organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1163

(2E)-2-(2-Phenyl­hydrazin-1-yl­­idene)propanoic acid

aFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 11 April 2011; accepted 12 April 2011; online 16 April 2011)

The 13 non-H atoms comprising the title compound, C9H10N2O2, are close to planar (r.m.s. deviation = 0.140 Å), with maximum deviations of 0.292 (1) and 0.210 (1) Å to either side of the least-squares plane exhibited by the hy­droxy and carbonyl O atoms, respectively. The observed conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond. The conformation about the N=C double bond [1.2909 (16) Å] is E. The hy­droxy OH group also forms an inter­molecular hydrogen bond to a carbonyl O atom, and the amine H atom similarly forms an N—H⋯O hydrogen bond to a second carbonyl O atom. The result is the formation of a double layer with a flat topology. Layers stack along the a-axis direction connected by C—H⋯π inter­actions.

Related literature

For background and recent studies on the biological activity of tin/organotin compounds, see: Gielen & Tiekink (2005[Gielen, M. & Tiekink, E. R. T. (2005). Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, edited by M. Gielen & E. R. T. Tiekink, pp. 421-439. Chichester: John Wiley & Sons.]); Affan et al. (2009[Affan, M. A., Wan Foo, S., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031-5037.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O2

  • Mr = 178.19

  • Monoclinic, P 21 /c

  • a = 7.3239 (3) Å

  • b = 12.0837 (7) Å

  • c = 9.6836 (4) Å

  • β = 99.119 (4)°

  • V = 846.17 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.734, Tmax = 1.000

  • 7879 measured reflections

  • 1920 independent reflections

  • 1544 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.114

  • S = 1.03

  • 1920 reflections

  • 127 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.86 (2) 2.12 (2) 2.6169 (16) 115.9 (16)
O1—H1⋯O2i 0.86 (2) 2.18 (2) 2.9039 (14) 141.5 (19)
N2—H2⋯O2ii 0.916 (18) 2.199 (19) 3.0579 (15) 155.9 (15)
C3—H3c⋯Cg1iii 0.98 2.92 3.5830 (16) 126
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was prepared as a potential ligand for tin (Affan et al., 2009), motivated by the wide range of biological activities displayed by organotin compounds (Gielen & Tiekink, 2005). The r.m.s. for the 13 non-hydrogen atoms comprising (I), Fig. 1, is 0.140 Å. The maximum deviations are found for the carboxylic acid-O atoms with the O1 atom being 0.292 (1) Å out of the least-squares plane and the O2 lying 0.210 (1) Å to the other side. The planarity in the molecule is readily explained in terms of an intramolecular O—H···N hydrogen bond as the hydroxy H is directed toward the centre of the molecule, Table 1. The conformation about the N1 C2 double bond [1.2909 (16) Å] is E. In the crystal packing, the carbonyl-O2 atom accepts hydrogen bonds from both the hydroxy-O1—H and amine-H atoms, derived from different molecules, Table 1. The result is a supramolecular double layer as illustrated in Fig. 2. Layers stack along the a direction and are connected by C—H···π interactions, Fig. 3 and Table 1.

Related literature top

For background and recent studies on the biological activity of tin/organotin compounds, see: Gielen & Tiekink (2005); Affan et al. (2009).

Experimental top

Pyruvic acid (0.440 g, 5 mmol) was dissolved in 10 ml absolute ethanol with constant stirring. An ethanolic solution of phenylhydrazine (0.540 g, 5 mmol) was then added to the solution drop-wise. The resulting reaction mixture was refluxed for 5 h. On cooling the solution to room temperature, a light-orange powder separated, which was filtered and washed with ethanol. The powder was recrystallized from ethanol and dried in vacuo over silica gel. (M.pt. 460–462 K. Yield 0.724 g (73.8%). Anal. Calc. for C9H10N2O2: C, 60.66; H, 5.65; N, 15.72%. Found: C, 60.61; H, 5.59; N, 15.68%. FT—IR (KBr, cm-1) νmax: 3333 (m, OH), 3285 (s, NH), 1709 (m, C=O), 1595 (w, C=N), 991 (m, N—N).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O—H and N—H hydrogen atoms were freely refined; see Table 1 for bond distances.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the supramolecular double layer in (I). The O—H···O and N—H···O hydrogen bonds are shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the crystal packing in (I) showing the connection between layers via C—H···π interactions. The O—H···O and N—H···S hydrogen bonds are shown as orange and blue dashed lines, respectively, and the C—H···π contacts are shown as purple dashed lines.
(2E)-2-(2-Phenylhydrazin-1-ylidene)propanoic acid top
Crystal data top
C9H10N2O2F(000) = 376
Mr = 178.19Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2940 reflections
a = 7.3239 (3) Åθ = 2.7–29.2°
b = 12.0837 (7) ŵ = 0.10 mm1
c = 9.6836 (4) ÅT = 100 K
β = 99.119 (4)°Block, yellow
V = 846.17 (7) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
1920 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1544 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.042
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1115
Tmin = 0.734, Tmax = 1.000l = 1212
7879 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.2722P]
where P = (Fo2 + 2Fc2)/3
1920 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H10N2O2V = 846.17 (7) Å3
Mr = 178.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3239 (3) ŵ = 0.10 mm1
b = 12.0837 (7) ÅT = 100 K
c = 9.6836 (4) Å0.20 × 0.15 × 0.10 mm
β = 99.119 (4)°
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
1920 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1544 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 1.000Rint = 0.042
7879 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
1920 reflectionsΔρmin = 0.22 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64494 (15)0.79085 (9)0.40334 (10)0.0218 (3)
O20.56711 (14)0.78175 (8)0.17390 (10)0.0207 (3)
N20.69829 (16)0.46664 (10)0.44283 (12)0.0175 (3)
N10.68674 (15)0.57591 (10)0.41916 (11)0.0158 (3)
C10.60689 (18)0.73282 (12)0.28486 (13)0.0168 (3)
C20.61419 (18)0.61094 (12)0.29678 (13)0.0164 (3)
C30.5429 (2)0.54090 (12)0.17314 (14)0.0196 (3)
H3A0.63420.48380.16150.029*
H3B0.52080.58720.08910.029*
H3C0.42690.50570.18760.029*
C40.78824 (18)0.42878 (12)0.57266 (14)0.0163 (3)
C50.7901 (2)0.31539 (12)0.59907 (15)0.0205 (3)
H50.73210.26560.52970.025*
C60.87695 (19)0.27559 (13)0.72715 (16)0.0242 (4)
H60.87730.19840.74550.029*
C70.9634 (2)0.34750 (14)0.82876 (15)0.0248 (4)
H71.02290.32000.91630.030*
C80.96165 (19)0.45980 (13)0.80084 (15)0.0228 (3)
H81.02070.50940.87000.027*
C90.87518 (19)0.50122 (13)0.67369 (15)0.0193 (3)
H90.87530.57850.65570.023*
H10.656 (3)0.7447 (18)0.472 (2)0.044 (6)*
H20.628 (2)0.4184 (16)0.3834 (19)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0340 (6)0.0160 (6)0.0142 (5)0.0001 (4)0.0003 (4)0.0001 (4)
O20.0272 (5)0.0187 (6)0.0157 (5)0.0014 (4)0.0018 (4)0.0027 (4)
N20.0218 (6)0.0138 (6)0.0157 (6)0.0001 (5)0.0007 (5)0.0008 (5)
N10.0166 (6)0.0149 (6)0.0158 (6)0.0009 (4)0.0026 (4)0.0007 (4)
C10.0175 (7)0.0172 (8)0.0153 (6)0.0006 (5)0.0014 (5)0.0006 (5)
C20.0159 (6)0.0180 (8)0.0153 (6)0.0003 (5)0.0027 (5)0.0006 (5)
C30.0240 (7)0.0175 (8)0.0162 (6)0.0013 (6)0.0002 (6)0.0008 (5)
C40.0146 (6)0.0195 (8)0.0153 (6)0.0022 (5)0.0043 (5)0.0032 (5)
C50.0209 (7)0.0181 (8)0.0223 (7)0.0016 (6)0.0024 (6)0.0010 (6)
C60.0226 (7)0.0211 (8)0.0288 (8)0.0042 (6)0.0034 (6)0.0088 (6)
C70.0195 (7)0.0345 (9)0.0194 (7)0.0039 (6)0.0005 (6)0.0093 (6)
C80.0189 (7)0.0302 (9)0.0182 (7)0.0008 (6)0.0003 (6)0.0014 (6)
C90.0188 (7)0.0195 (8)0.0196 (7)0.0013 (5)0.0025 (6)0.0010 (6)
Geometric parameters (Å, º) top
O1—C11.3358 (16)C4—C91.390 (2)
O1—H10.86 (2)C4—C51.393 (2)
O2—C11.2205 (16)C5—C61.3871 (19)
N2—N11.3405 (16)C5—H50.9500
N2—C41.4005 (17)C6—C71.388 (2)
N2—H20.916 (18)C6—H60.9500
N1—C21.2909 (16)C7—C81.383 (2)
C1—C21.478 (2)C7—H70.9500
C2—C31.4913 (18)C8—C91.3858 (19)
C3—H3A0.9800C8—H80.9500
C3—H3B0.9800C9—H90.9500
C3—H3C0.9800
C1—O1—H1107.9 (14)C9—C4—N2121.60 (13)
N1—N2—C4118.90 (11)C5—C4—N2118.39 (12)
N1—N2—H2120.4 (11)C6—C5—C4119.65 (14)
C4—N2—H2119.5 (11)C6—C5—H5120.2
C2—N1—N2119.05 (12)C4—C5—H5120.2
O2—C1—O1119.34 (13)C5—C6—C7120.65 (14)
O2—C1—C2123.52 (12)C5—C6—H6119.7
O1—C1—C2117.13 (11)C7—C6—H6119.7
N1—C2—C1113.77 (12)C8—C7—C6119.11 (13)
N1—C2—C3126.28 (13)C8—C7—H7120.4
C1—C2—C3119.95 (11)C6—C7—H7120.4
C2—C3—H3A109.5C7—C8—C9121.11 (14)
C2—C3—H3B109.5C7—C8—H8119.4
H3A—C3—H3B109.5C9—C8—H8119.4
C2—C3—H3C109.5C8—C9—C4119.46 (14)
H3A—C3—H3C109.5C8—C9—H9120.3
H3B—C3—H3C109.5C4—C9—H9120.3
C9—C4—C5120.01 (13)
C4—N2—N1—C2175.73 (12)C9—C4—C5—C60.8 (2)
N2—N1—C2—C1179.08 (12)N2—C4—C5—C6179.52 (13)
N2—N1—C2—C31.5 (2)C4—C5—C6—C70.6 (2)
O2—C1—C2—N1169.64 (13)C5—C6—C7—C80.1 (2)
O1—C1—C2—N110.90 (18)C6—C7—C8—C90.1 (2)
O2—C1—C2—C39.8 (2)C7—C8—C9—C40.2 (2)
O1—C1—C2—C3169.66 (12)C5—C4—C9—C80.6 (2)
N1—N2—C4—C94.0 (2)N2—C4—C9—C8179.71 (13)
N1—N2—C4—C5176.34 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (2)2.12 (2)2.6169 (16)115.9 (16)
O1—H1···O2i0.86 (2)2.18 (2)2.9039 (14)141.5 (19)
N2—H2···O2ii0.916 (18)2.199 (19)3.0579 (15)155.9 (15)
C3—H3c···Cg1iii0.982.923.5830 (16)126
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H10N2O2
Mr178.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.3239 (3), 12.0837 (7), 9.6836 (4)
β (°) 99.119 (4)
V3)846.17 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent Supernova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.734, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7879, 1920, 1544
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.03
No. of reflections1920
No. of parameters127
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (2)2.12 (2)2.6169 (16)115.9 (16)
O1—H1···O2i0.86 (2)2.18 (2)2.9039 (14)141.5 (19)
N2—H2···O2ii0.916 (18)2.199 (19)3.0579 (15)155.9 (15)
C3—H3c···Cg1iii0.982.923.5830 (16)126
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: maaffan@yahoo.com.

Acknowledgements

This work was financially supported by the Ministry of Science Technology and Innovation (MOSTI) under a research grant (No. 06–01-09-SF0046). The authors would like to thank Universiti Malaysia Sarawak (UNIMAS) for the facilities to carry out the research work. The authors also thank the University of Malaya for support of the crystallographic facility.

References

First citationAffan, M. A., Wan Foo, S., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031–5037.  Web of Science CSD CrossRef CAS Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGielen, M. & Tiekink, E. R. T. (2005). Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, edited by M. Gielen & E. R. T. Tiekink, pp. 421–439. Chichester: John Wiley & Sons.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1163
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds