mol­ecules to bridge sulfinyl O atoms via O—H⋯O hydrogen bonds, generating a linear supra­molecular chain along the b axis; the chain is further stabilized by C—H⋯O contacts. The chains are held in place in the crystal structure by C⋯H⋯π and C—Br⋯π inter­actions.

Related literature

For background to β,β-bis-substituted-carbonyl compounds, see: Reis et al. (2006[Reis, A. K. C. A., Olivato, P. R., Zukerman-Schpector, J., Tormena, C. F. J., Rittner, R. & Dal Colle, M. (2006). J. Mol. Struct. 798, 57-63.]). For related structures, see: Olivato et al. (2004[Olivato, P. R., Reis, A. K. C. A., Rodrigues, A., Zukerman-Schpector, J., Tormena, C. F., Rittner, R. & Dal Colle, M. (2004). J. Mol. Struct. 707, 199-210.]); Zukerman-Schpector et al. (2009[Zukerman-Schpector, J., Vinhato, E., Olivato, P. R., Rodrigues, A., Dal Colle, M., Cerqueira, C. R. Jr, Arman, H. D. & Tiekink, E. R. T. (2009). Z. Kristallogr. 224, 484-492.], 2010[Zukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R., Santos, J. M. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1863.]). For details of the synthetic protocols, see: Long (1946[Long, L. M. (1946). J. Am. Chem. Soc. 68, 2159-2161.]); Leonard & Johnson (1962[Leonard, N. J. & Johnson, C. R. (1962). J. Org. Chem. 27, 282-284.]); Zoretic & Soja (1976[Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15BrO2SSe·H2O

  • Mr = 448.23

  • Monoclinic, P 21 /c

  • a = 14.6942 (2) Å

  • b = 6.1103 (1) Å

  • c = 21.5717 (4) Å

  • β = 113.714 (1)°

  • V = 1773.30 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.50 mm−1

  • T = 290 K

  • 0.36 × 0.19 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.291, Tmax = 0.734

  • 32063 measured reflections

  • 3734 independent reflections

  • 3177 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.03

  • 3734 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C5–C10 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯O2i 0.85 1.95 2.788 (4) 169
O1w—H2w⋯O2 0.84 1.99 2.810 (4) 165
C2—H2⋯O1wi 0.98 2.40 3.334 (4) 159
C3—H3b⋯O1wi 0.97 2.54 3.434 (4) 153
C9—H9⋯O1wii 0.93 2.55 3.320 (4) 141
C10—H10⋯O2ii 0.93 2.58 3.456 (4) 157
C14—H14⋯Cg1iii 0.93 2.96 3.793 (5) 149
C8—Br⋯Cg2iv 1.90 (1) 3.49 (1) 5.349 (3) 165 (1)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010[Chemaxon (2010). Marvinsketch. http://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As part of our on-going research on the conformational and electronic interactions in some β,β-substituted-carbonyl compounds, e.g. 4'-substituted 2-(bromo)-2-(ethylsulfonyl)- and 4'-substituted 2-(methylthio)-2-(diethoxyphosphoryl)]-acetophenones, and 3,3-bis[(4'-chlorophenyl)thio]-1-methylpiperidin-2-one, using theoretical, spectroscopic and X-ray diffraction methods (Olivato et al., 2004; Reis et al., 2006; Zukerman-Schpector et al., 2009; Zukerman-Schpector et al., 2010), the title hydrate, (I), was synthesized and its crystal structure determined, Fig. 1.

With reference to the pyramidal-S atom, the sulfinyl-O lies to the opposite side of the molecule to each of the Se and carbonyl-O atoms. This conformation allows for the formation of supramolecular chains mediated by the sulfinyl-O and water molecules, see below. The benzene rings are splayed with respect to each other as seen in the value of the C1—C2—Se—C11 torsion angle of -27.7 (2) °; the dihedral angle formed between the rings is 51.66 (17) °.

In the crystal packing, the water molecules bridge sulfinyl-O atoms via O—H···O hydrogen bonds to form a linear supramolecular chain along the b axis, Fig. 2 and Table 1. Chains are stabilized by a series of C—H···O interactions, Table 1, and are held in place by C—H···π(aryl-Br) and C—Br···π(aryl-Se) interactions, Fig. 3 and Table 1.

Related literature top

For background to β,β-bis-substituted-carbonyl compounds, see: Reis et al. (2006). For related structures, see: Olivato et al. (2004); Zukerman-Schpector et al. (2009, 2010). For details of the synthetic protocols, see: Long (1946); Leonard & Johnson (1962); Zoretic & Soja (1976).

Experimental top

Following the procedure of Long (1946), a solution of potassium hydroxide (400 mg, 7.2 mmol) and ethanothiol (0.5 ml, 7.2 mmol) in ethanol (10 ml) was added to a solution of 2-bromo-4'-bromoacetophenone (2.0 g, 7.2 mmol) in ethanol, to give 2-ethylthio-4'-bromoacetophenone (1.6 g, yield = 86%). The product was isolated and oxidized with 12 ml of an aqueous solution of sodium periodate (0.5 M) in acetonitrile (16 ml), after Leonard & Johnson (1962), to give 2-ethylsulfinyl-4'-bromoacetophenone that was extracted with dichloromethane and dried over anhydrous magnesium sulfate. 2-Ethylsulfinyl-4'-bromoacetophenone (730 mg, 2.6 mmol) was added drop-wise to a cooled (195 K) solution of diisopropylamine (0.4 ml, 2.6 mmol) and butyllithium (2.3 ml, 2.6 mmol) in THF (20 ml). After 20 minutes, phenylselenilbromide (610 mg, 2.6 mmol) dissolved in THF (10 ml) was added drop-wise to the enolate solution (Zoretic and Soja, 1976). After stirring for 3 h at 195 K, water (50 ml) was added at room temperature and extraction with chloroform was performed. The organic layer was dried over anhydrous magnesium sulfate. After evaporation of solvent, a crude solid was obtained. Purification through flash chromatography with a solution of hexane and ethyl acetate in a 1:1 ratio gave a mixture of the two possible diastereoisomers (500 mg, yield = 45%). One of the diastereoisomers was separated by recrystallization at low temperature (283 K) from chloroform. Suitable crystals for X-ray analysis were obtained by vapour diffusion of n-hexane into its chloroform solution at 283 K; M.pt. 366–367 K. IR (cm-1): ν(C=O) 1670, ν(S=O) 993. NMR (CDCl3, p.p.m.): δ 1.42–1.45 (3H, t 3J = 7.5 Hz), 2.92–2.99 (1H, dq, 2J = 13 Hz, 3J = 7.5 Hz), 3.32–3.25 (1H, dq, 2J = 13 Hz, 3J = 7.5 Hz), 5.44 (1H, s), 7.29–7.33 (2H, m, Aryl-H), 7.38–7.41 (1H, m, Aryl-H), 7.52–7.55 (2H, m, Aryl-H), 7.59–7.62 (2H, m, Aryl-H), 7.75–7.73 (2H, m, Aryl-H). Analysis found: C 42.76, H 3.84%. C16H15BrO2SSe.H2O requires: C 42.87, H 3.82%.

Refinement top

The H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Those of the water molecule were found in a difference map, fixed in those positions and refined with Uiso(H) = 1.2Ueq(O); see Table 1 for distances.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 35% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Supramolecular linear chain along the b axis in (I) mediated by O—H···O hydrogen bonding (orange dashed lines).
[Figure 3] Fig. 3. View of the unit-cell contents in projection down the b axis in (I). Chains shown in Fig. 2, sustained by O–H···O hydrogen bonding (orange dashed lines), are held in place by C—H···π and C—Br···π contacts, shown as blue and purple dashed lines, respectively.
1-(4-Bromophenyl)-2-ethylsulfinyl-2-(phenylselanyl)ethanone monohydrate top
Crystal data top
C16H15BrO2SSe·H2OF(000) = 888
Mr = 448.23Dx = 1.679 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 23524 reflections
a = 14.6942 (2) Åθ = 2.6–26.7°
b = 6.1103 (1) ŵ = 4.50 mm1
c = 21.5717 (4) ÅT = 290 K
β = 113.714 (1)°Plate, colourless
V = 1773.30 (5) Å30.36 × 0.19 × 0.16 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3734 independent reflections
Radiation source: sealed tube3177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
CCD rotation images scansθmax = 26.7°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.291, Tmax = 0.734k = 77
32063 measured reflectionsl = 2725
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0428P)2 + 1.5141P]
where P = (Fo2 + 2Fc2)/3
3734 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C16H15BrO2SSe·H2OV = 1773.30 (5) Å3
Mr = 448.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6942 (2) ŵ = 4.50 mm1
b = 6.1103 (1) ÅT = 290 K
c = 21.5717 (4) Å0.36 × 0.19 × 0.16 mm
β = 113.714 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3734 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3177 reflections with I > 2σ(I)
Tmin = 0.291, Tmax = 0.734Rint = 0.076
32063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.80 e Å3
3734 reflectionsΔρmin = 0.55 e Å3
200 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27316 (19)0.2209 (5)0.25810 (14)0.0424 (6)
C20.36493 (19)0.1572 (5)0.32017 (13)0.0419 (6)
H20.41140.08040.30550.050*
C30.5393 (2)0.2846 (6)0.42271 (17)0.0593 (8)
H3A0.52690.18960.45450.071*
H3B0.56830.19730.39770.071*
C40.6102 (3)0.4646 (8)0.4605 (2)0.0811 (12)
H4A0.58060.55220.48440.122*
H4B0.62430.55470.42900.122*
H4C0.67090.40140.49220.122*
C50.23970 (19)0.0756 (5)0.19795 (14)0.0409 (6)
C60.1669 (2)0.1548 (5)0.13798 (15)0.0488 (6)
H60.13960.29250.13730.059*
C70.1349 (2)0.0315 (5)0.07957 (16)0.0544 (7)
H70.08680.08540.03950.065*
C80.1756 (2)0.1734 (5)0.08164 (15)0.0503 (7)
C90.2473 (2)0.2565 (5)0.14005 (16)0.0506 (7)
H90.27360.39520.14050.061*
C100.2796 (2)0.1304 (5)0.19819 (15)0.0470 (6)
H100.32870.18430.23790.056*
C110.1967 (2)0.0520 (5)0.36178 (14)0.0468 (6)
C120.1754 (3)0.2435 (6)0.38661 (18)0.0612 (8)
H120.22610.33920.41160.073*
C130.0772 (3)0.2921 (7)0.3739 (2)0.0709 (10)
H130.06180.42220.39000.085*
C140.0026 (3)0.1487 (8)0.33776 (19)0.0722 (10)
H140.06310.18090.32980.087*
C150.0248 (3)0.0399 (8)0.3137 (2)0.0713 (10)
H150.02590.13680.28940.086*
C160.1217 (2)0.0899 (6)0.32472 (17)0.0577 (8)
H160.13620.21810.30730.069*
O10.22999 (15)0.3895 (3)0.25913 (11)0.0532 (5)
O20.45208 (18)0.5313 (4)0.31552 (12)0.0643 (6)
O1W0.4391 (2)0.4022 (4)0.18722 (14)0.0729 (7)
H1W0.46510.27940.18490.088*
H2W0.44110.41580.22630.088*
S0.42388 (5)0.40496 (12)0.36491 (4)0.04610 (18)
Se0.33094 (2)0.03515 (6)0.380920 (17)0.05674 (12)
Br0.13073 (3)0.34569 (7)0.001765 (19)0.07905 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0385 (13)0.0460 (15)0.0428 (15)0.0001 (11)0.0165 (11)0.0043 (11)
C20.0366 (13)0.0488 (15)0.0393 (14)0.0033 (11)0.0143 (11)0.0005 (11)
C30.0458 (16)0.077 (2)0.0477 (17)0.0005 (15)0.0116 (13)0.0088 (16)
C40.054 (2)0.114 (3)0.067 (2)0.015 (2)0.0156 (18)0.030 (2)
C50.0351 (12)0.0465 (14)0.0402 (14)0.0005 (11)0.0144 (11)0.0018 (11)
C60.0438 (14)0.0497 (16)0.0474 (16)0.0058 (12)0.0127 (12)0.0029 (12)
C70.0494 (16)0.0604 (18)0.0426 (16)0.0017 (14)0.0073 (13)0.0028 (13)
C80.0491 (15)0.0589 (18)0.0440 (15)0.0071 (13)0.0199 (13)0.0048 (13)
C90.0498 (15)0.0490 (16)0.0527 (17)0.0008 (13)0.0203 (13)0.0028 (13)
C100.0410 (14)0.0505 (16)0.0442 (15)0.0017 (12)0.0116 (12)0.0036 (12)
C110.0484 (15)0.0545 (16)0.0403 (15)0.0053 (12)0.0207 (12)0.0044 (12)
C120.0638 (19)0.062 (2)0.0597 (19)0.0092 (16)0.0271 (16)0.0088 (16)
C130.078 (2)0.077 (2)0.070 (2)0.0102 (19)0.043 (2)0.0010 (19)
C140.0531 (19)0.109 (3)0.061 (2)0.003 (2)0.0298 (17)0.014 (2)
C150.0543 (19)0.099 (3)0.062 (2)0.0205 (19)0.0248 (17)0.007 (2)
C160.0591 (18)0.0643 (19)0.0530 (18)0.0161 (15)0.0260 (15)0.0090 (15)
O10.0507 (11)0.0509 (11)0.0526 (12)0.0099 (9)0.0149 (9)0.0012 (9)
O20.0661 (14)0.0659 (14)0.0611 (14)0.0174 (11)0.0258 (12)0.0026 (11)
O1W0.0846 (17)0.0675 (15)0.0766 (17)0.0192 (13)0.0428 (14)0.0114 (13)
S0.0449 (4)0.0504 (4)0.0427 (4)0.0023 (3)0.0172 (3)0.0049 (3)
Se0.05056 (19)0.0595 (2)0.0579 (2)0.00582 (13)0.01947 (15)0.01869 (14)
Br0.0929 (3)0.0816 (3)0.0526 (2)0.0047 (2)0.01875 (19)0.02037 (18)
Geometric parameters (Å, º) top
C1—O11.215 (3)C8—Br1.897 (3)
C1—C51.483 (4)C9—C101.383 (4)
C1—C21.520 (4)C9—H90.9300
C2—S1.817 (3)C10—H100.9300
C2—Se1.969 (3)C11—C121.375 (5)
C2—H20.9800C11—C161.377 (4)
C3—C41.509 (5)C11—Se1.920 (3)
C3—S1.809 (3)C12—C131.388 (5)
C3—H3A0.9700C12—H120.9300
C3—H3B0.9700C13—C141.375 (6)
C4—H4A0.9600C13—H130.9300
C4—H4B0.9600C14—C151.357 (6)
C4—H4C0.9600C14—H140.9300
C5—C101.388 (4)C15—C161.380 (5)
C5—C61.392 (4)C15—H150.9300
C6—C71.378 (4)C16—H160.9300
C6—H60.9300O2—S1.503 (2)
C7—C81.380 (4)O1W—H1W0.8525
C7—H70.9300O1W—H2W0.8362
C8—C91.374 (4)
O1—C1—C5122.1 (2)C9—C8—Br119.1 (2)
O1—C1—C2119.1 (3)C7—C8—Br119.1 (2)
C5—C1—C2118.8 (2)C8—C9—C10118.8 (3)
C1—C2—S108.62 (19)C8—C9—H9120.6
C1—C2—Se111.50 (17)C10—C9—H9120.6
S—C2—Se109.77 (14)C9—C10—C5120.8 (3)
C1—C2—H2109.0C9—C10—H10119.6
S—C2—H2109.0C5—C10—H10119.6
Se—C2—H2109.0C12—C11—C16120.4 (3)
C4—C3—S109.2 (3)C12—C11—Se121.9 (2)
C4—C3—H3A109.8C16—C11—Se117.6 (2)
S—C3—H3A109.8C11—C12—C13119.2 (3)
C4—C3—H3B109.8C11—C12—H12120.4
S—C3—H3B109.8C13—C12—H12120.4
H3A—C3—H3B108.3C14—C13—C12120.2 (4)
C3—C4—H4A109.5C14—C13—H13119.9
C3—C4—H4B109.5C12—C13—H13119.9
H4A—C4—H4B109.5C15—C14—C13119.9 (3)
C3—C4—H4C109.5C15—C14—H14120.0
H4A—C4—H4C109.5C13—C14—H14120.0
H4B—C4—H4C109.5C14—C15—C16120.8 (3)
C10—C5—C6118.9 (3)C14—C15—H15119.6
C10—C5—C1123.3 (2)C16—C15—H15119.6
C6—C5—C1117.7 (2)C11—C16—C15119.4 (3)
C7—C6—C5120.8 (3)C11—C16—H16120.3
C7—C6—H6119.6C15—C16—H16120.3
C5—C6—H6119.6H1W—O1W—H2W108.1
C6—C7—C8118.8 (3)O2—S—C3104.37 (15)
C6—C7—H7120.6O2—S—C2105.07 (13)
C8—C7—H7120.6C3—S—C298.16 (14)
C9—C8—C7121.8 (3)C11—Se—C2101.82 (11)
O1—C1—C2—S28.1 (3)C16—C11—C12—C130.1 (5)
C5—C1—C2—S151.4 (2)Se—C11—C12—C13176.7 (3)
O1—C1—C2—Se93.0 (3)C11—C12—C13—C140.9 (5)
C5—C1—C2—Se87.5 (2)C12—C13—C14—C150.8 (6)
O1—C1—C5—C10171.6 (3)C13—C14—C15—C160.3 (6)
C2—C1—C5—C108.9 (4)C12—C11—C16—C151.1 (5)
O1—C1—C5—C610.6 (4)Se—C11—C16—C15175.8 (3)
C2—C1—C5—C6168.9 (2)C14—C15—C16—C111.3 (6)
C10—C5—C6—C70.2 (4)C4—C3—S—O264.1 (3)
C1—C5—C6—C7177.7 (3)C4—C3—S—C2172.0 (3)
C5—C6—C7—C80.7 (5)C1—C2—S—O261.3 (2)
C6—C7—C8—C90.5 (5)Se—C2—S—O2176.53 (14)
C6—C7—C8—Br179.2 (2)C1—C2—S—C3168.7 (2)
C7—C8—C9—C100.2 (5)Se—C2—S—C369.18 (16)
Br—C8—C9—C10179.9 (2)C12—C11—Se—C276.2 (3)
C8—C9—C10—C50.7 (4)C16—C11—Se—C2106.9 (2)
C6—C5—C10—C90.5 (4)C1—C2—Se—C1127.7 (2)
C1—C5—C10—C9178.3 (3)S—C2—Se—C1192.67 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C5–C10 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O2i0.851.952.788 (4)169
O1w—H2w···O20.841.992.810 (4)165
C2—H2···O1wi0.982.403.334 (4)159
C3—H3b···O1wi0.972.543.434 (4)153
C9—H9···O1wii0.932.553.320 (4)141
C10—H10···O2ii0.932.583.456 (4)157
C14—H14···Cg1iii0.932.963.793 (5)149
C8—Br···Cg2iv1.90 (1)3.49 (1)5.349 (3)165 (1)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H15BrO2SSe·H2O
Mr448.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)14.6942 (2), 6.1103 (1), 21.5717 (4)
β (°) 113.714 (1)
V3)1773.30 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.50
Crystal size (mm)0.36 × 0.19 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.291, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
32063, 3734, 3177
Rint0.076
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.03
No. of reflections3734
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.55

Computer programs: COLLECT (Nonius, 1999), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C5–C10 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O2i0.851.952.788 (4)169
O1w—H2w···O20.841.992.810 (4)165
C2—H2···O1wi0.982.403.334 (4)159
C3—H3b···O1wi0.972.543.434 (4)153
C9—H9···O1wii0.932.553.320 (4)141
C10—H10···O2ii0.932.583.456 (4)157
C14—H14···Cg1iii0.932.963.793 (5)149
C8—Br···Cg2iv1.897 (3)3.4921 (16)5.349 (3)165.34 (10)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z1/2.
 

Acknowledgements

We thank the Brazilian agencies FAPESP, CNPq (fellowships to JZS and PRO) and CAPES (808/2009 to JZS) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChemaxon (2010). Marvinsketch. http://www.chemaxon.com.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLeonard, N. J. & Johnson, C. R. (1962). J. Org. Chem. 27, 282–284.  CrossRef CAS Google Scholar
First citationLong, L. M. (1946). J. Am. Chem. Soc. 68, 2159–2161.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOlivato, P. R., Reis, A. K. C. A., Rodrigues, A., Zukerman-Schpector, J., Tormena, C. F., Rittner, R. & Dal Colle, M. (2004). J. Mol. Struct. 707, 199–210.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReis, A. K. C. A., Olivato, P. R., Zukerman-Schpector, J., Tormena, C. F. J., Rittner, R. & Dal Colle, M. (2006). J. Mol. Struct. 798, 57–63.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.  CrossRef CAS Web of Science Google Scholar
First citationZukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R., Santos, J. M. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1863.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Vinhato, E., Olivato, P. R., Rodrigues, A., Dal Colle, M., Cerqueira, C. R. Jr, Arman, H. D. & Tiekink, E. R. T. (2009). Z. Kristallogr. 224, 484–492.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1099-o1100
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds